
Forward with Hoare!

2009: Tony Hoare is 75 and Hoare Logic is 40!

An Axiomatic Basis for
Computer Programming

C. A. R. Hoare, 1969

Overview of talk:

◮ Review of Hoare Logic
◮ Mechanical proof
◮ Forwards versus backwards

[Slides that follow are based on joint work with Hélène Colla vizza]
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Hoare’s Axiomatic Basis for Computer Programming

◮ Originally both
◮ an axiomatic language definition method and
◮ a proof theory for program verification

◮ This talk focuses on the verification role
◮ after 40 years it is still a key idea in program correctness

◮ However, instead of
“... accepting the axioms and rules of inference as
the ultimately definitive specification of the
meaning of the language.”

can derive axioms and rules from language semantics
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Range of methods for proving {P}C{Q}

◮ Bounded model checking (BMC)
◮ unwind loops a finite number of times
◮ then symbolically execute
◮ check states reached satisfy decidable properties

◮ Full proof of correctness
◮ add invariants to loops
◮ generate verification conditions
◮ prove verification conditions with a theorem prover

◮ Goal: unifying framework for a spectrum of methods

decidable checking proof of correctness
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Some history: concepts related to {P} C {Q}

◮ WP C Q is Dijkstra’s ‘weakest liberal precondition’
(i.e. partial correctness: wlp.C.Q from Dijkstra & Scholten)

◮ precondition WP C Q ensures Q holds after C terminates

◮ wlp.C.Q is weakest solution of P : ({P} C {Q})
( Predicate Calculus & Program Semantics, Dijkstra & Scholten, 1990)

◮ SP C P is ‘strongest postcondition’
(sp.C.Q in Dijkstra & Scholten, Ch.12 – not stp.C.Q)

◮ SP C P holds after C terminates if started when P holds

◮ sp.C.P is strongest solution of Q : ({P} C {Q})
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Defining specification notions by semantic embedding

◮ Semantics of commands C given by binary relation [[C]]

◮ [[C]](s, s′) means if C run in s then it will terminate in s′

◮ s is the initial state; s′ is a final state

◮ commands assumed deterministic – at most one final state
(“Formalizing Dijkstra” by J. Harrison for non-determinism)

◮ {P}C{Q} =def ∀s s′. P s ∧ [[C]](s, s′) ⇒ Q s′

◮ WP C Q =def λs. ∀s′. [[C ]](s, s′) ⇒ Q s′

◮ ⊢ {P}C{Q} = ∀s. P s ⇒ WP C Q s

◮ SP C P =def λs′. ∃s. P s ∧ [[C]](s, s′)

◮ ⊢ {P}C{Q} = ∀s. SP C P s ⇒ Q s
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Details and notations
◮ {P}C{Q} =def ∀s s′. P s ∧ [[C]](s, s′) ⇒ Q s′

◮ P, Q : state → bool
◮ state = string 7→ value (finite map)
◮ s[x→v ] is the state mapping x to v and like s elsewhere
◮ [x1→v1; · · · ; xn→vn] has domain {x1, · · · , xn}; maps xi to vi
◮ [[C]] : state × state → bool
◮ [[B]] : state → bool
◮ [[E ]] : state → value
◮ WP C : (state → bool) → (state → bool)
◮ SP C : (state → bool) → (state → bool)

◮ Overload ∧, ∨, ⇒, ¬ to pointwise operations on predicates
◮ (P1 ∧ P2) s = P1 s ∧ P2 s
◮ (P1 ∨ P2) s = P1 s ∨ P2 s
◮ (P1 ⇒ P2) s = P1 s ⇒ P2 s
◮ (¬P) s = ¬(P s)

◮ Define: TAUT(P) =def ∀s. P s and SAT(P) =def ∃s. P s
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Proving {P}C{Q} by calculating WP C Q

◮ Easy consequences of definition of WP
◮ WP (SKIP) Q = Q
◮ WP (X := E) Q = λs. Q(s[X→[[E ]]s])

