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Chapter 1

Introduction

1.1 Why “correct software”?

1.1.1 Well-known Software Disasters # 1: Therac-25

The Therac-25 was a novel, computer-controlled radiation therapy machine which between June 1985
and January 1987 massively overdosed six people (with a radiation dose of 4000 – 20000 rad, where
1000 rad is considered to be lethal), leading to five casualties. The overdoses were the result of several
design errors, where one of the root problems was the software being designed by a single programmer
who was also responsible for testing [5, Appendix A]. These incidents are thought to be the first casualties
directly caused by malfunctioning software.

1.1.2 Software Disasters in Space

The Ariane-5 exploded on its maiden flight (Ariane Flight 501) on June 4th 1996 in Kourou, French-
Guayna. How did that happen? The inquiry which was held after the incident reconstructed the exact
sequence of events, backwards from the disaster [6]:

(1) Self-destruction was triggered due to an instability.

(2) The instability was due to wrong steering movements (rudder).

(3) The steering movements resulted from the on-board computer trying to compensate for an (assumed)
wrong trajectory.

(4) The trajectory was calculated wrongly because the own position was wrong.

(5) The own position was wrong because positioning system had crashed.

(6) The positioning system had crashed because transmission of sensor data to ground control failed with
integer overflow.

(7) The integer overflow occurred because input values were too high.

— 6 —
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Figure 1.1: Software Disasters (from top left, clockwise): The Therac-25; Ariane-5 exploding on its
maiden flight; Atlas booster carrying Mariner-1 taking off; artistic rendition of the Mars Climate Orbiter

(8) The input values were too high because the positioning system was integrated unchanged from pre-
decessor model, Ariane-4.

(9) This assumption was not documented because it was satisfied tacitly with Ariane-4.

(10) The positioning system was redundant, but both systems failed within milliseconds because they ran
exactly the same software (systematic error).

(11) Furthermore, the transmission of data to ground control was not necessary; it was only included to
allow faster restart if the start had to be interrupted.

The Ariane-5 incident was comprehensively investigated afterwards. It was both spectacular and costly,
to the tune of 500 mio Euro. Other software disasters in space include the loss of the Mariner-1 spacecraft
294 seconds after launch on August 27th 1962, and the Mars Climate Orbiter.

The Mariner-1 had to be destroyed because the guidance system of the Atlas booster rocket carrying
Mariner-1 was faulty. The guidance system was taking radar measurements and turning them into control
commands for the rocket. It turned out that the programmer had missed on overbar1 (as in Ṙn) which stood
for smoothing the measurements (taking the average over several samples). Coupled with the failure of
a secondary radar system, this lead to the control system working with faulty data, for which it tried to
compensate wildly, leading to a rocket which was effectively out of control.

The Mars Climate Orbiter failure was more simple: one of the subcontractors was working with imperial
measures, whereas the rest of the system (and NASA) was (and is) using metric units. Thus, the navigation
software was using wrong values to calculate the course and steering commands for the craft, which
subsequently went for too low into the Mars atmosphere and was lost.

It should be pointed out that software disasters in space are so well-known because they tend to be
spectacular, and because space agency do in fact have a very good culture of learning from errors; thus,

1This is sometimes, and incorrectly, referrede to as a missing hyphen.
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after each of these disasters an enquiry was held trying to establish the exact causes of the failure. This is
how these errors become so well-known, as opposed to errors in closed commercial applications which
tend to be hushed up (or, in the case of consumer products, are just conformant to expectation).

1.1.3 Not-so-well-known Software Disasters

On January 15th 1990, the AT&T long distance network (the telephone backbone of the US back then)
began to fail on a large scale, losing up to a half of the calls routed though this network. Between 2:25pm
and 11:30 pm, AT&T lost more than $ 60 mio in unconnected calls (not counting losses by e.g. hotels
and airlines counting on the network for their reservation systems). This was a genuine software bug
which caused network nodes to reboot and take down neighbouring nodes with them [1]. The software in
question was written in C, thus this incident is highly relevant for this course.2 A more recent telephone-
related incident was the outage on October 4th, 2016 in the US, which was caused by an an operator
leaving empty an input on the wrong assumption it would be ignored when in fact it was not [3], although
here we have a bad user interface instead of a genuine software bug.

On a related note, there was the Wall Street crash from October 19th, 1987, when the Dow-Jones fell by
508 points, losing nearly a quarty of its value; apparently, the greatest loss on a single day. This could be
traced to trading programs (a novelty back then) selling stock automatically (due to falling prices, which
were caused in the day by an SEC investigation into insider trading) which lead to falling prices, which
lead to a self-reinforcing feedback loop as trading programs were trying to sell more and more stock,
effectively overwhelming the market, which lead to a widespread panic. Not a software disaster as such,
as there was no faulty software involved, but a disaster caused by unintended (“emerging”) effects of
software.

1.1.4 Software Correctness and Safety

Incorrect software cannot be safe, but safety is more than correct software. In fact, most of the disasters
above were more than software not functioning as it was specified; for disasters on that scale, the whole
system design process has to be flawed in one way or another (see [2]).

However, that does not mean we should not care about software correctness, quite the contrary.The func-
tional safety standard, IEC 61508, defines safety as “freedom from unacceptable risks of physical injury
or of damage to the health of people, either directly, or indirectly as a result of damage to property or to
the environment” [4, §3.1], and goes on to define functional safety as the part of the overall safety that
depends on a system or equipment operating correctly in response to its inputs. Thus, correct software is
a prerequisite of functional safety which is a part of the overall safety of a system.

1.2 Semantics

In general, semantics means assigning a meaning to some concrete (syntactic) construct. Here, we talk
about programs, so we assign meanings to programs. For example, consider the program in Figure 1.2.
What does it compute? If we look at it, we will convince ourselves it computes (in p) the factorial (of n).
Semantics is concerned with making this statement precise.

What could the meaning of a program be, and how do we model that in mathematical terms?
2Or not — the problem was caused by one of the problematic features of C which are not in the subset covered here, and which

in fact is ruled out by safety-directed subsets of C such as MISRA-C.
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p= 1 ;
c= 1 ;
whi le ( c <= n ) {

p = p ∗ c ;
c = c + 1 ;

}

Figure 1.2: An example program. What does it do?

• It could be what the program does — then, we have to describe the action of the program somehow.
We do so in terms of actions of an abstract machine, i.e. we give an abstract notion of the state of a
machine as a map of adresses to values, and describe how the program changes that. This is called
operational semantics.

Concretely, the abstract machine is a map of variable names to values. In our example, this starts
with say n 7→ 3 and p,c undefined, and enters the loop with a state n 7→ 3, p 7→ 1,c 7→ 1. The loop
condition (and any other expression) is always evaluated with respect to the current state, so we
enter the loop; after the first loop iteration, we get n 7→ 3, p 7→ 1,c 7→ 2, and then after two more
iterations n 7→ 3, p 7→ 6,c 7→ 4, at which point we exit the loop.

• We could do so by assigning, to each program, a mathematical entity which describes this program.
Since programs take inputs and give us outputs, it would seem natural to describe programs as
partial functions. (This, of course, works best with functional languages, but we can also use it
with C0.) This is called denotational semantics.

Concretely, we model programs by partial functions between states (mapping variable names to
values, as above). It is easy to see how this works for the first two lines in our factorial program,
but modellign the while loop requires the mathematical construction of a fixpoint, which we will
explore in depth later.

• Finally, we can describe a program by all the properties that is has. (This is sometimes called
extensionality.) For our program, it would mean to specify what it exactly computes, e.g. stating
that the example program in Figure 1.2 calculates the factorial, p = n!. This is called axiomatic
semantics.

All three semantics can be considered as different views on the same syntactic entity. The semantics
should agreee in the sense that for a given input, they should state that the output (result) is the same: the
semantics should be equivalent.

It should be pointed out that what the program actually does when it runs is something else, because
it depends on things such as the compiler used, the underlying machine etc., but hopefully agrees with
the semantics. Only for a few programming languages such as the functional language Standard ML, a
subset of Java, and C have the mathematical semantics been fully worked out. For full C, this is surpris-
ingly complex; it has been done, but note in correspondence with the popular C compilers. However,
there is certified C compiler, safecert, which has been proven (certified) to be correct with respec to its
denotational semantics.

— 9 —
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Chapter 2

Operational Semantics

Operational semantics describes programs by what they do. For imperative programs, this means the
program has an implicit or ambient state (i.e. the state is not explicitly written down, programs only refer
to the state or change parts of it), and the operational semantics aims to capture this in a mathematical
precise way. In particular, it makes the notion of state explicit and central to the semantics.

First of all, we need to fix some notation. We write Z for the set of all integers, and B = {false, true}
for the set of all boolean values. (These are the mathematical entities representing integer and boolean
expressions. Note that for clarity, B and Z are disjoint, i.e. we do not use 0 for false and 1 for true as in
the programming language.)

2.1 Introduction to C0

We first introduce the tiny subset of C that we want to consider. We call our language C0 (that name is
not unique, see e.g. []), and this is the first development stage.

We give the abstract syntax. That means, as opposed to a concrete syntax, it lacks for example parentheses
to group expressions, or brackets to group statements, and does not specify operator priorities. Moreover,
it is not efficiently parseable (being not regular).

We first give expressions (Exp), which are either arithmetic expressions Aexp (integer-valued), and
boolean expressions Bexp (boolean-valued):

Aexp a ::= Z | Idt | a1 +a2 | a1−a2 | a1 ∗a2 | a1/a2

Bexp b ::= 1 | 0 | a1 == a2 | a1 < a2 |!b | b1 && b2 | b1 ||b2

Exp e := Aexp | Bexp

Here, Z are integers; again, our abstract syntax means we do not give a concrete grammar which for
integers might look like this

Z ::=−?(0|1|2|3|4|5|6|7|8|9)+

which means “an optional minus sign (indicated by −?) followed by a non-empty sequence of digits,
i.e. characters 0, . . . ,9 (the non-empty sequence is written as +)”. Idt are the identifiers, i.e. variable
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names. Concretely, in C these start with a non-digit (an underscore or a letter), followed by a sequence of
non-digits or digits.

In concrete examples, we use more relational operators, all of which can be given in terms of the ones
given above, and thus can be considered syntactic sugar. These are

b ::= a1 ! =a2 | a1 <= a2 | a1 > a2 | a1 >= a2

In a concrete program, an expression a1 ! = a2 is parsed in the abstract syntax term !(a1 == a2), and
a1 <= a2 is parsed as a1 < a2 ||a1 == a2, and a1 > a2 as a2 < a1.

With expressions, we can give statements (Stmt). These fall into three groups: basic statements, which
are assginments; control statements, which are conditional (if) and iteration (while); and structured state-
ments, which are the sequencing and the empty statement.

Stmt c ::= Idt = Exp | if (b) c1 else c2 | while (b) c | c1;c2 | {}

Just like we do not have parentheses to group expressions, we also do not have brackets ( {...} ) to group
statements. Such statements grouped with brackets are called compound statements in C. Also, in con-
crete syntax of C, the semicolon is used to terminate basic statements, not to concatenate them; the
difference is that in C, we need to write

i f ( x == 0) {x= 9 9 ; z= 0 ; } e l s e { y= z / x ; z= 1 ; }

instead of if (x == 0) { x= 99; z= 0 } else { y= z/x; z= 1}: both compound statements need to end in a
semicolon.

Presently, statements are our programs (and all programs are statements); we do not consider function
definitions yet.

2.2 State

The basis of all semantics (not only the operational semantics) is the program state. Formally, the program
state is a partial map from locations to values. The values are what programs evaluate to, or what we can
compute. When we expand our language, we will both extend the notion of locations and values, but for
the time being we define:

Definition 1 (Locations, Values and System State)

The values are given by integers, V def
=Z

The locations are given by identifiers, Loc def
= Idt

The system state is a partial map from locations to values: Σ
def
=Loc ⇀ V.

2.2.1 Partial Functions

The notation X ⇀ Y denotes a partial map, or more generally, a partial function1 from X to Y . We define
partial functions as right-unique relations: for two sets X and Y , a partial function f : X ⇀ Y is a subset

1A map is a finite function, i.e. a function where the domain X is finite.
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of f ⊆ X ×Y such that for all x,y1,y2 if (x,y1) ∈ f ,(x,y2) ∈ f then y1 = y2. For a partial function f , we
write dom( f ) for the domain i.e. the subset of X where f is defined (returns a value from Y ):

dom( f ) = {x | ∃y.(x,y) ∈ f}

We write f (x) for the applying f to x,

f (x) = y⇐⇒ (x,y) ∈ f

and we write f (x) = ⊥ if f is undefined at x (x 6∈ dom f ). For a function f : X ⇀ Y , a value x ∈ X and a
value n ∈ Y , we write f [n/x] for the functional update of the function f at location x with value n. That
is, σ [n/x] is a new function which is defined as

f [n/x] def
={(y,m) | x 6= y,(y,m) ∈ f}∪{(x,n)}

or alternatively as the function which for any y ∈ X is defined as

f [n/x](y) def
=

{
n if x = y
f (y) otherwise

To denote maps, we use the notation 〈x1 7→ n1,x2 7→ n2〉 etc.; in particular, we use 〈〉 for the empty map
〈〉= /0.

2.3 Evaluating Expressions

Given a state σ , an arithmetic expression a either evaluates to an integer n ∈ Z (a value), or an undefined
error value ⊥. We write this as

〈a,σ〉 →Aexp n | ⊥.

Figure 2.1 gives the rules to evalute arithmetic expressions. Some notational points:

• Note that we distinguish the values, which are integers Z from the literal integers as written in the
program Z. Similarly, boolean expressions evaluate to B. This distinction may seem a little fussy
at first, but we need to be careful to distinguish our semantic world from our syntactic one.

• For an integer literal i, [[i]] ∈ Z is the corresponding integer in Z.

