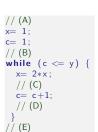


Arbeitsblatt 5.1: Was berechnet dieses Programm?



 $Betrachtet\ nebenstehendes\ Programm.$ Analog zu dem Beispiel auf der vorherigen Folie:

- 1 Was berechnet das Programm?
- Welches sind "Eingabevariablen", welches "Ausgabevariablen", welches sind "Arbeitsvariablen"?
- 3 Welche Zusicherungen und Zusammenhänge gelten zwischen den Variablen an den Punkten (A) bis (E)?

```
Fahrplan
```

- Einführung
- ► Operationale Semantik
- ► Denotationale Semantik
- Äquivalenz der Operationalen und Denotationalen Semantik
- ► Der Floyd-Hoare-Kalkül
- ► Invarianten und die Korrektheit des Floyd-Hoare-Kalküls
- Strukturierte Datentypen
- Verifikationsbedingungen
- Vorwärts mit Floyd und Hoare
- Modellierung
- ► Spezifikation von Funktionen
- Referenzen und Speichermodelle
- Ausblick und Rückblick

Floyd-Hoare-Logik: Idee

- Was wird hier berechnet? p = n!
- ► Warum? Wie können wir das beweisen?
- ► Wir berechnen symbolisch, welche Werte Variablen über den Programmverlauf annehmen.
- **while** (c <= n) { p = p * c;
- ► Operationale/denotionale Semantik nicht für Korrektheitsbeweise geeignet: Ausdrücke werden zu groß, skaliert nicht.
- ► Abstraktion nötig.
- Grundidee: Zusicherungen über den Zustand an bestimmten Punkten im Programmablauf.

Grundbausteine der Floyd-Hoare-Logik

- Zusicherungen über den Zustand
- ► Beispiele:
- ▶ (B): Hier gilt p = c = 1
- ightharpoonup (D): Hier ist c ist um eines größer als der Wert von c an Punkt (C)
- ► Gesamtaussage: Wenn am Punkt(A) der Wert von $n \ge 0$, dann ist am Punkt (E) p = n!.

```
p= 1;
c= 1;
// (B)
while (c <= n) {
  p= p * c;
  // (C)
  c= c + 1;
// (D)
,
// (E)
```

DK W

DFK W

Auf dem Weg zur Floyd-Hoare-Logik

- ► Kern der Floyd-Hore-Logik sind zustandsabhängige Aussagen
- Aber: wie können wir Aussagen jenseits des Zustandes treffen?
- ► Einfaches Beispiel:
- x = x+ 1; Der Wert von x wird um 1 erhöht
 - Der Wert von x ist hinterher größer als vorher
- ▶ Wir benötigen auch zustandsfreie Aussagen, um Zustände vergleichen zu können.
- ▶ Die Logik abstrahiert den Effekt von Programmen durch Vor- und Nachbedingung.

DFK W

Grundbausteine der Floyd-Hoare-Logik

- ► Logische Variablen (zustandsfrei) und Programmvariablen
- ▶ Zusicherungen mit logischen und Programmvariablen
- ► Floyd-Hoare-Tripel {P} c {Q}
 - ► Vorbedingung *P* (Zusicherung)
 - ▶ Programm c
 - ► Nachbedingung *Q* (Zusicherung)
- Floyd-Hoare-Logik abstrahiert von Programmen zu logischen Formeln.

V 1. C 6

9 [33]

DK W

Denotationale Semantik von Zusicherungen

► Erste Näherung: Funktion

- ► Konservative Erweiterung von $\llbracket a \rrbracket_{\mathcal{A}} : \mathbf{Aexp} \to (\Sigma \rightharpoonup \mathbb{Z})$
- ► Aber: was ist mit den logischen Variablen?
- ightharpoonup Zusätzlicher Parameter **Belegung** der logischen Variablen $I: \mathbf{Var} \to \mathbb{Z}$

$$\llbracket a \rrbracket_{\mathcal{A}} : \mathsf{Aexpv} \to (\mathsf{Var} \to \mathbb{Z}) \to (\Sigma \rightharpoonup \mathbb{Z})$$
$$\llbracket b \rrbracket_{\mathcal{B}} : \mathsf{Assn} \to (\mathsf{Var} \to \mathbb{Z}) \to (\Sigma \rightharpoonup \mathcal{B})$$