◮ WP (C1;C2) Q = WP C1 (WP C2 Q)

◮ WP (IF B THEN C1 ELSE C2) Q =
([[B]] ⇒ WP C1 Q) ∧ (¬[[B]] ⇒ WP C2 Q)

◮ WP (WHILE B DO C) Q =
([[B]] ⇒ WP C (WP (WHILE B DO C) Q)) ∧ (¬[[B]] ⇒ Q)

◮ To prove {P}C{Q} for straight line code

◮ calculate WP C Q . . . . . . . . . . back substitution + case splits
◮ prove ∀s. P s ⇒ WP C Q s . . . . . . . . . . use a theorem prover
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Proving {P}C{Q} by calculating SP C P

◮ Easy consequences of definition of SP
◮ SP SKIP P = P
◮ SP (X := E) P = λs′. ∃s. P s ∧ (s′ = s[X→[[E ]]s])

◮ SP (C1;C2) P = SP C2 (SP P C1)

◮ SP (IF B THEN C1 ELSE C2) P =
SP C1 (P ∧ [[B]]) ∨ SP C2 (P ∧ ¬[[B]])

◮ SP (WHILE B DO C) P =
SP (WHILE B DO C) (SP (P ∧ [[B]]) C) ∨ (P ∧ ¬[[B]])

◮ To prove {P}C{Q} for straight line code

◮ calculate SP P C . . . . . assignment generated ∃s a problem
◮ prove ∀s′. SP C P s′ ⇒ Q s′ . . . . . . . . .use a theorem prover
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Pruning conditional branches when going forwards

◮ Recall

SP (IF B THEN C1 ELSE C2) P =
SP C1 (P ∧ [[B]]) ∨ SP C2 (P ∧ ¬[[B]])

◮ Because SP C (λs. F) = λs′. F it follows that

(P ⇒ [[B]])
⇒
SP (IF B THEN C1 ELSE C2) P = SP C1 (P ∧ [[B]])

(P ⇒ ¬[[B]])
⇒
SP (IF B THEN C1 ELSE C2) P = SP C2 (P ∧ ¬[[B]])

◮ Hence can simplify if accumulated constraints implies test

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 9 / 42



Pruning conditional branches when going backwards

◮ Recall

WP (IF B THEN C1 ELSE C2) Q =
([[B]] ⇒ WP C1 Q) ∧ (¬[[B]] ⇒ WP C2 Q)

◮ Hence

([[B]] ⇒ WP C1 Q)
⇒
WP (IF B THEN C1 ELSE C2) Q = (¬[[B]] ⇒ WP C2 Q)

(¬[[B]] ⇒ WP C2 Q)
⇒
WP (IF B THEN C1 ELSE C2) Q = ([[B]] ⇒ WP C1 Q)

◮ Backwards pruning conditions involve C1 or C2

◮ forwards pruning natural – generalised execution
◮ forwards pruning conditions don’t involve C1 or C2
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Backwards or forwards?
◮ Calculating WP C Q is easy but leads to big formulae

◮ can’t use symbolic state to prune case splits ‘on-the-fly’

◮ Calculating SP C P generates ∃ at assignments
◮ at branches symbolic state can reject infeasible paths

◮ Consider {P}C1;(IF B THEN C2 ELSE C3);C4{Q}

◮ going forwards P and effect of C1 might determine B
◮ if P specifies a unique state, computing SP is execution

◮ Example

{J ≤ I}

K := 0;
IF I < J THEN K := K + 1 ELSE SKIP;
IF K = 1 ∧ ¬(I = J) THEN R := J − I ELSE R := I − J

{R = I − J}
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Summary so far

◮ Define {P}C{Q}, WP C Q and SP C P from semantics

◮ Prove rules for calculating WP C Q and SP C P
◮ one-off proofs

◮ For particular P, C, Q, to prove {P}C{Q}:
◮ calculate WP C Q by backwards substitution
◮ prove ∀s. P s ⇒ WP C Q s using theorem prover

or
◮ calculate SP C P by symbolic execution
◮ prove ∀s′. SP C P s′ ⇒ Q s′ using theorem prover