• a÷b is the integer division of a,b ∈ Z, and a ·b is obviously the product.

It is important to realize that if one of the arguments of an arithmetic operator such as +,−,∗,/ evaluates
to ⊥ (i.e. produces an error), than the whole expression fails to evaluate. We call such an operator strict:

Definition 2 (Strict Function) A function f : X → Y is strict if f (⊥) =⊥, i.e. if an undefined argument
makes the function value undefined as well.

Similarly, given a state σ , an arithmetic expressions either evaluates to a boolean value true or false, or
an undefined error value ⊥. We write this as

〈b,σ〉 →Bexp true | false | ⊥

— 12 —
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〈i,σ〉 →Aexp [[i]]

x ∈ Idt,x ∈ Dom(σ),σ(x) = v
〈x,σ〉 →Aexp v

x ∈ Idt,x 6∈ Dom(σ)

〈x,σ〉 →Aexp ⊥

〈a1,σ〉 →Aexp n1 〈a2,σ〉 →Aexp n2 ni ∈ Z
〈a1 +a2,σ〉 →Aexp n1 +n2

〈a1,σ〉 →Aexp n1 〈a2,σn2〉 n1 =⊥ or n2 =⊥
〈a1 +a2,σ〉 →Aexp ⊥

〈a1,σ〉 →Aexp n1 〈a2,σ〉 →Aexp n2 ni ∈ Z
〈a1−a2,σ〉 →Aexp n1−n2

〈a1,σ〉 →Aexp n1 〈a2,σ〉 →Aexp n2 n1 =⊥ or n2 =⊥
〈a1−a2,σ〉 →Aexp ⊥

〈a1,σ〉 →Aexp n1 〈a2,σ〉 →Aexp n2 ni ∈ Z
〈a1 ∗a2,σ〉 →Aexp n1 ·n2

〈a1,σ〉 →Aexp n1 〈a2,σ〉 →Aexp n2 n1 =⊥ or n2 =⊥
〈a1 ∗a2,σ〉 →Aexp ⊥

〈a1,σ〉 →Aexp n1 〈a2,σ〉 →Aexp n2 ni ∈ Z,n2 6= 0
〈a1/a2,σ〉 →Aexp n1÷n2

〈a1,σ〉 →Aexp n1 〈a2,σ〉 →Aexp n2 n1 =⊥,n2 =⊥ or n2 = 0
〈a1/a2,σ〉 →Aexp ⊥

Figure 2.1: Rules to evaluate arithmetic expressions
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〈1,σ〉 →Bexp true 〈0,σ〉 →Bexp false

〈a1,σ〉 →Aexp n1 〈a2,σ〉 →Aexp n2 ni 6=⊥,n1 = n2

〈a1 == a2,σ〉 →Bexp true

〈a1,σ〉 →Aexp n1 〈a2,σ〉 →Aexp n2 ni 6=⊥,n1 6= n2

〈a1 == a2,σ〉 →Bexp false

〈a1,σ〉 →Aexp n1 〈a2,σ〉 →Aexp n2 n1 =⊥ or n2 =⊥
〈a1 == a2,σ〉 →Bexp ⊥

〈a1,σ〉 →Aexp n1 〈a2,σ〉 →Aexp n2 ni 6=⊥,n1 < n2

〈a1 < a2,σ〉 →Bexp true

〈a1,σ〉 →Aexp n1 〈a2,σ〉 →Aexp n2 ni 6=⊥,n1 ≥ n2

〈a1 < a2,σ〉 →Bexp false

〈a1,σ〉 →Aexp n1 〈a2,σ〉 →Aexp n2 n1 =⊥ or n2 =⊥
〈a1 < a2,σ〉 →Bexp ⊥

〈b,σ〉 →Bexp true
〈!b,σ〉 →Bexp false

〈b,σ〉 →Bexp false
〈!b,σ〉 →Bexp true

〈b,σ〉 →Bexp ⊥
〈!b,σ〉 →Bexp ⊥

〈b1,σ〉 →Bexp t1 〈b2,σ〉 →Bexp t2
〈b1 &&b2,σ〉 →Bexp t

t =

 true t1 = t2 = true
false t1 = false or (t1 = true and t2 = false)
⊥ otherwise

〈b1,σ〉 →Bexp t1 〈b2,σ〉 →Bexp t2
〈b1 ||b2,σ〉 →Bexp t

t =

 true t1 = t2 = false
false t1 = true or (t1 = false and t2 = true)
⊥ otherwise

Figure 2.2: Rules to evaluate boolean expressions
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Figure 2.2 gives the rules to evaluate boolean expressions. The rules to evaluate the boolean literals,
relational operators and negation are no great surprise. However, the rules to evaluate logical conjunction
and disjunction deserve closer attention: they specify that if the left argument evaluates to false, the whole
conjunction is false (and similarly, if the left argument evaluates to true, the whole disjunction is true),
even if the right argument evaluates to undefined. This is the way it is defined in C (and most other
programming languages), so our rules model this behaviour.

Here is an alternative way to write this down (for the conjunction only):

〈b1,σ〉 →Bexp false
〈b1 && b2,σ〉 →Bexp false

〈b1,σ〉 →Bexp ⊥
〈b1 && b2,σ〉 →Bexp ⊥

〈b1,σ〉 →Bexp true 〈b2,σ〉 →Bexp t
〈b1 && b2,σ〉 →Bexp t

Example 1 (Evaluating an Expression) An evaluation is constructed as an inference tree, from the
bottom up. As an example, consider σ

def
= {x 7→ 6,y 7→ 5}. We now want to evaluate the expression

(x+ y) ∗ (x− y) under σ . For this, we first apply the rule for ∗ from Figure 2.1, which means we have
to evaluate x+ y and x− y. To evaluate these, we have to evaluate x and y. These evaluate to 6 and 5,
respectively, allowing us to fill in the values for x+ x and x− y and, ultimately, the whole expression.
Written as an inference tree, we obtain:

〈x,σ〉 →Aexp 6 〈y,σ〉 →Aexp 5
〈x+ y,σ〉 →Aexp 11

〈x,σ〉 →Aexp 6 〈y,σ〉 →Aexp 5
〈x− y,σ〉 →Aexp 1

〈(x+ y)∗ (x− y),σ〉 →Aexp 11

As an exercise, let σ
def
={x 7→ 0,y 7→ 3,z 7→ 7} and try evaluating the following expressions and note how

the undefinedness propagates (or not):

〈!(x == 0)&& (z/x == 0),σ〉 →Bexp? (2.1)
〈(z/x == 0) || x == 0,σ〉 →Bexp? (2.2)
〈y− z∗ ((a+1)/2),σ〉 →Aexp? (2.3)

2.4 Evaluating Statements

Under a given state σ1, a statement evaluates to a new state σ2 or an error ⊥, written as

〈c,σ1〉 →Stmt σ2 | ⊥

Figure 2.3 gives the rules to evaluate statements.

It is instructive to see how undefinedness propagates:

• The assignment becomes undefined if the right-hand side is undefined. The left-hand side need not
be defined (i.e. the location does not need be in the domain of σ ).

• The concatenation operator (;) is strict.
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• The conditional is strict in the condition (if the condition is undefined, the whole conditional is), but
not in the two branches: if the condition evaluates to 1 (true), the negative branch is not evaluated at
all. This is fundamental in all programming languages, because the conditional operator is needed
to guard against undefinedness, such as in this code fragment:

i f ( x == 0)
{ y= 0 ; }

e l s e
{ y= y / x ; }

• Similarly, the iteration is strict in the condition, but not in the body: if the condition evaluates to
false, the body is not evaluated at all (for very much the same reasons).

2.4.1 Undefinedness

As we have seen, some operations are strict and some are not. However, strictness refers to propagation
of undefinedness, so where does undefinedness originate from? In the operational semantics, looking at
the rules, there are only two rules which cause undefinedness:

(1) division by zero, or

(2) reading from an undefined location i.e. an identifier which has not been written to before.

In particular, a non-terminating evaluation is not undefined. To wit, consider the evaluation of this pro-
gram:

〈x = 0;while (x == 0) {},〈〉〉 →Bexp?

2.5 Equivalence

One application of operatioanl semantics is to reason about program equivalence. (This can be used in
compilers to show that certain optimisations are correct.) We say two programs c0,c1 are equivalent if
they affect the same state changes. Of course, this also needs a notion of equivalence for arithmetic and
boolean expressions — two expressions are equivalent if they always evaluate to the same value under all
states.

Formally:

Definition 3 (Equivalence) Given two arithmetic expressions a1,a2, two boolean expressions b1,b2 are
two programs c0,c1 respectively. They are equivalent iff:

a1 ∼Aexp a2 iff ∀σ ,n.〈a1,σ〉 →Aexp n⇔ 〈a2,σ〉 →Aexp n (2.4)
b1 ∼Bexp b2 iff ∀σ ,b.〈b1,σ〉 →Bexp b⇔ 〈b2,σ〉 →Bexp b (2.5)
c0 ∼Stmt c1 iff ∀σ ,σ ′.〈c0,σ〉 →Stmt σ

′⇔ 〈c1,σ〉 →Stmt σ
′ (2.6)

For example, A || (A && B) and A are equivalent– this can be shown by considering all possible combi-
nations of all possible values ⊥, false, true for A, B; the interesting cases here are with B evaluating to ⊥
and A evaluating to false, true.
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〈a,σ〉 →Aexp n ∈ Z
〈x = a,σ〉 →Stmt σ [n/x]

〈a,σ〉 →Aexp ⊥
〈x = a,σ〉 →Stmt ⊥

〈σ ,{}〉 →Stmt σ

〈c1,σ〉 →Stmt σ
′ 6=⊥ 〈c2,σ

′〉 →Stmt σ
′′ 6=⊥

〈c1;c2,σ〉 →Stmt σ
′′

〈c1,σ〉 →Stmt ⊥
〈c1;c2,σ〉 →Stmt ⊥

〈c1,σ〉 →Stmt σ
′ 6=⊥ 〈{c2},σ ′〉 →Stmt ⊥

〈c1;c2,σ〉 →Stmt ⊥

〈b,σ〉 →Bexp true 〈c1,σ〉 →Stmt σ
′

〈if (b) c1 else c2,σ〉 →Stmt σ
′

〈b,σ〉 →Bexp false 〈c2,σ〉 →Stmt σ
′

〈if (b) c1 else c2,σ〉 →Stmt σ
′

〈b,σ〉 →Bexp ⊥
〈if (b) c1 else c2,σ〉 →Stmt ⊥

〈b,σ〉 →Bexp false
〈while (b) c,σ〉 →Stmt σ

〈b,σ〉 →Bexp true 〈c,σ〉 →Stmt σ
′ 〈while (b) c,σ ′〉 →Stmt σ

′′

〈while (b) c,σ〉 →Stmt σ
′′

〈b,σ〉 →Bexp true 〈c,σ〉 →Stmt ⊥
〈while (b) c,σ〉 →Stmt ⊥

〈b,σ〉 →Bexp ⊥
〈while (b) c,σ〉 →Stmt ⊥

Figure 2.3: Rules to evaluate statements
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For a longer example, we show that

while (b) c∼ if (b) {c;while (b) c} else {} (2.7)

Proof. To show this, first let w def
= while (b) c. We need to show for arbitrary but fixed σ ,σ ′ that

〈w,σ〉 →Stmt σ ′ iff 〈if (b) c;w else {},σ〉 →Stmt σ ′.

The proceeds by a case distinction over how the expressions b and c evaluate, starting with b:

• Case 1: 〈b,σ〉 →Bexp false

〈while (b) c,σ〉 →Stmtσ

〈if (b) {c;w} else {},σ〉 →Stmt〈{},σ〉 →Stmt σ

• Case 2: 〈b,σ〉 →Bexp true:

– Case 2.1: 〈c,σ〉 →Stmt σ ′, σ ′ 6=⊥.

〈
w︷ ︸︸ ︷

while (b) c,σ〉 →Stmt〈c,σ〉 →Stmt σ
′

〈w,σ ′〉 →Stmt σ
′′

〈if (b) {c;w} else {},σ〉 →Stmt〈{c;w},σ〉 →Stmt 〈c,σ〉 →Stmt σ
′

〈w,σ ′〉 →Stmt σ
′′

– Case 2.2: 〈c,σ〉 →Stmt ⊥

〈
w︷ ︸︸ ︷

while (b) c,σ〉 →Stmt〈c,σ〉 →Stmt ⊥
〈if (b) {c;w} else {},σ〉 →Stmt〈{c;w},σ〉 →Stmt 〈c,σ〉 →Stmt ⊥

• Case 3: 〈b,σ〉 →Bexp ⊥:

〈while (b) c,σ〉 →Stmt⊥
〈if (b) {c;w} else {},σ〉 →Stmt ⊥

�

2.6 Summary

• Operational semantics are a way to describe the meaning of a program by its evaluation. The
evaluation is expressed by describing the state transition of the program.

• Operational semantics is given by rules (originally, operational semantics was known as structured
operational semantics). There is one rule for each syntactical construct.

• The operational semantics defines how expressions evaluate to values, and how programs evaluate
one state into a successor state.

— 18 —



Lüth, Autexier: Korrekte Software

• Operational semantics is partial: not every program evaluates to a successor state, not every expres-
sions evaluates to a value. This is a feature, not a bug — partiality is necessary for Turing equiva-
lence. Neither does operational semantics have to be deterministic — expressions may evaluate to
more than one possible value. The semantics of full C is non-deterministic for expressions [7], but
our semantics for C0 is deterministic.

• Operational semantics can be used to show equivalence of programs or expressions.
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Chapter 3

Denotational Semantics

In denotational semantics, we give the meaning of each program in terms of a mathematical entity, in
particular a partial function between states. Hence, the notion of state as defined in Section 2.2 is the
starting point.