Korrekte Software

11 [33

DK W

Arbeitsblatt 5.2: Zusicherungen

Betrachte folgende Zusicherung:

$$a \equiv x = 2 \cdot X \longrightarrow x > X$$

Gegeben folgende Belegungen I_1, \ldots, I_3 und Zustände s_1, \ldots, s_3 :

$$s_1 = \langle x \mapsto 0 \rangle, s_2 = \langle x \mapsto 1 \rangle, s_3 = \langle x \mapsto 5 \rangle$$

$$l_1 = \langle X \mapsto 0 \rangle, l_2 = \langle X \mapsto 2 \rangle, l_3 = \langle X \mapsto 10 \rangle$$

Unter welchen Belegungen und Zuständen ist a wahr?

	I_1	I_2	I_3
s_1			
s ₂			
<i>s</i> ₃			

Fügen Sie eine zusätzliche Bedingung hinzu, so dass a für alle Belegungen und Zustände wahr ist.

Korrekte Software

13 [33]

Beispiele

► Folgendes gilt:

$$\models \{true\}$$
 while(1) $\{\} \{true\}$

► Folgendes gilt nicht:

$$\models$$
 [true] while(1){ } [true]

► Folgende gelten:

$$\models$$
 {false} while (1) { } {true} \models [false] while (1) { } [true]

Wegen ex falso quodlibet: false $\Longrightarrow \phi$

Korrekte Software 15 [33]

Zusicherungen (Assertions)

- ► Erweiterung von **Aexp** and **Bexp** durch
 - ► Logische Variablen Var v := N, M, L, U, V, X, Y, Z
 - ▶ Definierte Funktionen und Prädikate über **Aexp** $n!, x^y, ...$
 - ▶ Implikation und Quantoren $b_1 \longrightarrow b_2, \forall v ... b, \exists v ... b$
- ► Formal:

$$\begin{aligned} \textbf{Aexpv} & \ a ::= & \ \textbf{Z} \mid \textbf{Idt} \mid \textbf{Var} \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 \times a_2 \\ & \mid f(e_1, \dots, e_n) \end{aligned}$$

$$\begin{aligned} \textbf{Assn} & \ b ::= \\ & \ \textbf{1} \mid \textbf{0} \mid a_1 == a_2 \mid a_1! = a_2 \mid a_1 <= a_2 \\ & \mid ! \ b \mid b_1 \&\& \ b2 \mid b_1 \mid b_2 \\ & \mid b_1 --> b_2 \mid p(e_1, \dots, e_n) \mid \backslash \textbf{forall} \ v. \ b \mid \backslash \textbf{exists} \ v. \ b \end{aligned}$$

$$\begin{array}{lll} \textbf{Assn} & b ::= & true \mid false \mid a_1 = a_2 \mid a_1 \neq a_2 \mid a_1 \leq a_2 \\ & \mid \neg b \mid b_1 \land b2 \mid b_1 \lor b_2 \\ & \mid b_1 \longrightarrow b_2 \mid p(e_1, \dots, e_n) \mid \forall v. \ b \mid \exists v. \ b \end{array}$$

Korrekte Software

10 [33]

DK W

DK W

Erfüllung von Zusicherungen

- ▶ Wann gilt eine Zusicherung $b \in \mathbf{Assn}$ in einem Zustand σ ?
 - ► Auswertung (denotationale Semantik) ergibt true
 - Belegung ist zusätzlicher Parameter

Erfülltheit von Zusicherungen

 $b \in \mathbf{Assn}$ ist in Zustand σ mit Belegung I erfüllt $(\sigma \models^I b)$, gdw

$$\llbracket b \rrbracket_{\mathcal{B}}^{I}(\sigma) = \mathit{true}$$

Korrekte Software

12 [33

Floyd-Hoare-Tripel

Partielle Korrektheit ($\models \{P\} c \{Q\}$)

c ist partiell korrekt, wenn für alle Zustände σ , die P erfüllen, gilt: wenn die Ausführung von c mit σ in τ terminiert, dann erfüllt τ Q.