◮ Next: what about loops?
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Can’t compute finite WP or SP for loops

◮ Loop-free: can calculate finite formulae for WP and SP

◮ Loops: no simple finite formula for WP or SP in general

◮ WP (WHILE B DO C) Q =
([[B]] ∧ WP C (WP (WHILE B DO C) Q)) ∨ (¬[[B]] ∧ Q)

◮ SP (WHILE B DO C) P =
(SP (WHILE B DO C) (SP C (P ∧ [[B]]))) ∨ (P ∧ ¬[[B]])

◮ Solution inspired by Hoare logic rule (R is an invariant)

⊢ P ⇒ R ⊢ {R ∧ B}C{R} ⊢ R ∧ ¬B ⇒ Q
⊢ {P}WHILE B DO C{Q}

◮ Use approximate WP or SP plus verification conditions
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Method of verification conditions (VCs)
◮ Define AWP and ASP (“A” for “approximate”)

◮ like WP, SP for skip, assignment, sequencing, conditional

◮ for while-loops assume invariant R magically supplied

AWP (WHILE B DO {R} C) Q = R

ASP (WHILE B DO {R} C) P = R ∧ ¬[[B]]

◮ Define WVC C Q and SVC C P to generate VCs
(details later)

◮ Prove {P}C{Q} using theorems

WVC C Q ⇒ {AWP C Q}C{Q}

SVC C P ⇒ {P}C{ASP C P}

◮ If C is loop-free (i.e. straight line code) then this becomes

T ⇒ {WP C Q}C{Q}

T ⇒ {P}C{SP C P}
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A problem
◮ Have SP C (λs. F) = (λs′. F) so can reduce

SP (IF B THEN C1 ELSE C2) P
to

SP C1 (P ∧ [[B]]) or SP C2 (P ∧ ¬[[B]])
if P determines value of [[B]]

◮ But ASP C (λs. F) is not necessarily (λs′. F)
ASP (WHILE B DO {R} C) P = R ∧ ¬[[B]]

so cannot reduce ASP (IF B THEN C1 ELSE C2) P

◮ A solution is to define
ASP (WHILE B DO {R} C) P =
λs′. SAT(P) ∧ R s′ ∧ ¬([[B]]s′)

◮ Can then show ASP C (λs. F) = (λs′. F)

◮ A dual argument suggests defining

AWP (WHILE B DO {R} C) Q = λs. SAT(¬Q) ⇒ R s

(note: SAT(¬Q) = ¬(TAUT(Q)))
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Summary: definitions of ASP and AWP
ASP SKIP P = P

ASP (X := E) P = λs′. ∃s. P s ∧ (s′ = s[X→[[E ]]s])

ASP (C1;C2) P = ASP C2 (ASP C1 P)

ASP (IF B THEN C1 ELSE C2) P =
SP C1 (P ∧ [[B]]) ∨ SP C2 (P ∧ ¬[[B]])

ASP (WHILE B DO {R} C) P = λs′. SAT(P) ∧ R s′ ∧ ¬([[B]]s′)

AWP SKIP Q = Q

AWP (X := E) Q = λs. Q(s[X→[[E ]] s ])

AWP (C1;C2) Q = AWP C1 (AWP C2 Q)

AWP (IF B THEN C1 ELSE C2) Q =
([[B]] ⇒ WP C1 Q) ∧ (¬[[B]] ⇒ WP C2 Q)

AWP (WHILE B DO {R} C) Q = λs. SAT(¬Q) ⇒ R s
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Calculating verification conditions
◮ SVC P C is a ‘forwards’ calculation

SVC SKIP P = T
SVC (X := E) P = T
SVC (C1;C2) P = SVC C1 P ∧ SVC C2 (ASP C1 P)