In general, the denotional semantics is written, for a program c, as [[c]]. The denotional semantics should
be compositional, that is the semantics of a structured statement should be given in terms of its compo-
nents; for example, the semantics of the compound statement is given by composing the semantics of the
basic statements:

[[c1;c2]] = [[c2]]◦ [[c1]]

But before we can proceed, we need some mathematical preliminaries.

3.1 Fixed Points

Given a function f : A→ A, a fixed point of f is an a ∈ A such that f (a) = a.

Examples:

• For f (x) =
√

x the fixed points are 0 und 1; similarly for f (x) = x2.

• For a sorting function, all sorted lists are fixed points.

We will need fixed points to give a semantics to while-loops (iteration). To see why, recall that we have
proven before (2.7) that

while (b) c∼ if (b) c;while (b) c else {}
which suggest that for the denotional semantics

[[while (b) c]] = [[if (b) c;while (b) c else {}]]

This can be read as a recursive definition for the semantics of the while-loop, defining the left-hand side
by the right-hand side. This means we define something in its own terms, which is a bit like chasing your
own shadow. However, mathematically recursive definitions are no problem, and they are solved by fixed
points.

Thus, we need to construct fixed points. We do this inductively, so we need something to describe how to
construct sets step-by-step until they do not change anymore.
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3.1.1 Rules and Rule Instances

Generally speaking, a rule allows us to derive a conclusion from a set of premisses. This is written as

x1, . . . ,xn

y
(n≥ 0).

With n = 0, the rule states that y holds without any precondition. The conclusion and premisses may con-
tain variables; these can be instantiated to give a rule instance. Instantiation has to be uniform throughout
the rule (i.e. a variable has to be instantiated with the same term in all premisses and the conclusion),
giving us a rule instance.

We use rules to define define sets inductively — that is, sets that we cannot define directly but we give the
rules by which to form them. Here is an example. Consider the following rules:

22 23

n m
n ·m

(3.1)

Instances of the rules are, e.g.

4 8
4 8

32
4 4

16
16 32

512
3 5

15
. . .

These rules form a set, starting with 4 and 8 (because these are rule instances without any premisses),
then 32 (because both 4 and 8 are in the set, so is 32, then 16, then 512, then 15 etc.). We can define this
process formally:

Definition 4 (Rule Application) Let R be a set of rule instances, and B a set. Then, we define

R̂(B) def
={y | ∃x1, . . . ,xk ∈ B.

x1, . . . ,xk

y
∈ R}

R̂0(B) def
=B

R̂i+1(B) def
= R̂(R̂i(B))

For the rules in (3.1), we get

R̂0( /0) = /0

R̂1( /0) = R̂( /0) = {4,8}
R̂2( /0) = {16,32,64,4,8}
R̂3( /0) = {128,256,512,1024,2048,4096,16,32,64,4,8}

R̂i+1( /0) = {22k+3l | 1≤ k+ l ≤ 2i} (3.2)

To show (3.2), we use induction on i. For the induction base, i= 0, hence we get k= 1, l = 0 or k= 0, l = 1,
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then R̂1 = {22,23}. For the induction step, we get:

R̂i+1( /0) = R̂(R̂i( /0)

= R̂({22k+3l | 1≤ k+ l ≤ 2(i−1)}
= {22}∪{23}∪{22k1+3l1 ·22k2+3l2 | 1≤ k1 + l ≤ 2i−1,1≤ k2 + l2 ≤ 2i−1}
= {22,23,22k1+3l1+2k2+3l2 | 1≤ k1 + l1 + k2 + l2 ≤ 2i−1 +2i−1}

= {22(k1+k2)+3(l1+l2) | 1≤ (k1 + k2)+(l1 + l2)≤ 2 ·2i−1}

= {22(k1+k2)+3(l1+l2) | 1≤ (k1 + k2)+(l1 + l2)≤ 2i}

You may see where this is going. Rules give us a single step to form a set; the rule application R̂i iterates
this procedure. We now want to apply rules until the set they define inductively does not change anymore
(i.e. we have reached a fixed point). The following definition formalizes this concept of “not changing
anymore”:

Definition 5 (Closed under R) Given a set R of rules, a set S is closed under R (R-closed) iff

R̂(S)⊆ S

Applying a rule only adds to the set being constructed. The general concept is monotonicity:

Definition 6 (Monotone Function) Given a function f : A→ B, then f is monotone iff

∀A1,A2.A1 ⊆ A2⇒{ f (a1) | a1 ∈ A1} ⊆ { f (a2) | a2 ∈ A2}

For a rule, the operation R̂ is function, mapping B to R̂(B). (We are being a bit imprecise here about the
domain and range of R̂. Suffice it to say these are the terms built using the language we describe the rules
in, e.g. numbers in example (3.1). This is explained in detail in e.g. [8] or [9].)

Lemma 1 (Rule Application is monotone) For a set of rules R, the induced operation R̂ is monotone.

Now, given a set of rules, we can apply the rule instances until the set does not change (i.e. grow)
anymore. The following lemma explains the construction:

Lemma 2 (Smallest Fixed Point) Let R be a set of rules, and let Ai
def
= R̂i( /0) for i ∈ N, and A def

=
⋃

i∈N Ai.
Then:

(a) A ist closed under R,

(b) R̂(A) = A, and

(c) A ist die smallest set closed under R.

Proof.
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(a) A is closed under R:

Assume
x1, . . . ,xk

y
∈ R and x1, . . . ,xk ⊆ A. SinceA =

⋃
i∈N Ai, there is a j such that x1, . . . ,xk ⊆ A j.

Hence we have:

y ∈ R̂(A j) = R̂(R̂ j( /0))

= R̂ j+1( /0)
= A j+1 ⊆ A.

(b) R̂(A) = A:

We show the equality by showing inclusion in both directions.

• R̂(A)⊆ A:
With A closed under R, we have R̂(A)⊆ A.

• A⊆ R̂(A):
Let y ∈ A. Because A =

⋃
i∈N Ai, there is n > 0 with y ∈ An. Further, y cannot be in /0, so it has

to be added at some n, i.e. we can assume that y 6∈ An−1.

Hence there must be a rule instance
x1, . . . ,xk

y
∈ R with x1, . . . ,xk ⊆ An−1 ⊆ A.

Because R̂ is monotone, we have R̂(An−1)⊆ R̂(A).
With y ∈ An = R̂(An−1), it follows that y ∈ R̂(A).

(c) A is the smallest set closed under R, i.e. for any other set B closed under R we have A⊆ B. We show
by induction over n that An ⊆ B; it follows that A⊆ B.

• Base case: A0 = /0⊆ B. (The empty set is a subset of all sets.)

• Induction step: With B closed under R, we have R̂(B)⊆ B.
Our induction assumption is that An ⊆ B. Then An+1 = R̂(An)⊆ R̂(B)⊆ B because R̂ is mono-
tone, and B is closed under R, hence An+1 ⊆ B.

�

3.1.2 Least Fixed Point Operator

We call the operator taking R to the set A as defined in Lemma 2 the smallest fixed point operator, as
property (a) says A is a fixed point, and property (c) says it is the smallest one.

Definition 7 (Smallest Fixed Point Operator) Given a set R of rules, the smallest fixed point of R is
defined as

fix(R̂) def
=
⋃

n∈N

R̂n( /0)

Consider the rule set R from (3.1) again. We already saw that R̂i+1( /0) = {22k+3l | 1≤ k+ l ≤ 2i}. With
that, we can conclude that

fix(R̂) = {22k+3l | 1≤ k+ l}
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This is equivalent to
fix(R̂) = {2 j | 2≤ j}

because any n ≥ 2 can be written as 2k+ 3l for some k, l ≥ 1 (if n is even, take l = 0, and if n is odd
then take n = (n− 3)+ 3 where n− 3 is even), and on the other hand, 2k+ 3l is at least 2 if 1 ≤ k+ l
(k = 1, l = 0). But observe that R̂i( /0) 6= {2 j | 2≤ j ≤ 2i}.
We are now equipped to define the denotational semantics of our language.

3.2 Denotational Semantics

In general:

• each arithmetic expression a : Aexp is denoted by a partial function Σ ⇀ Z,

• each boolean expression b : Bexp is denoted by a partial function Σ ⇀ B, and

• each statement c : Stmt is denoted by a partial function Σ ⇀ Σ.

Figure 3.1 gives the denotational semantics for expressions. It is instructive to consider how undefined-
ness propagates along the rules. For example, for addition only if the two arguments a0 and a1 have a
denotation n0 and n1 then the whole expression has a denotation, n0 +n1. Furthermore, division by 0 is
explicitly left undefined, and the denotations of conjunction and disjunction are non-strict on the right: if
the left argument denotes false (for conjuction) or true (for disjunction), then the denotation of the right
argument is not considered at all.

The denotational semantics of statements is fairly straightforward except for iteration. How should we
denote while-loops? Recall that in Chapter 2, we had equation (2.7) which unfolds a while loop, i.e.
w∼ if (b) {c;w} else {} for w = while (b) c. This should hold in denotational semantics as well, so the
following equation should hold:

C [[w]] = C [[if (b) {c;w} else {}]]

This unfolds the loop once. If we unfold the loop arbitrarily often, this should be the semantics of the
while loop — very much like the fixed point from above. More precisely, let Γ(s) denote the unfolding
— it takes the denotation of an arbitrary statement s, and unfolds the loop once:

Γ(s) def
=C [[if (b) {c;s} else {}]]

This is not quite precise yet, because it mixes the abstract syntax (if (b) c else {}) with the denotation
s; Figure 3.2 gives the precise definition, where we calculate the denotational semantics of the abstract
syntax in Γ. We can now define the unfolding of the loop. We start with the empty relation (not with the
identity relation, i.e. C [[{}]], as one might perhaps expect); this is given by the fixed point construction
from Definition 7:

Γ
0 def
= /0

Γ
i+1 def

=Γ(Γi)

and then we have C [[w]] def
=
⋃

i∈N Γi, i.e. the denotational semantics of the while loop is unfolding its body
arbitrarily often as long as the loop condition holds until it does not hold anymore. Here, each Γi is a de-
notation which unfolds the loop body i times such that the loop condition does not hold afterwards (hence,
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A [[a]] : Aexp→ (Σ ⇀ Z)

A [[n]] = {(σ ,n) | σ ∈ Σ}
A [[x]] = {(σ ,σ(x)) | σ ∈ Σ,x ∈ Dom(σ)}

A [[a0 +a1]] = {(σ ,n0 +n1) | (σ ,n0) ∈A [[a0]]∧ (σ ,n1) ∈A [[a1]]}
A [[a0−a1]] = {(σ ,n0−n1) | (σ ,n0) ∈A [[a0]]∧ (σ ,n1) ∈A [[a1]]}
A [[a0 ∗a1]] = {(σ ,n0 ·n1) | (σ ,n0) ∈A [[a0]]∧ (σ ,n1) ∈A [[a1]]}
A [[a0/a1]] = {(σ ,n0÷n1) | (σ ,n0) ∈A [[a0]]∧ (σ ,n1) ∈A [[a1]]∧n1 6= 0}

B[[a]] : Bexp→ (Σ ⇀ B)

B[[1]] = {(σ , true) | σ ∈ Σ}
B[[0]] = {(σ , false) | σ ∈ Σ}

B[[a0 == a1]] = {(σ , true) | σ ∈ Σ,(σ ,n0) ∈A [[a0]](σ),(σ ,n1) ∈A [[a1]],n0 = n1}
∪ {(σ , false) | σ ∈ Σ,(σ ,n0) ∈A [[a0]](σ),(σ ,n1) ∈A [[a1]],n0 6= n1}

B[[a0 < a1]] = {(σ , true) | σ ∈ Σ,(σ ,n0) ∈A [[a0]](σ),(σ ,n1) ∈A [[a1]],n0 < n1}
∪ {(σ , false) | σ ∈ Σ,(σ ,n0) ∈A [[a0]](σ),(σ ,n1) ∈A [[a1]],n0 ≥ n1}

B[[!b]] = {(σ , true) | σ ∈ Σ,(σ , false) ∈B[[b]]}
∪ {(σ , false) | σ ∈ Σ,(σ , true) ∈B[[b]]}

B[[b1 && b2]] = {(σ , false) | σ ∈ Σ,(σ , false) ∈B[[b1]]}
∪ {(σ , t2) | σ ∈ Σ,(σ , true) ∈B[[b1]],(σ , t2) ∈B[[b2]]}

B[[b1 || b2]] = {(σ , true) | σ ∈ Σ,(σ , true) ∈B[[b1]]}
∪ {(σ , t2) | σ ∈ Σ,(σ , false) ∈B[[b1]],(σ , t2) ∈B[[b2]]}

Figure 3.1: Denotional semantics for expressions

C [[c]] : Stmt→ (Σ ⇀ Σ)

C [[x = a]] = {(σ ,σ [n/x]) | σ ∈ Σ∧ (σ ,n) ∈A [[a]]}
C [[c1;c2]] = C [[c2]]◦C [[c1]]

C [[{}]] = IdΣ

C [[if (b) c0 else c1]] = {(σ ,σ ′) | (σ , true) ∈B[[b]]∧ (σ ,σ ′) ∈ C [[c0]]}
∪{(σ ,σ ′) | (σ , false) ∈B[[b]]∧ (σ ,σ ′) ∈ C [[c1]]}

C [[while (b) c]] = fix(Γb,c)

where Γb,c( f ) def
= {(σ ,σ ′) | (σ , true) ∈B[[b]]∧ (σ ,σ ′) ∈ f ◦C [[c]]}
∪{(σ ,σ) | (σ , false) ∈B[[b]]}

Figure 3.2: Denotional semantics for statements
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Γi is undefined for states s in which the loop has to be unfolded more than i times before termination is
reached, see the examples below).