$$\models \{P\} \ c \ \{Q\} \Longleftrightarrow \forall I. \ \forall \sigma. \ \sigma \models^I P \land \exists \tau. \ (\sigma, \tau) \in \llbracket c \rrbracket_{\mathcal{C}} \Longrightarrow \tau \models^I Q$$

 Gleiche Belegung der logischen Variablen in P und Q erlaubt Vergleich zwischen Zuständen

Totale Korrektheit ($\models [P] c [Q]$)

c ist **total korrekt**, wenn für alle Zustande σ , die P erfüllen, die Ausführung von c mit σ in τ terminiert, und τ erfüllt Q.

$$\models [P] c [Q] \Longleftrightarrow \forall I. \forall \sigma. \sigma \models^{I} P \Longrightarrow \exists \tau. (\sigma, \tau) \in \llbracket c \rrbracket_{\mathcal{C}} \wedge \tau \models^{I} Q$$

Korrekte Software

14 [3]

Gültigkeit und Herleitbarkeit

- **▶** Semantische Gültigkeit: $\models \{P\} c \{Q\}$
 - ► Definiert durch denotationale Semantik:

$$\models \{P\} c \{Q\} \Longleftrightarrow \forall I. \, \forall \sigma. \, \sigma \models^{I} P \land \exists \tau. \, (\sigma, \tau) \in \llbracket c \rrbracket_{\mathcal{C}} \Longrightarrow \tau \models^{I} Q$$

- ► Problem: müssten Semantik von c ausrechnen
- **Syntaktische Herleitbarkeit:** \vdash {*P*} *c* {*Q*}
 - ► Durch Regeln definiert
 - ► Kann hergeleitet werden
 - Muss korrekt bezüglich semantischer Gültigkeit gezeigt werden
- ► Generelles Vorgehen in der Logik

Korrekte Software

16 [33]

Regeln des Floyd-Hoare-Kalküls

- ▶ Der Floyd-Hoare-Kalkül erlaubt es, Zusicherungen der Form $\vdash \{P\} c \{Q\}$ syntaktisch herzuleiten.
- Der Kalkül der Logik besteht aus sechs Regeln der Form

$$\frac{\vdash \{P_1\} c_1 \{Q_1\} \ldots \vdash \{P_n\} c_n \{Q_n\}}{\vdash \{P\} c \{Q\}}$$

Für jedes Konstrukt der Programmiersprache gibt es eine Regel.

Korrekte Software

17 [33]

Regeln des Floyd-Hoare-Kalküls: Sequenzierung

$$\frac{\vdash \{A\} c_1 \{B\} \qquad \vdash \{B\} c_2 \{C\}}{\vdash \{A\} c_1; c_2 \{C\}}$$

► Hier wird eine Zwischenzusicherung *B* benötigt.

$$\overline{\vdash \{A\} \{\} \{A\}}$$

▶ Trivial.

orrekte Software

Vereinfachte Notation für Sequenzen

//
$$\{y = Y \land x = X\}$$

z= x;
// $\{y = Y \land z = X\}$
x= y;
// $\{x = Y \land z = X\}$
y= z;
// $\{x = Y \land y = X\}$

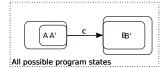
- ▶ Die gleiche Information wie der Herleitungsbaum
- ► aber kompakt dargestellt

Korrekte Softwa

21 [33]

Regeln des Floyd-Hoare-Kalküls: Weakening

$$\frac{A' \Longrightarrow A \qquad \vdash \{A\} c \{B\} \qquad B \Longrightarrow B'}{\vdash \{A'\} c \{B'\}}$$



- $ightharpoonup \models \{A\}\ c\ \{B\}$: Ausführung von c startet in Zustand, in dem A gilt, und endet (ggf) in Zustand, in dem B gilt.
- ightharpoonup Zustandsprädikate beschreiben Mengen von Zuständen: $P\subseteq Q$ gdw. $P\Longrightarrow Q$.
- ▶ Wir können A zu A' einschränken ($A' \subseteq A$ oder $A' \Longrightarrow A$), oder B zu B' vergrößern ($B \subseteq B'$ oder $B \Longrightarrow B'$), und erhalten $\models \{A'\} c \{B'\}$.