SVC (IF B THEN C1 ELSE C2) P =
SAT(P ∧ [[B]] ) ⇒ SVC C1 (P ∧ [[B]]) ∧
SAT(P ∧ ¬[[B]] ) ⇒ SVC C2 (P ∧ ¬[[B]])

SVC (WHILE B DO {R} C) P =
TAUT(P ⇒ R) ∧ TAUT(ASP C (R ∧ [[B]])⇒ R) ∧ SVC C (R ∧ [[B]])

◮ WVC C Q is a standard ‘backwards’ calculation
WVC (SKIP) Q = T
WVC (X := E) Q = T
WVC (C1;C2) Q = WVC C1 (AWP C2 Q) ∧ WVC C2 Q
WVC (IF B THEN C1 ELSE C2) Q =

TAUT(Q) ∨ (WVC C1 Q ∧ WVC C2 Q)

WVC (WHILE B DO {R} C) Q =
TAUT(R ∧ [[B]] ⇒ AWP C R) ∧ TAUT(R ∧ ¬[[B]] ⇒ Q) ∧ WVC C R
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Symbolic execution of loops
ASP (WHILE B DO {R} C) P = λs′. SAT(P) ∧ R s′ ∧ ¬([[B]]s′)

◮ New state satisfying invariant R and loop-exit condition

◮ Pre and post loop states linked by verification conditions
SVC (WHILE B DO {R} C) P =

TAUT(P ⇒ R) ∧ TAUT(ASP C (R ∧ [[B]]) ⇒ R) ∧ SVC C (R ∧ [[B]])

◮ Various approaches to symbolic execution:
◮ generate fresh set of state variables

(need some metatheoretic proof of correctness)

◮ manage variable scopes inside logic using ∃
(correct-by-construct, but inefficient)

◮ Question (Plotkin)
◮ is there a semantics characterisation of AWP and ASP ?
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◮ Various approaches to symbolic execution:
◮ generate fresh set of state variables

(need some metatheoretic proof of correctness)

◮ manage variable scopes inside logic using ∃
(correct-by-construct, but inefficient)

◮ Question (Plotkin)
◮ is there a semantics characterisation of AWP and ASP ?
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Shallow embedding of symbolic execution in logic
◮ ⊢ SP (X := E) P = λs′. ∃s. P s ∧ (s′ = s[X→[[E ]]s])

◮ Consider P of form
λs. ∃x1 · · · xn. S ∧ (s = [X→e ])

where
◮ X1, . . . , Xn are distinct program variables (string constants)
◮ x1, . . . , xn are logic variables (i.e. symbolic values)
◮ S, e1, . . . , en only contain variables x1, . . . , xn and constants
◮ [X→e ] abbreviates [X1→e1; . . . ; Xn→en]

◮ It follows that

⊢ SP (Xi := Ei) (λs. ∃x1 · · · xn. S ∧ (s = [X→e ] ))

= λs.∃x1 · · · xn.S ∧ (s = [X→e ][Xi → ([[Ei ]] [X→e ])] )

where
◮ [X→e ][Xi → ([[Ei ]] [X→e ])]

= [X1→e1, . . . , Xi → ([[Ei ]] [X→e ]), . . . , Xn→en]

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 33 / 42



Symbolic state notation for predicates

◮ Abbreviate
λs. ∃x1 · · · xn. S ∧ (s = [X→e ])

as

〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉

then it follows that
SP (Xi := Ei) 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉

= 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xi=[[Ei ]] [X→e ] ∧ . . . ∧ Xn=en〉

◮ Computing SP is now symbolic execution
◮ symbolic state term: 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉

◮ no new existential quantifiers generated by assignments!
◮ SP SKIP P = P
◮ SP (C1;C2) P = SP C2 (SP C1 P)

◮ Simplersymbolicstate representionOKfor loop-freecode
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Symbolic execution of conditional branches
◮ Recall

SP (IF B THEN C1 ELSE C2) P
= SP C1 (P ∧ [[B]]) ∨ SP C2 (P ∧ ¬[[B]])