Figure 3.2 gives the denotational semantics for statements, using the fixed point operator for the iteration.
There, Id is the identity relation, and R2 ◦R1 is the composition operator for relations, defined as

IdX
def
={(x,x) | x ∈ X}

R2 ◦R1
def
={(x,z) | ∃y.(x,y) ∈ R1∧ (y,z) ∈ R2}

Considering relations as partial functions, these are the identity function and function composition. The
obvious properties hold, such as associativity of function composition R3 ◦ (R2 ◦R1) = (R3 ◦R2)◦R1 and
the unit laws Id◦R = R = R◦ Id.

3.2.1 The Fixed Point at Work

Consider the following simple program:

x= 0 ;
whi le ( n > 0) {

x= x+ n ;
n= n− 1 ;
}

This obviously calculates the sum from 1 to n in x . Considering the denotational semantics of the pro-
gram, the interesting part is iteration. To demonstrate how the semantics of the while-loop is calculated,
we look at its construction for several different states.

First, consider the state 〈x 7→ 0,n 7→ 0〉:

Γ
0(〈x 7→ 0,n 7→ 0〉) = /0

Γ
1(〈x 7→ 0,n 7→ 0〉) = Γ(Γ0)(〈x 7→ 0,n 7→ 0〉)

= 〈x 7→ 0,n 7→ 0〉

Γ0 is simple undefined everywhere. Γ(Γi)(s) is s if the loop condition is not satisfied (here, if n ≤ 0), or
Γi(s′) if the loop condition is satisfied, with s′ = s[x+n/x][n−1/n] (i.e. s′ is the loop body applied so s).
Hence, if Γi(s) = s′ then Γ j(s) = s′ for all j > i: once the loop terminates, nothing changes anymore. So
we do not need to look at Γ2(〈x 7→ 0,n 7→ 0〉), but instead consider 〈x 7→ 0,n 7→ 1〉:

Γ
0(〈x 7→ 0,n 7→ 1〉) = /0

Γ
1(〈x 7→ 0,n 7→ 1〉) = Γ

0(〈x 7→ 1,n 7→ 0〉) = /0

Γ
2(〈x 7→ 0,n 7→ 1〉) = Γ

1(〈x 7→ 1,n 7→ 0〉) = 〈x 7→ 1,n 7→ 0〉

Here, we can see the loop terminating after one step, hence Γ2 is defined (but not Γ1). Let us consider
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some more states:

Γ
0(〈x 7→ 0,n 7→ 2〉) = /0

Γ
1(〈x 7→ 0,n 7→ 2〉) = Γ

0(〈x 7→ 2,n 7→ 1〉) = /0

Γ
2(〈x 7→ 0,n 7→ 2〉) = Γ

1(〈x 7→ 2,n 7→ 1〉) = Γ
0(〈x 7→ 3,n 7→ 0〉) = /0

Γ
3(〈x 7→ 0,n 7→ 2〉) = Γ

2(〈x 7→ 2,n 7→ 1〉) = Γ
1(〈x 7→ 3,n 7→ 0〉) = 〈x 7→ 3,n 7→ 0〉

Γ
0(〈x 7→ 0,n 7→ 3〉) = /0

Γ
1(〈x 7→ 0,n 7→ 3〉) = Γ

0(〈x 7→ 3,n 7→ 2〉) = /0

Γ
2(〈x 7→ 0,n 7→ 3〉) = Γ

1(〈x 7→ 3,n 7→ 2〉) = Γ
0(〈x 7→ 5,n 7→ 1〉) = /0

Γ
3(〈x 7→ 0,n 7→ 3〉) = Γ

2(〈x 7→ 3,n 7→ 2〉) = Γ
1(〈x 7→ 5,n 7→ 1〉) = Γ

0(〈x 7→ 6,n 7→ 0〉) = /0

Γ
4(〈x 7→ 0,n 7→ 3〉) = Γ

3(〈x 7→ 3,n 7→ 2〉) = Γ
2(〈x 7→ 5,n 7→ 1〉) = Γ

1(〈x 7→ 6,n 7→ 0〉) = 〈x 7→ 6,n 7→ 0〉

To summarise these calculations in a table:

s Γ0(s) Γ1(s) Γ2(s) Γ3(s) Γ4(s)
〈x 7→ 0,n 7→ −1〉 /0 〈x 7→ 0,n 7→ −1〉 〈x 7→ 0,n 7→ −1〉 〈x 7→ 0,n 7→ −1〉 〈x 7→ 0,n 7→ −1〉
〈x 7→ 0,n 7→ 0〉 /0 〈x 7→ 0,n 7→ 0〉 〈x 7→ 0,n 7→ 0〉 〈x 7→ 0,n 7→ 0〉 〈x 7→ 0,n 7→ 0〉
〈x 7→ 0,n 7→ 1〉 /0 /0 〈x 7→ 1,n 7→ 0〉 〈x 7→ 1,n 7→ 0〉 〈x 7→ 1,n 7→ 0〉
〈x 7→ 0,n 7→ 2〉 /0 /0 /0 〈x 7→ 3,n 7→ 0〉 〈x 7→ 3,n 7→ 0〉
〈x 7→ 0,n 7→ 3〉 /0 /0 /0 /0 〈x 7→ 6,n 7→ 0〉

As we can see, Γi(s) is defined if the loop terminates for the state s in i− 1 steps. Now consider a
non-terminating loop:

whi le ( 1 ) {
x= x +1;
}

In this loop, there is no state s such that (s, false) ∈B[[1]], hence Γ(Γi)(s) = /0 for all states s. Hence, all
Γi are undefined too:

s Γ0(s) Γ1(s) Γ2(s) Γ3(s) Γ4(s)
〈x 7→ −1〉 /0 /0 /0 /0 /0
〈x 7→ 0〉 /0 /0 /0 /0 /0
〈x 7→ 1〉 /0 /0 /0 /0 /0
〈x 7→ 2〉 /0 /0 /0 /0 /0
〈x 7→ 3〉 /0 /0 /0 /0 /0

Finally, consider what happens if we change our first program to

x= 0 ;
whi le ( n != 0) {

x= x+ n ;
n= n− 1 ;
}
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Now the loop does not terminate for negative numbers anymore:

Γ
1(〈x 7→ 0,n 7→ −1〉) = Γ

0(〈x 7→ −1,n 7→ −2〉) = /0

Γ
2(〈x 7→ 0,n 7→ −1〉) = Γ

1(〈x 7→ −1,n 7→ −2〉) = Γ
0(〈x 7→ −3,n 7→ −3〉= /0

Γ
3(〈x 7→ 0,n 7→ −1〉) = Γ

2(〈x 7→ −1,n 7→ −2〉) = Γ
1(〈x 7→ −3,n 7→ −3〉= Γ

0(〈x 7→ −6,n 7→ −4〉) = /0

As we can see, there is no i such that Γi(〈x 7→ 0,n 7→ −1〉 is defined. Operationally, this is because the
loop does not terminate for n < 0 (because if n < 0 then n− 1 < 0 as well). It is interesting (if you like
these sort of things) to compare Γ2(〈x 7→ 0,n 7→ −1〉) and Γ2(〈x 7→ 0,n 7→ 2〉). They both equal /0 —
they are both undefined — but the former is because the loop will never terminate, whereas the latter is
undefined because the loop has not terminated yet, i.e. it needs to be unfolded further; so semantically,
there is no difference between a loop which has not terminated yet, and one which never will. Here is the
table from above for this case (the calculations for the lower rows remain just as they were):

s Γ0(s) Γ1(s) Γ2(s) Γ3(s) Γ4(s)
〈x 7→ 0,n 7→ −2〉 /0 /0 /0 /0 /0
〈x 7→ 0,n 7→ −1〉 /0 /0 /0 /0 /0
〈x 7→ 0,n 7→ 0〉 /0 〈x 7→ 0,n 7→ 0〉 〈x 7→ 0,n 7→ 0〉 〈x 7→ 0,n 7→ 0〉 〈x 7→ 0,n 7→ 0〉
〈x 7→ 0,n 7→ 1〉 /0 /0 〈x 7→ 1,n 7→ 0〉 〈x 7→ 1,n 7→ 0〉 〈x 7→ 1,n 7→ 0〉
〈x 7→ 0,n 7→ 2〉 /0 /0 /0 〈x 7→ 3,n 7→ 0〉 〈x 7→ 3,n 7→ 0〉
〈x 7→ 0,n 7→ 3〉 /0 /0 /0 /0 〈x 7→ 6,n 7→ 0〉

3.2.2 More about the fixed point construction

We can now show that (2.7) actually holds in the denotational semantics, i.e. that for w = while (b) c we
have

C [[w]] = C [[if (b) {c;w} else {}]] (3.3)

Proof. First, let w def
=while (b) c. Then,

C [[w]] = fix(Γb,c) by def. of C [[w]]

= Γb,c(fix(Γb,c)) property of the fixed-point
= Γb,c(C [[w]]) by def. of C [[w]]

= {(σ ,σ ′) | (σ , true) ∈B[[b]]∧ (σ ,σ ′) ∈ C [[w]]◦C [[c]]}
∪ {(σ ,σ) | (σ , false) ∈B[[b]]} by def. of Γb,c

= {(σ ,σ ′) | (σ , true) ∈B[[b]]∧ (σ ,σ ′) ∈ C [[c; w]]}
∪ {(σ ,σ) | (σ , false) ∈B[[b]]} by def. of C [[c;w]]

= C [[if (b) {c;w} else {}]] by def. of C [[if . . .]]

�

Note how the proof involves only equational reasoning using properties of the semantics; we make no
reference to evaluation here.
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Another interesting property to prove is that the loop condition does not hold in the target state. More
precisely: let w = while (b) c, then B[[b]](C [[w]]σ) = false, which we can write in the relational style as

(σ ,σ ′) ∈ C [[w]] =⇒ (σ ′, false) ∈B[[b]] (3.4)

This is proven via the fixed point construction. We know C [[w]] = fix(Γ) =
⋃

n∈N Γi (in our notation from
above). We show by induction over n that for all n ∈ N, if (σ ,σ ′) ∈ Γn then (σ ′, false) ∈B[[b]]:

• The base case is vacuous, since Γ0 = /0, so there is no (σ ,σ ′) ∈ Γ0.

• For the step case, assume if (σ ,σ ′) ∈ Γn then (σ ′, false) ∈B[[b]], and consider (σ ,σ ′) ∈ Γn+1( /0).
Unfolding the definition of Γn+1, we get either (σ ,σ) ∈ Γ(Γn) if (σ , false) ∈B[[b]] (then the thesis
follows with σ ′ = σ ), or (σ ,σ ′) ∈ Γ(Γn) if (σ , true) ∈B[[b]] and there is σ ′′ such that (σ ,σ ′′) ∈
C [[c]] and (σ ′′,σ ′)∈ Γn, but then we can use the induction assumption to derive (σ ′, false)∈B[[b]].

3.2.3 Undefinedness

There is an important distinction in the way undefinedness is handled in the operational and in the deno-
tational semantics. In the operational semantics, undefined was handled explicitly: arithmetic expressions
evaluated to a number, or ⊥, so for example n/0 evaluates to ⊥ for all states σ . In the denotational
semantics, undefinedness is handled implictly: n/0 is not mapped to anything, i.e. A [[n/0]] = /0.

Moreover, the denotational semantics handles undefinedness (division by zero, access to uninitialised
variables) and non-termination uniformly, whereas the operational semantics distinguishes between the
two: the former is modelled by ⊥, the latter by a non-terminating rule evaluation.
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Chapter 5

The Floyd-Hoare Logic

In this chapter, we introduce a third semantics, or another mathematical view of “what a program does”.
The Floyd-Hoare logic, also sometimes referred to as axiomatic semantics, differs from the operational
semantics (which formalises the execution of a program) and denotional semantics (which by translating
a program into a mathematical entity formalises the exact meaning of the program) in that it formalises
the result of the program (i.e. what the program does, not how the program does it).

5.1 Why Another Semantics?

Why do why need another kind of semantics anyway, apart from mathematical curiosity and the general
enhanced confidence by giving a third view of the elusive “meaning” of a program and showing it coin-
cides with the other two? Well, “dreimal ist Bremer Recht” and all that, but consider again the example
program in Figure 1.2 on page 9. It computes the factorial of the input variable n in the variable p, but
how can we prove that? We could calculate the semantics, e.g. using the denotational semantics, but we
will run into two difficulties:

(i) First, the calculated semantics is a very large term indeed, and it is hard to see how that term would
imply the simple equality p = n! that we want to prove. In other words, the two semantics we have
introduced do not scale for proving properties of larger1 programs.

(ii) Second, the semantics of the while-loop is hard to handle. It calculuates a fixed point— how can
we deal with that?

Floyd-Hoare logic deals with these problems by abstraction. Instead of calculating every tiny change of
every variable in the state, it allows us to state properties about program variables at certain points in the
excecution, prove that these hold, and from that prove properties about the whole program.

5.2 Basic Ingredients of Floyd-Hoare Logic

The basic ingredients of the Floyd-Hoare logic are:

1Even though the example program is hardly large— imagine calculating the semantics of a couple of thousand lines of C0.
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• a language of state-based assertions, which allow us to specify properties of the program’s state on
an abstract level,

• a formalisation of program properties using Floyd-Hoare tripels, which specify properties which
hold before and after a program is run (pre- and postcondition);

• and a calculus by which we can prove such properties without having to calculate the whole se-
mantics of a program.

Thus, Floyd-Hoare logic translates the semantics of a program into a logical language. The big questions
we will have to deal with are how to handle state change (the assignment statement) and iteration (while-
loops) — more on that later. We first review the language of assertion, and what it means for assertions
to hold.

5.2.1 Assertions

Assertions are essentially boolean expressions (Section 2.1) extended with a few key concepts:

• Logical variables which as opposed to program variables are not stateful, i.e. their value is given
by an interpretation and cannot be changed. The set of logical variables is written as Var, and
by convention we use capital names for them in our examples; in our implementation, logical and
program variables are distinguished by static analysis (i.e. typing the program).