23 [33]

Regeln des Floyd-Hoare-Kalküls: Zuweisung

$$\overline{\vdash \{P[e/x]\} \, x = e \, \{P\}}$$

- ► Eine Zuweisung x=e ändert den Zustand so dass an der Stelle x jetzt der Wert von e steht. Damit nachher das Prädikat P gilt, muss also vorher das Prädikat gelten, wenn wir x durch e ersetzen.
- ► Es ist völlig normal (aber dennoch falsch) zu denken, die Substitution gehöre eigentlich in die Nachbedingung.
- ► Beispiele:

$$//\{(x < 10)[5/x] \iff 5 < 10\}$$

x = 5
 $//\{x < 10\}$

 $//\{x+1 < 10 \iff x < 9\}$ x = x+1 $//\{x < 10\}$

Korrekte Software

18 [33

Ein allererstes Beispiel

z= x; x= y; y= z;

- ► Was berechnet dieses Programm?
- ▶ Die Werte von x und y werden vertauscht.
- ► Wie spezifizieren wir das?
- $\vdash \{x = X \land y = Y\} \ p \{y = X \land x = Y\}$

Herleitung:

Arbeitsblatt 5.3: Ein erster Beweis

Betrachte den Rumpf des Fakultätsprogramms:

// (B) p = p * c;// (A) c = c + 1;// {p = (c - 1)!}

- ► Welche Zusicherungen gelten
 - n der Stelle (A)?
 - n der Stelle (B)?

Korrekte Software

22 [33]

Regeln des Floyd-Hoare-Kalküls: Fallunterscheidung

$$\frac{\vdash \{A \land b\} c_0 \{B\} \qquad \vdash \{A \land \neg b\} c_1 \{B\}}{\vdash \{A\} \text{ if } (b) c_0 \text{ else } c_1 \{B\}}$$

- ▶ In der Vorbedingung des if-Zweiges gilt die Bedingung b, und im else-Zweig gilt die Negation $\neg b$.
- ▶ Beide Zweige müssem mit derselben Nachbedingung enden.

Korrekte Softwa

24 [3

Arbeitsblatt 5.4: Ein zweiter Beweis Betrachte folgendes Programm: 1 Was berechnet dieses Programm? if (x < y) { // (E) Wie spezifizieren wir das? 3 Wie beweisen wir die Gültigkeit? z = x;// (C) ► Die Spezifikation wird zur Nachbedingung (A) ► Wir notieren Weakening durch } else { aufeinanderfolgende Bedingungen: $\begin{array}{l} // \; (D) \\ // \; ... \\ z= \; y \, ; \end{array}$ $// \{x < 9\}$ $// \{x + 1 < 10\}$ // (B) // (A) ▶ Welche Zusicherungen müssen an den Stellen (A) – (F) gelten? ▶ Wo müssen wir logische Umformungen nutzen? DK W