◮ Now
〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉 ∧ [[B]]

= (λs. ∃x1 · · · xn. S ∧ (s = [X→e ])) ∧ [[B]]

= λs. (∃x1 · · · xn. S ∧ (s = [X→e ])) ∧ [[B]]s
= λs. ∃x1 · · · xn. S ∧ (s = [X→e ]) ∧ [[B]]s
= λs. (∃x1 · · · xn. S ∧ (s = [X→e ]) ∧ [[B]] [X→e ]

= λs. ∃x1 · · · xn. (S ∧ [[B]] [X→e ]) ∧ (s = [X→e ])

= 〈∃x . (S ∧ [[B]] [X→e ]) ∧ X1=e1 ∧ . . . ∧ Xn=en〉

◮ Hence
SP (IF B THEN C1 ELSE C2) 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉

= SP C1 〈∃x . (S ∧ [[B]] [X→e ]) ∧ X1=e1 ∧ . . . ∧ Xn=en〉
∨
SP C2 〈∃x . (S ∧ ¬[[B]] [X→e ]) ∧ X1=e1 ∧ . . . ∧ Xn=en〉

◮ Prune paths by checking S ∧ [[B]] [X→e ] and S ∧ ¬[[B]] [X→e ]
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Approximate symbolic execution of while-loops

◮ Symbolically execute straight line code as before

◮ For while-loops, recall from previous slide

ASP (WHILE B DO {R} C) P = λs′. SAT(P) ∧ R s′ ∧ ¬([[B]]s′)

◮ Hence execute while-loops as follows

ASP (WHILE B DO {R} C) 〈∃x . S ∧ X1=e1 ∧ . . . ∧ Xn=en〉

= 〈∃x. ((∃x . S x) ∧ R[X→x ] ∧ ¬[[B]] [X→x ])
∧
X1=x1 ∧ . . . ∧ Xn=xn〉

◮ constraint S computed up to loop is discarded
◮ create new state satisfying invariant and loop exit condition
◮ link between pre and post loop states provided by VCs

SVC (WHILE B DO {R} C) P =
TAUT(P⇒R) ∧ TAUT(ASP C (R∧[[B]])⇒R) ∧ SVC C (R∧[[B]])

Mike Gordon (LMS & BCS/FACS, London, Dec. 1, 2009) Frame count: 37 / 42



Two cultures have evolved from Floyd-Hoare ideas
◮ Bounded model checking (BMC)

◮ unwind loops a finite number of times
◮ then symbolically execute forwards
◮ essentially SP C P ⇒ Q
◮ automatically check states reached satisfy properties

◮ Full proof of correctness
◮ generate verification conditions
◮ usually backwards by computing weakest preconditions
◮ essentially P ⇒ WP C Q
◮ interactively prove resulting subgoal formulae

◮ Computing postconditions unifies BMC and full verification
◮ symbolic execution is ASP calculation
◮ add forward VCs for verification of loops

◮ Other application of Floyd-Hoare ideas
◮ refinement:

synthesize code to achive a postcondition (WP )
◮ reverse engineering:

execute symbolically to find out what code does (SP )
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Overview of implementation

◮ Everything is programmed deduction in a theorem prover
◮ semantic embedding plus custom theorem proving tools
◮ for efficiency external oracles used to prune paths
◮ oracle provenance tracking via theorem tags

◮ HOL4 used for implementation of theorem proving
◮ provides higher order logic for representing semantics
◮ LCF-style proof tools (deriving Hoare logic, solving VCs)
◮ ML for proof scripting and general programming

◮ YICES used as oracle (future: Z3)
◮ SMT solver from SRI International
◮ used to quickly check conditional branch feasibility
◮ ‘blow away’ easy VCs (hard ones by HOL4 interactive proof)

◮ Experiments needed to compare forwards vs backwards!
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THE END

Slides at: http://www.cl.cam.ac.uk/~mjcg/Hoare75/
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