• Logicla predicates and functions which are defined externally, and which represent the models used
to specify the behaviour of the program (more on that later). Examples of these are the factorial,
written as n!, or the summation ∑

n
i=1 i.

• Implication and universal/existential quantification (which allows us to write down non-executable
assertions) over logical variables.

We define the sets of assertions, Assn, and extended arithmetic expressions Aexpv by extending the
defintions of Bexp and Aexp as follows:

Aexpv a ::= Z | Idt | Var | a1 +a2 | a1−a2 | a1×a2 | f (e1, . . . ,en)

Assn b ::= 1 | 0 | a1 == a2 | a1! = a2 | a1 <= a2 | !b | b1 && b2 | b1 ||b2 | b1⇒ b2 |
p(e1, . . . ,en) | forallv.b | existsv.b

In what follows we use a more mathematical notation for assertions — but this is merely some lexical
sugar (i.e. we just replace the symbols):

Assn b ::= true | false | a1 = a2 | a1 6= a2 | a1 ≤ a2 | ¬b | b1∧b2 | b1∨b2 | b1 −→ b2 |
p(e1, . . . ,en) | ∀v.b | ∃v.b

An assertion b ∈ Assn holds in a state σ ∈ Σ if its denotational semantics evaluates to true. To make this
precise, we need to extend the denotational semantics for the missing constructs — that is easy, except
that it requires that we give a meaning for the logical functions and predicates, and it moreover requires
that we assign a value to the logical variables. This is usual in formal logic: to evaluate a formula, one
first assigns values to the variables occuring in the formula, then calculates the evaluation. (The formula
a = 4∧b < 5 is neither true nor false, but if we assign 4 to a and 6 to b, then it becomes false.)
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Av[[a]] : Aexpv→ Env→ Inprt→ (Σ ⇀ N)

Av[[n]]IΓ = {(σ ,n) | σ ∈ Σ}
Av[[x]]IΓ = {(σ ,σ(x)) | σ ∈ Σ,x ∈ Dom(σ)}
Av[[v]]IΓ = {(σ , I(x)) | σ ∈ Σ,v ∈ Dom(I)}

Av[[a0 +a1]]
I
Γ = {(σ ,n0 +n1) | (σ ,n0) ∈Av[[a0]]

I
Γ∧ (σ ,n1) ∈Av[[a1]]

I
Γ}

Av[[a0−a1]]
I
Γ = {(σ ,n0−n1) | (σ ,n0) ∈Av[[a0]]

I
Γ∧ (σ ,n1) ∈Av[[a1]]

I
Γ}

Av[[a0 ∗a1]]
I
Γ = {(σ ,n0 ∗n1) | (σ ,n0) ∈Av[[a0]]

I
Γ∧ (σ ,n1) ∈Av[[a1]]

I
Γ}

Av[[a0/a1]]
I
Γ = {(σ ,n0/n1) | (σ ,n0) ∈Av[[a0]]

I
Γ∧ (σ ,n1) ∈Av[[a1]]

I
Γ∧n1 6= 0}

Av[[ f (a1, . . . ,an)]]
I
Γ = {(σ ,Γ( f )(v1, . . . ,vn)) | (σ ,vi) ∈Av[[ai]]

I
Γ}

Bv[[a]] : Bexp→ Env→ Inprt→ (Σ ⇀ B)

Bv[[0]]IΓ = {(σ , false) | σ ∈ Σ}
Bv[[1]]IΓ = {(σ , true) | σ ∈ Σ}

Bv[[a0 == a1]]
I
Γ = {(σ , true) | σ ∈ Σ,(σ ,n0) ∈Av[[a0]]

I
Γ(σ),(σ ,n1) ∈Av[[a1]]

I
Γ,n0 = n1}

∪ {(σ , false) | σ ∈ Σ,(σ ,n0) ∈Av[[a0]]
I
Γ(σ),(σ ,n1) ∈Av[[a1]]

I
Γ,n0 6= n1}

Bv[[a0 < a1]]
I
Γ = {(σ , true) | σ ∈ Σ,(σ ,n0) ∈Av[[a0]]

I
Γ(σ),(σ ,n1) ∈Av[[a1]]

I
Γ,n0 < n1}

∪ {(σ , false) | σ ∈ Σ,(σ ,n0) ∈Av[[a0]]
I
Γ(σ),(σ ,n1) ∈Av[[a1]]

I
Γ,n0 ≥ n1}

Bv[[!b]]IΓ = {(σ , false) | σ ∈ Σ,(σ , true) ∈Bv[[b]]IΓ}
∪ {(σ , true) | σ ∈ Σ,(σ , false) ∈Bv[[b]]IΓ}

Bv[[b1 && b2]]IΓ = {(σ , false) | σ ∈ Σ,(σ , false) ∈Bv[[b1]]
I
Γ}

∪ {(σ , t2) | σ ∈ Σ,(σ , true) ∈Bv[[b1]]
I
Γ,(σ , t2) ∈Bv[[b2]]

I
Γ}

Bv[[b1 ||b2]]
I
Γ = {(σ , true) | σ ∈ Σ,(σ , true) ∈Bv[[b1]]

I
Γ}

∪ {(σ , t2) | σ ∈ Σ,(σ , false) ∈Bv[[b1]]
I
Γ,(σ , t2) ∈Bv[[b2]]

I
Γ}

Bv[[p(e1, . . . ,en)]]
I
Γ = {(σ ,Γ(p)(v1, . . . ,vn)) | (σ ,vi) ∈Av[[ei]]

I
Γ}

Bv[[b1⇒ b2]]
I
Γ = {(σ , true) | (σ , false) ∈Bv[[b1]]

I
Γ}

∪ {(σ , t2) | (σ , true) ∈Bv[[b1]]
I
Γ,(σ , t2) ∈Bv[[b2]]

I
Γ}

Bv[[forallv; b]]IΓ = ∀x ∈ Z.(σ , true) ∈Bv[[b]]
I[v/x]
Γ

Bv[[existsv; b]]IΓ = ∃x ∈ Z.(σ , true) ∈Bv[[b]]
I[v/x]
Γ

Figure 5.1: Denotional semantics for assertions
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Definition 8 (Interpretation and Environment) An interpretation I ∈ Inprt is a partial map I : Var⇀B
which assigns integer values to logical variables.

An environment Γ ∈ Env maps

• each n-ary logical function f to an n-ary function Γ( f ) : Zn ⇀ Z, and

• each n-ary logical predicate p to an n-ary predicate Γ(p) : Zn ⇀ B.

Note how logical functions and predicates are mapped to total2 functions which do not take the current
state σ as a parameter, and hence do not depend on it; they are stateless (or pure). This environment gives
functions in the specification a semantics, such that n! is indeed the factorial function.

Logical variables, however, deserve some explanation. Essentially, they allow us to formulate specifica-
tions which are invariant over the state. For example, to write down the statement x= x+1 increases the
value of x, we need to specify somehow the value of x before and after the statement. We do so by using
a logical variable, say N: if the value of N before the statement is equal to x, than the value of x after the
statement should now be larger than the value of N (which has not changed).

To define the denotational semantics of an assertion b, we need an environment (which maps the functions
and predicates to a semantic meaning), and an interpretation. Figure 5.1 gives the additional equations
to interpret the new constructs. Recall from page 11 our notations for partial functions; in particular, for
an interpretation I we write I[n/x] for updating the interpretation at the variable x with the (new) value n.
Figure 5.1 shows the extension of the denotational semantics for expressions to assertions.

5.2.2 Floyd-Hoare Tripels, Partial and Total Correctness

We can now define what it means for an assertion to hold (i.e. to be true), with respect to a state and an
assignment. Formally, an assertion b ∈ Assn holds in a state σ with an assignment I, written σ |=I b iff

σ |=I iff DenBvbI(σ) = true (5.1)

The central notion of the Floyd-Hoare logic are Floyd-Hoare triples (also sometimes called partial/total
correctness assertions), given as {P}c{Q} and [P]c [Q], where P,Q ∈ Assn and c ∈ Stmt. Partial cor-
rectness means that if the programs starts in a state where the precondition P holds, and it terminates,
then it does so in a state which satisfies the postcondition Q; total correctness means that if the program
starts in a state where the precondition P holds, then it must terminate in a state where the postcondition
Q holds. So total correctness is essentially partial correctness plus termination; in other words, for partial
correctness, the termination of the program c is precondition, and for total correctness, it is part of the
requirement.

We now define this formally. We write |= {P}c{Q} to mean that the Hoare triple {P}c{Q} holds, and
define:

|= {P}c{Q}⇐⇒ ∀I.∀σ .σ |=I P∧∃σ ′.(σ ,σ ′) ∈ C [[c]] =⇒ σ
′ |=I Q (5.2)

|= [P]c [Q]⇐⇒∀I.∀σ .σ |=I P =⇒∃σ ′.(σ ,σ ′) ∈ C [[c]]∧σ
′ |=I Q (5.3)

Points to note:

2One might want partial functions here, but that would make the logical partial.
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• The following holds |= {true} while (1) {}{true}, because even though for all states σ (and as-
signments I), we have σ |=I true, but there is not state σ ′ such that (σ ,σ ′) ∈ C [[while (1) {}]].

• For exactly the same reason, |= [true] while (true) {} [true] does not hold.

• However, both |= {false} while (1) {}{true} and |= [false] while (1) {} [true] hold; in fact, |=
{false}c{Q} and |= [false]c [Q] hold for any c and Q, because an implication is true when the
premisse is false (false =⇒ φ is always true).

Note how it is important that the same assignment I is used to evaluate both the precondition P and
the postcondition Q. This is what makes it possible to refer to variable values independent of the state.
Consider the following triple

|= {x = X}x = x+1; {X < x}
If we spell out definition (5.2), we get

|= {x = X}x = x+1; {X < x}
⇐⇒ ∀I.∀σ .σ |=I Bv[[x = X ]]IΓ∧∃σ ′.(σ ,σ ′) ∈ C [[x = x+1]] =⇒ σ

′ |=I Bv[[X < x]]IΓ (5.4)
⇐⇒ ∀I.∀σ .σ(x) = I(X)∧σ

′ = σ [σ(x)+1/x] =⇒ I(X)< σ
′(x) (5.5)

⇐⇒ ∀I.∀σ .σ(x) = I(X) =⇒ I(X)< σ(x)+1 (5.6)
⇐⇒ ∀I. I(X)< I(X)+1 (5.7)

We will in the following concentrate on partial correctness. As total correctness is partial correctness
plus termination, proving partial correctness is a prerequisite for total correcness anyway. To show total
correctness, this additionally needs two things:

1. program safety — the program should never run into error conditions, where the execution is unde-
fined. In our current little language, the only error condition is division by zero, but later this will
also include array access out of bounds, and illegal pointer dereferencing.

2. termination of while-loops and recursive functions.

In praxis, it is total correctness we want — proving with much effort that “my program would have given
the correct result if it had not crashed” seems a bit weak, in particular when the program in question was
supposed to control an autonomous car driving on a motorway at top speed. You almost always want “my
program always returns the correct result”. If we consider partial correctness in the following, it is because
there is a clear, nice separation of concern: we can prove total correctness by proving partial correctness,
plus termination and program safety; the proof of these can be done almost entirely separately.

5.3 The Rules of the Floyd-Hoare Calculus

Reconsidering the proof (5.4)–(5.7), it is clear that this is not the way to show that a Hoare triple holds,
or is valid (i.e. a program is correct). What is needed are some syntactic rules to show the validity of a
Hoare triple. In logic, such a set of rules is called a calculus.

The rules of the Floyd-Hoare calculus are given in Figure 5.2. There is one rule for each construct of the
language: assignment, case distinction, iteration, sequencing, and the empty statement.

It is perfectly natural (but wrong) to think that the assignment rule should have the substitution in the
postcondition. But it has to be in the precondition: if a predicate P has to hold in a state σ after assigning
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` {P[e/x]}x = e{P}

` {A∧b}c0 {B} ` {A∧¬b}c1 {B}
` {A} if (b) c0 else c1 {B}

` {A∧b}c{A}
` {A} while (b) c{A∧¬b}

` {A}{}{A}
` {A}c1 {B} ` {B}c2 {C}

` {A}c1;c2 {C}

A′ =⇒ A ` {A}c{B} B =⇒ B′

` {A′}c{B′}

Figure 5.2: The rules of the Floyd-Hoare calculus

e to variable x, then it will have the expression e when reading x. By this rule, assignment in the pro-
gramming language gets translated into substitution in logical propositions. The changes in the state by
assigning values to variables are reflected by substituting the corresponding values in the assertions over
that state. In other words, program execution is translated to logical manipulation of a formula.

The rule for iteration has an assertion, A, for which we have to show that it is preserved by the body of
the loop — if so, if it holds before the loop is entered, then it will hold after the loop has exited. This
assertion is called the invariant of the loop. The invariant cannot be deduced from the program, it has
to be given. Finding the invariant is one of the difficult parts of conducting correctness proofs with the
Floyd-Hoare calculus; we will return to that problem later.

A special rule is the weaking rule, the bottom one: it brings logic into the proof, as opposed to other
structural rules. To see why it holds, define the extension of an assertion P as the set of all states σ where
P holds (for a fixed but arbitrary interpretation I). If P logically implies Q, then the extension of P is a
subset of the extension of Q, or

P =⇒ Q iff ∀I.∀σ .σ |=I P =⇒ σ |=I Q

In fact, this can be taken as a semantic definition of logic implication for assertions. Thus, if P =⇒Q, we
can replace P in the postcondition with Q (because if the program ends in a state σ where P holds, Q will
also hold), and similary, Q in the precondition with P.

A special case of this is logical equivalence: we can always replace a pre- or postcondition with one
which is logical equivalent. This allows equational reasoning in the assertions.