Wie wir Floyd-Hoare-Beweise aufschreiben ▶ Beispiel zeigt: $\vdash \{P\} c \{Q\}$ // {P} // {P₁} Programm wird mit gültigen x=e; Zusicherungen annotiert. $//\{P_2\}$ ► Vor einer Zeile steht die $//\{P_3\}$ Vorbedingung, danach die while (x < n) { $// \{P_3 \land x < n\}$ $// \{P_4\}$ Nachbedingung. ► Implizite Anwendung der Sequenzenregel. $//\{P_{3}\}$ Weakening wird notiert durch mehrere Zusicherungen, und $\{P_3 \land \neg(x < n)\}$ muss bewiesen werden. // {**Q**} ▶ Im Beispiel: $P \Longrightarrow P_1$, $P_2 \Longrightarrow P_3, P_3 \land x < n \Longrightarrow P_4,$ $P_3 \wedge \neg (x < n) \Longrightarrow Q$. DK W 27 [33]

```
Das Fakultätsbeispiel (II)

// {1 = 0! \land 0 \le n}
// {1 = (1 - 1)! \land 1 - 1 \le n}
p= 1;
// {p = (1 - 1)! \land 1 - 1 \le n}
c= 1;
// {p = (c - 1)! \land c - 1 \le n}
while (c<= n) {
// {p = (c - 1)! \land c - 1 \le n \land c \le n}
// {p * c = (c - 1)! \land c - 1 \le n \land c \le n}
// {p * c = (c \land c \le n)}
// {p * c = (c \land c \le n)}
// {p * c = ((c + 1) - 1)! \land (c + 1) - 1 \le n}
p= p*c;
// {p = ((c + 1) - 1)! \land (c + 1) - 1 \le n}
c= c+1;
// {p = (c - 1)! \land c - 1 \le n}
}
// {p = (c - 1)! \land c - 1 \le n \land c \le n}
// {p = (c - 1)! \land c - 1 \le n \land c < n}
// {p = (c - 1)! \land c - 1 \le n \land c < n}
// {p = (c - 1)! \land c - 1 \le n \land c < n}
// {p = (c - 1)! \land c - 1 \le n \land c < n}
// {p = (c - 1)! \land c - 1 \le n \land c < n}
// {p = (c - 1)! \land c - 1 \le n \land c < n}
// {p = (c - 1)! \land c - 1 \le n \land c < n}
// {p = (c - 1)! \land c - 1 \le n \land c < n}
// {p = (c - 1)! \land c < 1 \le n \land c < n}
```

```
Arbeitsblatt 5.5: Exponents Revisited

Wir können jetzt das Programm vom Anfang korrekt beweisen:

/** ... */
x= 1;
c= 1;
/** x= 2^(c-1) && ... */
while (c<= y) {
    /** x= 2^(c-1) && ... && c<= y */
    /** ... */
    x= 2*x;
    /** ... */
c= c+1;
    /** x= 2^0; && ... && ! (c<= y) */
    /** ... */
}

/** { x= 2^y && ... && ! (c<= y) */
    /** ... */
    /** { x= 2^y } */

Findet den Rest der Invariante, und

Füllt den restlichen Teil aus.

Korrekte Software

31 [33]
```

Regeln des Floyd-Hoare-Kalküls: Iteration

$$\frac{\vdash \{A \land b\} c \{A\}}{\vdash \{A\} \text{ while}(b) c \{A \land \neg b\}}$$

- lteration korrespondiert zu Induktion.
- Bei (natürlicher) Induktion zeigen wir, dass die gleiche Eigenschaft P für 0 gilt, und dass wenn sie für P(n) gilt, daraus folgt, dass sie für P(n+1) gilt.
- Analog dazu benötigen wir hier eine Invariante A, die sowohl vor als auch nach dem Schleifenrumpf gilt.

DK W

- In der Vorbedingung des Schleifenrumpfes können wir die Schleifenbedingung b annehmen.
- ▶ Die Vorbedingung der Schleife ist die Invariante A, und die Nachbedingung der Schleife ist A und die Negation der Schleifenbedingung b.

rekte Software 26 [33]

```
Das Fakultätsbeispiel (I)

// {1 = 0!}
// {1 = (1 - 1)!}
p= 1;
// {p = (1 - 1)!}
c= 1;
// {p = (c - 1)!}
while (c<= n) {
// {p = (c - 1)! \cdot c \cdot n}
// {p * c = (c - 1)! \cdot c}
// {p * c = c!}
// {p * c = c(c + 1) - 1)!}
p= p*c;
// {p = (c - 1)! \cdot (c + 1) - 1)!}
c= c+1;
// {p = (c - 1)! \cdot (c \cdot n)}
// {p = (c - 1)! \cdot (c \cdot n)}
// {p = (c - 1)! \cdot (c \cdot n)}
// {p = (c - 1)! \cdot (c \cdot n)}
// {p = n!}
```

Zusammenfassung Floyd-Hoare-Logik

- $\begin{tabular}{ll} \blacktriangleright Die Logik abstrahiert über konkrete Systemzustände durch Zusicherungen (Hoare-Tripel <math>\{P\}$ c $\{Q\}$).
- ► Zusicherungen sind boolsche Ausdrücke, angereichert durch logische Variablen.
- ▶ Semantische Gültigkeit von Hoare-Tripeln: $\models \{P\} c \{Q\}$.
- ▶ Syntaktische Herleitbarkeit von Hoare-Tripeln: $\vdash \{P\} c \{Q\}$
- Zuweisungen werden durch Substitution modelliert, d.h. die Menge der gültigen Aussagen ändert sich.
- ► Für Iterationen wird eine Invariante benötigt (die nicht hergeleitet werden kann).

Korrekte Software

33 [33]