5.3.1 A Notation for Proofs

Writing down proofs in the calculus in the style of inference trees would be very tedious indeed. Assume
we have the following schematic program c:

x= e ;
whi le ( x< n ) {
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z= a ;
}

and we want to prove that it satisfies the Hoare triple ` {P}c{Q} (for P, Q some schematic assertions).
The inference tree of a typical proof could like this, where P3 is the invariant of the while loop, and there
are a few weakenings in between:

P =⇒ P1 ` {P1}x = e{P2}
` {P}x = e{P2}

P2 =⇒ P3

P3 =⇒ P4 ` {P4}z = a{P3}
` {P3∧ x < n}z = a{P3}

` {P3} while (x < n) . . .{P3∧ x < n} P3∧¬(x < n) =⇒ Q
` {P2} while (x < n) . . .{Q}

` {P}c{Q}

This will quickly become unreadable for even the most basic proofs. Instead, we use the following linear
notation for that proof:

/ / {P}
/ / {P1}
x= e ;
/ / {P2}
/ / {P3}
whi le ( x< n ) {

/ / {P3∧ x < n}
/ / {P4}
z= a ;
/ / {P3}
}

/ / {P3∧¬(x < n)}
/ / {Q}

Our linear notation uses the following conventions:

• Assertions are annotated as comments into the program.

• For a statement c, the assertion P immediately preceding c and Q immediately following c form a
Hoare triple ` {P}c{Q}, and must be derivable using the rules of the calculus from Figure 5.2.

• The sequencing rule is used implicitly; for two statments c1;c2, and an assertion P immediately
preceding c1, and an assertion Q immediately following c2, there must be an assertion R between
c1 and c2, and we derive the Hoare triple ` {P}c1;c2 {Q} using this intermediate assertion R.

• The weakening rule is used implicitly as well: whenever there is an assertion following immediately
following another assertion, this means the weakening rule is applied.

It follows that programs annotated with linear correctness proofs must have a specific form: it starts with
an annotation, followed by possibly more annotation, followed by a sequence of statements, followed by
one or more annotations.

Figure 5.3 shows another proof in the linear notation. The principle should be clear by now. Note the
difference between the program variables x and y, and the logical variables X , Y . We use two conventions:

• logical variable identifiers start with capital letters;
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1 / / {x = X ∧ y = Y}
2 / / {y = Y ∧ x = X}
3 z= x ;
4 / / {y = Y ∧ z = X}
5 x= y ;
6 / / {x = Y ∧ z = X}
7 y= z ;
8 / / {x = Y ∧ y = X}

Figure 5.3: A small example of a correctness proof in the linear notation.

• a logical variable which has the capitalized name of a program variable usually serves to refer to
the value of the program variable at an earlier point. Here, X and Y refer to the value of x and y
before the statement is executed.

5.4 Conclusion

In this section, we have introduced the central notions of the Floyd-Hoare logic:

• Assertions are state-based predicates (or, in other terms, boolean functions with program variables
and logical variables), which we use to specify which properties hold in a specific state.

• A Floyd-Hoare triple {P}c{Q} consists of a state assertion P, the precondition, a statement (pro-
gram) c, and an assertion Q, the postcondition.

• A Floyd-Hoare triple is valid, written |= {P}c{Q}, if in every state where P holds, and for which c
terminates, Q holds afterwards. This is notion of partial correctness. For total correctness, c must
terminate for every state in which P holds.

• A calculus of six rules (one for each construct of the programming language) allows us to derive
judgements of the form ` {P}c{Q}. The rules suggest a backward-proof of correcntess. Most of
the rules are straightforward, but the rule for the while loop needs an invariant finding which is not
always easy.

• A linear notation makes proofs easier to write and read.

One question which is open is how a judgement ` {P}c{Q} relates to the semantic definition |= {P}c{Q};
ideally, we would hope that if we can derive the former the latter holds as well. This is the soundness or
correctness of the Floyd-Hoare calculus, and we will adress it in the next section.
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Chapter 6

Finding Invariants and the Correctness
of the Floyd-Hoare Calculus

We have seen the rules of the Floyd-Hoare calculus, now let us make them work on slightly larger exam-
ples.

6.1 Finding Invariants

Consider the motivating example from Figure 1.2 on page 1.2 again. First, the specification is quite clear:
after the program has run, p should be the factorial of n, i.e. p = n! (no logical variables needed). Second,
the precondition is simply that n should be larger or equal than zero (the factorial of negative integers is
not defined).

When we try to construct a proof we run straight into a problem: the last statement is a while-loop, so to
apply the while-rule we need an invariant. How do we find that?

Looking at the factorial example, the invariant can be constructed systematically as follows:

• The core of the invariant is p=(c−1)!. It describes that at each point in the loop we have computed
the factorial up to c−1. Let us start with this:

p = (c−1)! (6.1)

• Now, from the invariant and the negated loop condition we need to be able to derive the postcon-
dition (because the while-loop is the final statement. So, here, from ¬(c≤ n) and p = (c−1)! we
must be able to conclude that p = n!. Clearly, this means that n = c−1, but from ¬(c≤ n we can
only conclude c > n.

Essentially, because the loop body increment c only by 1, once the loop has finished, c must be
n+1, rather than suddenly something much larger than n. In other words, the loop counter c does
not jump, so c−1 is always smaller or equal than n. That makes our invariant

p = (c−1)!∧ c−1≤ n (6.2)
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• We now try to show that the loop body preserves (6.2), by applying the assignment rule backwards
over the two assignment statements. We get the transformed invariant

p · c = ((c+1)−1)!∧ (c+1)−1≤ n

which we can simplify trivially1 to
p · c = c!∧ c≤ n

The second part of that conjunction is the loop condition (and that should not be surprising), but
we need to be able to show that p = (c−1)! implies p · c = c!. Consider the recursive definition of
the factorial function:

n! =
{

1 n = 0
(n−1)! ·n n > 0 (6.3)

if we knew that c > 0 we could use that to conclude c! = (c−1)! ·c, hence p = (c−1)! =⇒ p ·c =
(c−1)! · c. But is c larger than zero? Well, we start with c set to 1 and only increase c — so to be
able to use this fact we need to add c > 0 to the invariant and get

p = (c−1)!∧ c−1≤ n∧ c > 0 (6.4)

Of course, we need to repeat the calculation now that (6.4) is preserved by the loop body, which
means that we also have to show c+1 > 0 follows from c > 0. This is trivial; it is exactly the fact
that we only increase c.

Figure 6.1 shows the full proof of the factorial example. The proof uses some weakenings which are just
rearrangements, some trivial simplifications such as 1−1 becomes 0 or 0! = 1 (the first case of (6.3); an
easy fact of linear arithmetic that from a− 1 ≤ b and b > a we can conclude a− 1 = b (line 19 to 20),
and as explained above the second case of (6.3) (line 9 to 10). Note that when there is no weakening, the
assertions must literally match the rules; so for example, the assertion following the while-loop in line
18 must be the invariant conjoint with the negated loop condition, i.e. p = (c− 1)!∧ 1 <= c∧ c− 1 ≤
n∧¬(c≤ n); that ¬(c≤ n) is equivalent to c > n needs to be introduced via an explicit weakening.

Finding an invariant is an approximative process. One takes a good guess, from the basic design of the
algorithm, and then tries to refine it until the proof goes through. Here, we had three steps:

(i) Find the actual invariant: what has been calculated “up to here”?

(ii) Refine the invariant, such that from the invariant and the negated loop condition you are able to
conclude the postcondition of the loop.

(iii) Show the invariant is preserved by the loop body, and if needed add further clauses to the invariant
needed by weakening proofs in between.

Another remark is the loop here is a typical “counting loop”, very much like a for-loop. In fact, for-loops
can be transformed to while-loops of this kind; our factorial example could be written more idiomati-
cally,using the obivous syntactic sugar c++ and for, as

p= 1 ;
f o r ( c= 1 ; c <= n ; c ++) {

p= p∗ c ;
}

1A simplification is an equality s = t, used to replace s with t. Here, we use equations like (x+1)−1 = x.
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For counting loops of this kind, where a variable c counts up to n (loop condition c≤ n), and afterwards
something involving n should hold, the first part will be that proposition with n replaced by c− 1, and
the second part of the invariant will be c < n so we can conclude c+ 1 = n after the loop. This is what
happened here.

6.2 More Examples

Figures 6.2,6.3 and 6.4 show more examples and invariants. Points to note:

• In the second variation in Figure 6.2, we need to initialise c with 0, not with 1.

• In the third variation in Figure 6.2 we do not need 0≤ y because of partial correctness. For y < 0,
the loop never terminates so the postcondition is vacuous. If we replace the loop condition with
y > 0, then this would be required as the loop would now terminate immediately with y > 0, y = Y
(as y has not changed) and x = 1 , and clearly x 6= 2Y (consider e.g. y =−1).

• Figure 6.3 is a variation of counting loop, where we count down in steps of a instead of up in steps
of 1. Subsequently, the s− t ≤ q part of the invariant is the equivalent of c−1≤ n we encountered
early, stating that “the loop does not jump (in steps larger than a)”; hence, s− t ≤ a follows as the
transformed loop condition.

• Figure 6.4 computes the integer square root of a, which is the number i such that i2 ≤ a < (i+1)2.
From that, let s = (i+1)2 = i2 +2 · i+1 and t = 2 · i+1, hence s = i2 + t and s− t ≤ a.

6.3 Soundness and Completeness of the Floyd-Hoare-Logic

In Chapter 5, we have introduced the Floyd-Hoare logic and its proof calculus, with two notions:

• The semantic definition |= {P}c{Q} of the validity of a Floyd-Hoare triple, which talks about
program states, and

• the syntactic notion ` {P}c{Q} of how we can derive that a Hoare triple holds by purely syntactic
deriviation.

The question is, how are these related? In formal logic (and mathematics), this is a situation which occurs
quite often: one defines some notation, a semantics for it (what does it mean?) and syntactic rules to
do calculations (a calculus for the logic). Then, we want to know if using the syntactic rules can we
always get correct results, and can we get all results? In our situation, this means that the relationship
` {P}c{Q} ?

! |= {P}c{Q} has two directions:

• Does ` {P}c{Q} imply |= {P}c{Q}, meaning all Floyd-Hoare triples we derive are correct? This
is the soundness or correctness of the Floyd-Hoare calculus.

• Does |= {P}c{Q} impy ` {P}c{Q} , meaing when a Floyd-Hoare holds we will be able to derive
it? This is the completeness of the Floyd-Hoare calculus.
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/ / {1 = 0!∧0≤ n}
/ / {1 = (1−1)!∧1≤ 1∧1−1≤ n}
p= 1 ;
/ / {p = (1−1)!∧1≤ 1∧1−1≤ n}
c= 1 ;
/ / {p = (c−1)!∧1≤ c∧ c−1≤ n}
whi le ( c <= n ) {

/ / {p = (c−1)!∧1≤ c∧ c−1≤ n∧ c≤ n}
/ / {p∗ c = (c−1)!∗ c∧1≤ c∧ c≤ n}
/ / {p∗ c = c!∧1≤ c∧ c≤ n}
/ / {p∗ c = ((c+1)−1)!∧1≤ c+1∧ (c+1)−1≤ n}
p= p∗c ;
/ / {p = ((c+1)−1)!∧1≤ c+1∧ (c+1)−1≤ n}
c= c +1;
/ / {p = (c−1)!∧1≤ c∧ c−1≤ n}
}

/ / {p = (c−1)!∧1≤ c∧ c−1≤ n∧¬(c≤ n)}
/ / {p = (c−1)!∧1≤ c∧ c−1≤ n∧ c > n}
/ / {p = (c−1)!∧1≤ c∧ c−1 = n}
/ / {p = n!}

Figure 6.1: The factorial example (mathematical notation)

/ / {0≤ y}
/ / {1 = 20∧0≤ y}
/ / {1 = 21−1∧1−1≤ y}
x= 1 ;
/ / {x = 21−1∧1−1≤ y}
c= 1 ;
/ / {x = 2c−1∧ c−1≤ y}
whi le ( c <= y ) {

/ / {x = 2c−1∧ c−1≤ y∧ c≤ y}
/ / {x = 2c−1∧ c≤ y}
/ / {2 · x = 2 ·2c−1∧ c≤ y}
/ /
{2 · x = 2(c+1)−1∧ (c+1)−1≤ y}

x= 2∗x ;
/ / {x = 2(c+1)−1∧ (c+1)−1≤ y}
c= c +1;
/ / {x = 2c−1∧ c−1≤ y}

}
/ / {x = 2c−1∧ c−1≤ y∧¬(c≤ y)}
/ / {x = 2c−1∧ c−1≤ y∧ c−1≥ y}
/ / {x = 2y}

/ / {0≤ y}
/ / {1 = 20∧0≤ y}
x= 1 ;
/ / {x = 20∧0≤ y}
c= 0 ;
/ / {x = 2c∧ c≤ y}
whi le ( c < y ) {

/ / {x = 2c∧ c≤ y∧ c < y}
/ / {2 · x = 2 ·2c∧ c < y}
/ / {2 · x = 2c+1∧ c+1≤ y}
c= c +1;
/ / {2 · x = 2c∧ c≤ y}
x= 2∗x ;
/ / {x = 2c∧ c≤ y}

}
/ / {x = 2c∧ c≤ y∧¬(c < y)}
/ / {x = 2c∧ c≤ y∧ c≥ y}
/ / {x = 2y}

/ / {y = Y ∧0≤ y}
/ / {1 = 2Y−y∧Y = y}
x= 1 ;
/ / {x = 2Y−y}
whi le ( y != 0) {

/ / {x = 2(Y−y)∧ y 6= 0}
/ / {2 · x = 2(Y−y)+1}
/ / {2 · x = 2Y−(y−1)}
x= 2∗x ;
/ / {x = 2Y−(y−1)}
y= y−1;
/ / {x = 2Y−y}

}
/ / {x = 2Y−y∧¬(y 6= 0)}
/ / {x = 2Y−y∧ y = 0}
/ / {x = 2Y }

Figure 6.2: Computing powers of 2 in three variations.
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/ / {0≤ a}
/ / {a = b ·0+a∧0≤ a}
r = a ;
/ / {a = b ·0+ r∧0≤ r}
q= 0 ;
/ / {a = b ·q+ r∧0≤ r}
whi le ( b <= r ) {

/ / {a = b ·q+ r∧0≤ r∧b≤ r}
/ / {a = b ·q+b+ r−b∧b≤ r}
/ / {a = b · (q+1)+(r−b)∧0≤ r−b}
r = r−b ;
/ / {a = b · (q+1)+ r∧0≤ r}
q= q +1;
/ / {a = b ·q+ r∧0≤ r}
}

/ / {a = b ·q+ r∧0≤ r∧¬(b≤ r)}
/ / {a = b ·q+ r∧0≤ r∧ r < b}

Figure 6.3: Computing the integer quotient and remainder.

/ / {0≤ a}
/ / {1−1≤ a∧1 = 2 ·0+1∧1 = 02 +1}
t = 1 ;
/ / {1− t ≤ a∧ t = 2 ·0+1∧1 = 02 + t}
s= 1 ;
/ / {s− t ≤ a∧ t = 2 ·0+1∧ s = 02 + t}
i = 0 ;
/ / {s− t ≤ a∧ t = 2 · i+1∧ s = i2 + t}
whi le ( s <= a ) {

/ / {s− t ≤ a∧ t = 2 · i+1∧ s = i2 + t ∧ s≤ a}
/ / {t = 2 · i+1∧ s = i2 + t ∧ s≤ a}
/ / {s≤ a∧ t +2 = 2 · i+3∧ s = i2 +2 · i+1}
/ / {s+(t +2)− (t +2)≤ a∧ t +2 = 2 · (i+1)+1∧ s+(t +2) = (i+1)2 +(t +2)}
t = t + 2 ;
/ / {s+ t− t ≤ a∧ t = 2 · (i+1)+1∧ s+ t = (i+1)2 + t}
s= s+ t ;
/ / {s− t ≤ a∧ t = 2 · (i+1)+1∧ s = (i+1)2 + t}
i = i + 1 ;
/ / {s− t ≤ a∧ t = 2 · i+1∧ s = i2 + t}
}

/ / {s− t ≤ a∧ t = 2 · i+1∧ s = i2 + t ∧¬(s≤ a)}
/ / {i2 ≤ a∧a < (i+1)2}

Figure 6.4: Computing the integer square root.
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6.3.1 Soundness

We turn towards soundness first. Without further ado, let us state and prove that the calculus is sound.
(Everything else would make the calculus useless. Who wants to extend effort into proving something
that may or may not be true?)

Theorem 1 (Soundness of Floyd-Hoare logic) The calculus for the Floyd-Hoare logic is sound:

` {P}c{Q}=⇒|= {P}c{Q}

Proof. The statement is proven by rule induction. Since the judgement ` {P}c{Q} is derived by using
the rules of the calculus, it is sufficient to prove that for each rule if it concludes ` {P}c{Q} we can show
|= {P}c{Q}, where we can assume this for the rules premisses.

This means we have six cases to consider. TO DO.

Six cases missing.

�

Lemma 3 (Substitution Lemma) For any state σ ∈ Σ, assignment I, assertion B ∈ Assn, arithmetic
expression e ∈ Aexp and variable x ∈ Loc, we have

sigma |=I B[e/x]⇐⇒ σ [A [[e]](σ)/x] |=I B (6.5)

Proof. By induction on the structure of B. (Don’t do this as an exercise, it is boring.) This first needs a
preliminary lemma like the above for extended arithmetic expressions e ∈ Aexpv:

Av[[a[e/x]]]I(σ) = σ [Av[[e]]x
I(sigma)/x] (6.6)

which is proven by structural induction on a. �

6.4 Conclusion

We have seen how to conduct basic proofs in the Floyd-Hoare calculus — in particular, how to find
invariants, which is the hard part — and we have shown important “meta-properties” of the calculus, in
particular its soundness.

But one gets soon a bit tired about writing programs which handle integers only (unless you life a very
boring life, or just happen to like integers a lot), so in the next chapter we will turn towards richer data
types.
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Chapter 7

Structured Datatypes

Structured datatypes are types such as arrays, structures (also known as labelled records), and of course
reference types (pointers). Pointers open a whole Pandora’s box of their own, so we will defer looking
into them until later, but we will now turn towards arrays and structures. It turns out they are quite easy
to model, on an abstract level.

7.1 Datatypes

7.1.1 Arrays

At an abstract level, arrays are finite maps from an initial sequence [0..n] of the naturals to a value type.
They values can in turn be arrays, making the array multi-dimensional. In C0, arrays are declared like
this:

i n t a [ 5 ] ;
i n t c [ 3 ] [ 2 ] ;

Arrays always have a fixed, known length in C0. The second line above defines an array of length 3,
which has arrays of length 2 as elements.

7.1.2 Chars and Strings

The datatype char is the type of basic, unsigned characters. It is a subset of int , meaning each element of
char can be converted into an int (but not the other way around).

Strings are then just array of type char. The following two declarations with initialisations are equivalent:

char c [ 5 ] = " h e l l o " ;
char c [ 5 ] = { ’ h ’ , ’ e ’ , ’ l ’ , ’ l ’ , ’ o ’ , ’ \ \ 0 ’ } ;

Strings are supported fairly rudimentarily in C (and C0). They can be initialised, but not assigned, and all
functions to handle strings are from the standard library, not from the language itself.

The types char and int are called elementary types.
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Remark: C knows more elementary types, such as the floating point types, and integers of varying word
length (short, long etc.), of both signed and unsigned variety1. There is a number of rather complicated
rules describing the automatic conversions between them. All of this is semantically rather uninteresting,
so we disregard it here in favour of just two elementary types.

7.2 Extending C0

7.2.1 Syntax

To be able to refer to structured datatypes, we need a syntax to express values of this type.2 This means
that was an identifier before can now be a structured value, e.g. denoting an array access or record selec-
tion. Array access and record selection are not ordinary operators like addition or subtraction, because
they can appear on the left-hand side of an assignment as well. Such values, which semantically denote
somewhere where we can store a value, are called lvalues3 (with l for left-hand side). We introduce a
syntactic class Lexp for expressions denoting such values, and extend the abstract syntax for C0 from
page 2.1 as follows:

Lexp l ::= Idt | l[a] | l.Idt
Aexp a ::= Z | C | Lexp | a1 +a2 | a1−a2 | a1 ∗a2 | a1/a2

Bexp b ::= 1 | 0 | a1 == a2 | a1 < a2 | !b | b1 && b2 | b1 ||b2

Exp e := Aexp | Bexp

We have also introduced a new syntactic class C for characters, allowing us to write down strings as
above. A C is a literal character written as ’x’ (no Unicode, but basic escape sequences like ’ \n’ or ’ \0 ’).

7.2.2 The State

Before we consider the semantics, we need to extend our notion of state as well. We have given a state
model in Section 2.2 before: it mapped locations to values , with the locations being identifiers and values
being integers (Definition 1), Now that we have structured addresses, locations need to be more than just
identifiers. The C language has a fairly low-level memory model, with addresses being counted in bytes;
for the time being, we can be more abstract and talk about locations which are either directly an identifier
(as before), or an array access, or a record selection:

Definition 9 (Locations, Values and System State (revisited))

The values are given by integers, V def
=Z

The locations are as follows: Loc ::= Idt | Loc[Z] | Loc.Idt

The system state is a partial map from locations to values: Σ
def
=Loc ⇀ V.

Note the difference between Lexp and Loc: the former is syntactic entity which has arbitrary arithmetic
expressions for array access, the latter is a semantic entity which has concrete integers as array access.

1Unsigned integers are in fact natural numbers, bu they are not called that.
2Note that we do not need a language to write down declarations just yet, but since in C type declaration is supposed to look like

type usage, the two are similar.
3These should actually be called l-expressions, as they are syntactic entities, not semantic ones as the designation “values” might

connotate.
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7.2.3 Operational Semantics

To extend the operational and denotational semantics, we need to two steps:

1. first, we need to give a meaning to lvalues, obviously given by locations, and

2. second, we need a meaning for an arithmetic expression which is an lvalue, which is given by
accessing the (ambient) state at the location denoted by the lvalue.n

For the operational semantics, the rules in Figure 7.1 define the evaluation of locations and expressions.
Under a given state σ , an lvalue m evaluates to a location l or an error ⊥, written as

〈m,σ〉 →Lexp l | ⊥

The rule for expressions extend the rules given in Section 2.3, meaning they should be added to those
in Figures 2.1 and 2.2, with the obvious exception that the rule evaluating an identifier as an expression
is replaced by the rule evaluating an lvalue as an expression. Similarly, the rule evaluate an assignment
extends and replaces the rule in Figure 2.3.

In the assignment rule, the notation m :: τ and e :: τ mean that m and e are of type τ , respectively. This
type has to be elementary, which means we can only assign integers, not whole structures or arrays.

7.2.4 Denotational Semantics

For the denotational semantics, we need to give a meaning to lvalues — and unsurprisingly, these are
locations. Figure 7.2 defines the denotational semantics of lvalues. Because the state is now a partial map
Loc ⇀ V, the rule to give meaning to an lvalue as an arithmetic expression needs to change slightly (7.1).

L [[l]] : Lexp→ (Σ ⇀ Loc)

The rule to give meaning to assignments also needs slight change (7.2).

7.2.5 Floyd-Hoare Calculus

The rules of the Floyd-Hoare calculus, perphaps surprisingly, do not need to change — but they need to
be read differently. Specifically, the assignment rule which reads

` {P[e/m]}m = e{P}

Note how the precondition of the rule contains a substitution. Previously, this was a simple syntactic
substitution, replacing all occurences of a variable (called say “x”) by an expression. Now, the substitution
becomes a rewrite— we need to replace all occurences of the lvalue expression m with the expression e.
This may sound innocuous but the problem is that lvalues may contain an array access, which contains
an (arbitrary) integer expression.

Consider the simple example in Figure 7.3. We have spelled out the substitutions in that example. In
line 10 there is a substitution of a simple variable i with the expression i+ 1, which easily computes as
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x ∈ Idt
〈x,σ〉 →Lexp x

〈m,σ〉 →Lexp l 〈a,σ〉 →Aexp i 6=⊥
〈m[a],σ〉 →Lexp l[i]

〈m,σ〉 →Lexp l 〈a,σ〉 →Aexp ⊥
〈m[a],σ〉 →Lexp ⊥

〈m,σ〉 →Lexp l
〈m.i,σ〉 →Lexp l.i

〈m,σ〉 →Lexp l l ∈ Dom(σ)

〈m,σ〉 →Aexp σ(l)

〈m,σ〉 →Lexp l l 6∈ Dom(σ)

〈,σ〉 →Aexp ⊥

〈m :: τ,σ〉 →Lexp l 〈e :: τ,σ〉 → v τ elementary
〈m = e,σ〉 →Stmt σ [v/l]

Figure 7.1: Rules to evaluate lvalues and expressions

L [[l]] : Lexp→ (Σ ⇀ Loc)

L [[x]] = {(σ ,x) | σ ∈ Σ}
L [[m[a]]] = {(σ , l[i]) | (σ , l) ∈L [[m]],(σ , i) ∈A [[a]]}
L [[m.i]] = {(σ ,m.i) | (σ , l) ∈L [[m]]}

A [[m]] = {(σ ,σ(l)) | σ ∈ Σ,(σ , l) ∈L [[m]]} (7.1)

C [[m = e]] = {(σ ,σ [v/l]) | (σ , l) ∈L [[m]],(σ ,v) ∈A [[e]]} (7.2)

Figure 7.2: Denotational semantics for lvalues
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1 / / {n≤ 0}
2 / / {(∀ j.0≤ j < 0−→ a[ j] = j)∧0≤ n}
3 i = 0 ;
4 / / {(∀ j.0≤ j < i−→ a[ j] = j)∧ i≤ n}
5 whi le ( i < n ) {
6 / / {(∀ j.0≤ j < i−→ a[ j] = j)∧ i≤ n∧ i < n}
7 / / {(∀ j.0≤ j < i−→ a[ j] = j)∧ i = i∧ i+1≤ n}
8 / / {((∀ j.0≤ j < i−→ a[ j] = j)∧a[i] = i∧ i+1≤ n)[a[i]/i]}
9 a [ i ]= i ;

10 / / {(∀ j.0≤ j < i−→ a[ j] = j)∧a[i] = i∧ i+1≤ n}
11 / / {(∀ j.0≤ j < i+1−→ a[ j] = j)∧ i+1≤ n}
12 / / {((∀ j.0≤ j < i−→ a[ j] = j)∧ i≤ n)[i+1/i]}
13 i = i +1 ;
14 / / {(∀ j.0≤ j < i−→ a[ j] = j)∧ i≤ n}
15 }
16 / / {∀ j.0≤ j < n−→ a[ j] = j}

Figure 7.3: Initialising an array

follows:

((∀ j.0≤ j < i−→ a[ j] = j)∧ i≤ n)[i+1/i]

= ((∀ j.0≤ j < i−→ a[ j] = j)[i+1/i]∧ (i≤ n)[i+1/i]

= (∀ j.0≤ j < i−→ a[ j] = j)∧ i+1≤ n

In line 8 there is a more involved substitution:

((∀ j.0≤ j < i−→ a[ j] = j)∧a[i] = i∧ i+1≤ n)[i/a[i]]

= (∀ j.0≤ j < i−→ a[ j] = j)[i/a[i]]∧ (a[i] = i)[i/a[i]]∧ (i+1≤ n)[i/a[i]]

= (∀ j.(0≤ j < i)[i/a[i]]−→ (a[ j] = j)[i/a[i]])∧ i = i∧ i+1≤ n (7.3)
= (∀ j.0≤ j < i−→ a[ j] = j)−→ i = i∧ i+1≤ n (7.4)

Here, we can see two things: in (7.3), we substitute a[i] with i, because a[i] is (syntactically) equal to a[i].
In contrast, in (7.4), we do not substitute a[ j] with i because we know that a[ j] is not equal to a[i], because
the precondition states that j < i.

Note that this only works because we have weakened the substituted invariant ∀ j.0≤ j < i+1−→ a[ j] = j
in line 11 to ∀ j.0≤ j < i−→ a[ j] = j in line 10. If we had not performed this weakening, we would have
a substitution like this:

(∀ j.0≤ j ≤ i−→ a[ j] = j)[i/a[i]] = (∀ j.0≤ j ≤ i−→ a[ j][i/a[i]] = j)

Here, we know that j is never equal to a[i], so j[i/a[i]] = j, but we cannot reduce a[ j][i/a[i]] further. If we
encounter a situtation like that, it is either a problem of a missing weakening such as above, or a problem
of the specification. We will come back to this problem later, when we discuss forward and backward
verification condition generation.
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1 / / {0 < n}
2 / / {(∀ j.0≤ j < 0−→ a[ j]≤ a[0])∧0≤ 0≤ n∧0≤ 0 < n}
3 i = 0 ;
4 / / {(∀ j.0≤ j < i−→ a[ j]≤ a[0])∧0≤ i≤ n∧0≤ 0 < n}
5 r = 0 ;
6 / / {(∀ j.0≤ j < i−→ a[ j]≤ a[r])∧0≤ i≤ n∧0≤ r < n}
7 whi le ( i < n ) {
8 / / {(∀ j.0≤ j < i−→ a[ j]≤ a[r])∧0≤ i≤ n∧0≤ r < n∧ i < n}
9 / / {(∀ j.0≤ j < i−→ a[ j]≤ a[r])∧0≤ i < n∧0≤ r < n}

10 i f ( a [ r ] < a [ i ] ) {
11 / / {(∀ j.0≤ j < i−→ a[ j]≤ a[r])∧0≤ i < n∧0≤ r < n∧a[r]< a[i]}
12 / / {(∀ j.0≤ j < i−→ a[ j]≤ a[r]∧a[r]< a[i])∧0≤ i < n}
13 / / {(∀ j.0≤ j < i−→ a[ j]≤ a[i])∧0≤ i < n}
14 / / {(∀ j.0≤ j < i+1−→ a[ j]≤ a[i])∧0≤ i+1≤ n∧0≤ i < n}
15 r = i ;
16 / / {(∀ j.0≤ j < i+1−→ a[ j]≤ a[r])∧0≤ i+1≤ n∧0≤ r < n}
17 }
18 e l s e {
19 / / {(∀ j.0≤ j < i−→ a[ j]≤ a[r])∧0≤ i < n∧0≤ r < n∧a[i]≤ a[r]}
20 / / {(∀ j.0≤ j < i−→ a[ j]≤ a[r])∧a[i]≤ a[r]∧0≤ i < n∧0≤ r < n}
21 / / {(∀ j.0≤ j < i+1−→ a[ j]≤ a[r])∧0≤ i+1≤ n∧0≤ r < n}
22 }
23 / / {(∀ j.0≤ j < i+1−→ a[ j]≤ a[r])∧0≤ i+1≤ n∧0≤ r < n}
24 i = i +1 ;
25 / / {(∀ j.0≤ j < i−→ a[ j]≤ a[r])∧0≤ i≤ n∧0≤ r < n}
26 }
27 / / {(∀ j.0≤ i < n−→ a[ j]≤ a[r])∧0≤ i≤ n∧0≤ r < n∧ i≥ n}
28 / / {(∀ j.0≤ j < n−→ a[ j]≤ a[r])∧0≤ r < n}

Figure 7.4: Finding the maximal element in an non-empty array

7.3 Example Programs

A generally useful pattern is a theorem which allows us to extend a range:

(∀ j.0≤ j < n−→ P( j))∧P(n)⇐⇒∀ j.0≤ j < n+1−→ P( j) (7.5)

If we know P( j) holds for j from 0 up to less than n, and it holds for n itself, then it will hold from 0 up
to less than n+ 1. This theorem is used in all proofs where a program iterates through an array; in fact,
we have used this theorem going from line 10 to line 11 in Figure 7.3 above.

7.3.1 Finding the maximum element in an array

Figure 7.4 shows an example of finding the maximum element in an array. This needs the array to be
non-empty (precondition in line 1). We use (7.5) from line 20 to 21 and from line 13 to 14. From line 12
to 13, we use transitivity of less-equal to go from a[ j]≤ a[r] and a[r]≤ a[i] to a[ j]≤ a[i].
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1 / / {0≤ n}
2 / / {(−1 6=−1−→ 0≤−1 < 0∧a[−1] = 0)∧0≤ 0≤ n}
3 i = 0 ;
4 r = −1;
5 / / {(r 6=−1−→ 0≤ r < i∧a[r] = 0)∧0≤ i≤ n}
6 whi le ( i < n ) {
7 / / {(r 6=−1−→ 0≤ r < i∧a[r] = 0)∧0≤ i≤ n∧ i < n}
8 / / {(r 6=−1−→ 0≤ r < i∧a[r] = 0)∧0≤ i < n}
9 i f ( a [ i ] == 0) {

10 / / {(r 6=−1−→ 0≤ r < i∧a[r] = 0)∧0≤ i < n∧a[i] = 0}
11 / / {0≤ i < n∧a[i] = 0}
12 / / {(i 6=−1∧0≤ i∧a[i] = 0)∧0≤ i+1≤ n}
13 / / {(i 6=−1−→ 0≤ i∧a[i] = 0)∧0≤ i+1≤ n}
14 / / {(i 6=−1−→ 0≤ i < i+1∧a[i] = 0)∧0≤ i+1≤ n}
15 r = i ;
16 / / {(r 6=−1−→ 0≤ r < i+1∧a[r] = 0)∧0≤ i+1≤ n}
17 }
18 e l s e {
19 / / {(r 6=−1−→ 0≤ r < i∧a[r] = 0)∧0≤ i < n∧a[i] 6= 0}
20 / / {(r 6=−1−→ 0≤ r < i+1∧a[r] = 0)∧0≤ i+1≤ n}
21 }
22 / / {(r 6=−1−→ 0≤ r < i+1∧a[r] = 0)∧0≤ i+1≤ n}
23 i = i +1 ;
24 / / {(r 6=−1−→ 0≤ r < i∧a[r] = 0)∧0≤ i≤ n}
25 }
26 / / {(r 6=−1−→ 0≤ r < i∧a[r] = 0)∧0≤ i≤ n∧ i≥ n}
27 / / {r 6=−1−→ 0≤ r < n∧a[r] = 0}

Figure 7.5: Finding a zero element in an array by index: weak specification
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1 / / {0≤ n}
2 / / {(−1 6=−1−→ 0≤−1 < 0∧a[−1] = 0)∧ (−1 =−1−→ ∀ j.0≤ j < 0−→ a[ j] 6= 0)∧0≤ 0≤ n}
3 i = 0 ;
4 r = −1;
5 / / {(r 6=−1−→ 0≤ r < i∧a[r] = 0)∧ (r =−1−→ ∀ j.0≤ j < i−→ a[ j] 6= 0)∧0≤ i≤ n}
6 whi le ( i < n ) {
7 / / {(r 6=−1−→ 0≤ r < i∧a[r] = 0)∧ (r =−1−→ ∀ j.0≤ j < i−→ a[ j] 6= 0)∧0≤ i≤ n∧ i < n}
8 / / {(r 6=−1−→ 0≤ r < i∧a[r] = 0)∧ (r =−1−→ ∀ j.0≤ j < i−→ a[ j] 6= 0)∧0≤ i < n}
9 i f ( a [ i ] == 0) {

10 / / {(r 6=−1−→ 0≤ r < i∧a[r] = 0)∧ (r =−1−→ ∀ j.0≤ j < i−→ a[ j] 6= 0)∧0≤ i < n∧a[i] = 0}
11 / / {0≤ i < n∧a[i] = 0}
12 / / {i 6=−1∧0≤ i < i+1∧a[i] = 0∧0≤ i < n}
13 / / {(i 6=−1−→ 0≤ i < i+1∧a[i] = 0)∧ (i =−1−→ ∀ j.0≤ j < i+1−→ a[ j] 6= 0)∧0≤ i+1≤ n}
14 r = i ;
15 / / {(r 6=−1−→ 0≤ r < i+1∧a[r] = 0)∧ (r =−1−→ ∀ j.0≤ j < i+1−→ a[ j] 6= 0)∧0≤ i+1≤ n}
16 }
17 e l s e {
18 / / {(r 6=−1−→ 0≤ r < i∧a[r] = 0)∧ (r =−1−→ ∀ j.0≤ j < i−→ a[ j] 6= 0)∧0≤ i < n∧a[i] 6= 0}
19 / / {(r 6=−1−→ 0≤ r < i∧a[r] = 0)∧ (r =−1−→ ∀ j.0≤ j < i−→ a[ j] 6= 0∧a[i] 6= 0)∧0≤ i < n}
20 / / {(r 6=−1−→ 0≤ r < i+1∧a[r] = 0)∧ (r =−1−→ ∀ j.0≤ j < i+1−→ a[ j] 6= 0)∧0≤ i+1≤ n}
21 }
22 / / {(r 6=−1−→ 0≤ r < i+1∧a[r] = 0)∧ (r =−1−→ ∀ j.0≤ j < i+1−→ a[ j] 6= 0)∧0≤ i+1≤ n}
23 i = i +1 ;
24 / / {(r 6=−1−→ 0≤ r < i∧a[r] = 0)∧ (r =−1−→ ∀ j.0≤ j < i−→ a[ j] 6= 0)∧0≤ i≤ n}
25 }
26 / / {(r 6=−1−→ 0≤ r < i∧a[r] = 0)∧ (r =−1−→ ∀ j.0≤ j < i−→ a[ j] 6= 0)∧0≤ i≤ n∧ i≥ n}
27 / / {(r 6=−1−→ 0≤ r < n∧a[r] = 0)∧ (r =−1−→ ∀ j.0≤ j < n−→ a[ j] 6= 0)}

Figure 7.6: Finding a zero element in an array: complete specification

7.3.2 Finding a zero element in an array

We consider three variations of finding a zero element in array. We start with Figure 7.5, where the
specification is r 6=−1−→ 0≤ r < n∧a[r] = 0, i.e. if the result r is not −1, then it is between 0 and n,
and a[r] is zero. We can verify a simple implementation that iterates through the array and finds the first
such zero element. The proof needs, going from line 12 to 13, a reverse of modus ponens, where we keep
the antecedent A:

(A∧B) =⇒ ((A−→ B)∧A∧B)

From line 10 to 12, we use some weakening and simple inequality reasoning — specifically, 0 ≤ i < n
implies i 6=−1 — to set up this rule. The fact that we drop the implication r 6=−1 =⇒ 0≤< i∧a[r] = 0
from the invariant (line 10 to 11) corresponds to the fact that in the positive branch of the conditional, we
will overwrite the value r in line 15 anyway.

But this specification is (too) weak. It does not allow us to conclude that if the program returns r = −1,
there is no zero element; in fact, the simple assignment r= −1 satisfies the specification, because false
implies everything (ex falso quodlibet):

/ / {true}
/ / {false−→ 0≤ r < n∧a[r] = 0}
/ / {−1 6=−1−→ 0≤ r < n∧a[r] = 0}
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r = −1;
/ / {r 6=−1−→ 0≤ r < n∧a[r] = 0}

To strengthen the specficiation, we also need to say what holds in case of r =−1— that all elements a[ j]
are not zero:

r 6=−1−→ 0≤ r < n∧a[r] = 0)∧ (r =−1−→ ∀ j.0≤ j < n−→ a[ j] 6= 0)

We strengthen the specification accordingly in Figure 7.6. The proof is a bit more involved in the positive
branch of the conditional. Firstly, from line 10 to 11, we drop the part of the invariant which makes a
statement about r (as in the proof in Figure 7.5 above). We then use the modus ponens going from line 12
to 13 to conclude i 6= −1 −→ a[i] = 0 from i 6= −1∧ a[i] = 0, but we also use a proof by contradiction
(reductio ad absurdum)

A =⇒ (¬A−→ B)

to conclude i =−1−→ ∀ j. . . . from ¬(i =−1). Further, we make use of (7.5) in line 19 to 20.

As a final variation, the reader is invited to change both program and specification such that the program
finds the smallest index of a zero element.

7.4 Conclusions

We have extended our language, C0, to cover richer datatypes such as labelled records (struct in C) or
arrays. On the syntactic side, this requires that on the left-hand side of an assignment there can be more
than just identifiers, namely structured expressions (lvalues, Lexp). On the semantic side, this requires
that the locations of our state are structured as well, necessitating a refinement of our notion of state such
that the addresses can also be composed using labels (e.g. a.x) or array indices. This is an abstraction
over a more low-level memory model, where all addresses are integers.

The syntactic and semantic changes come together with both an operational and denotational semantics
for lvalues. The changes to the Floyd-Hoare calculus remain minimal; in fact, it is just the assignment rule
which needs to change, but in a round-about fashion: suddently, substutition becomes more complicated
as we can now not only substitute expressions for identifiers, but expressions for lvalues.

We have considered some small examples, and seen that the specifications grow rather large and convo-
luted. What we need now is twofold: first, something to state specifications more concisely, and second,
some help with writing down correctness proofs in our calculus. Most of the rule applications can be
derived, so can we not automate this process?
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