

▶ Operational — Auswertungsrelation $\langle c,\sigma\rangle \to \sigma'$ ▶ Denotational — Partielle Funktion $\llbracket c \rrbracket : \Sigma \to \Sigma$ ▶ Axiomatisch — Floyd-Hoare-Logik ▶ Äquivalenz von operationaler und denotationaler Semantik ▶ Welche Semantik wofür?

Korrekte Software 5 [18]

Erweiterung der Programmiersprache

► Für jede Erweiterung:

Semantik

- ▶ Wie modellieren wir semantisch?
- Wie ändern sich die Regeln der Logik?
- ► Strukturen und Felder
 - ► Lokationen, **Lexp**, strukturierte Werte
 - Erweiterte Substitution in Zuweisungsregel
- ► Prozeduren und Funktionen
 - ▶ Modellierung von **return**: Erweiterung zu $\Sigma \rightharpoonup \Sigma \times \mathbf{V}_U$
 - ► Spezifikation von Funktionen durch Vor-/Nachbedingungen

7 [18]

► Spezifikation der Funktionen muss im Kontext stehen

Fahrplan

- ► Einführung
- ▶ Die Floyd-Hoare-Logik
- ► Operationale Semantik
- ▶ Denotationale Semantik
- ► Äquivalenz der Semantiken
- ▶ Verifikation: Vorwärts oder Rückwärts?
- ► Korrektheit des Hoare-Kalküls
- ► Einführung in Isabelle/HOL
- ▶ Weitere Datentypen: Strukturen und Felder
- ► Funktionen und Prozeduren
- ► Referenzen und Zeiger
- ► Frame Conditions & Modification Clauses
- ► Ausblick und Rückblick

DEC (

Rückblick

Korrekte Software

4 [18]

Floyd-Hoare-Logik

- ► Floyd-Hoare-Logik: partiell und total
- ▶ $\vdash \{P\} c \{Q\}$ vs. $\models \{P\} c \{Q\}$: Vollständigkeit, Korrektheit
- ▶ Die sechs Basisregeln
- ► Zuweisungsregel: vorwärts (Floyd) vs. rückwärts (Hoare)
- ► Zusammenhang mit denotationaler/operationaler Semantik
- ▶ VCG: Schwächste Vorbedingung und stärkste Nachbedingung

Korrekte Software

6 [18]

Erweiterung der Programmiersprache

- ► Zeiger und Referenzen
 - $\begin{tabular}{ll} \blacktriangleright Lokationen nicht mehr symbolisch (Variablennamen), sondern abstrakt \\ $\Sigma = Loc \rightharpoonup Val, Val = N + C + Loc \end{tabular}$
 - Zustand wird als abstrakter Datentyp mit Operationen Read und Upd modelliert
 - ► Zuweisung nicht mehr mit Substitution/Ersetzung, sondern explizit durch Und
 - ► Spezifikationen sind Zustandsprädikate
- ► Frame Conditions und Modification Sets
 - ► Frame Problem: welcher Teil des Zustands bleibt gleich?
 - ▶ Mit Zeigern: modification sets Spezifikation des veränderlichen Teils

8 [18]

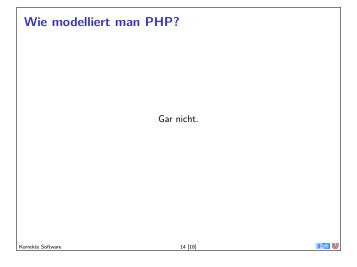
Korrekte Software

DFK (

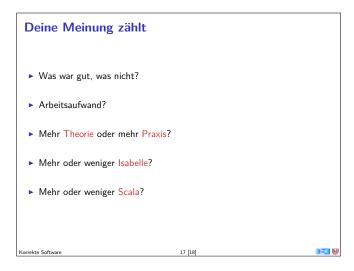
Ausblick Korrekte Software 9 [18]

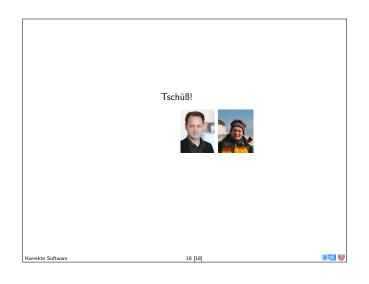
Die Sprache C: Was haben wir ausgelassen? Typen: ► Funktionszeiger → Für "saubere" Benutzung gut zu modellieren ► Weitere Typen: short/long int, double/float, wchar_t, und Typkonversionen → Fleißarbeit ► Fließkommazahlen → Spezifikation nicht einfach ► union → Kompliziert das Speichermodell ► volatile → Bricht read/update-Gleichungen ► typedef → Ärgernis für Lexer/Parser

Wie modelliert man Java? ➤ Die Kernsprache ist ähnlich zu CO. ➤ Java hat erschwerend ➤ Dynamische Bindung, ➤ Klassen mit gekapselten Zustand und Invarianten, ➤ Nebenläufigkeit, und ➤ Reflektion. ➤ Java hat dafür aber ➤ ein einfacheres Speichermodell, und ➤ eine wohldefinierte Ausführungsumgebung (die JVM).


13 [18]

Korrekte Software in der Industrie Meist in speziellen Anwendungsgebieten: Luft-/Raumfahrt, Automotive, sicherheitskritische Systeme, Betriebssysteme Ansätze: Vollautomatisch: statische Analyse (Abstrakte Interpretation) für spezielle Aspekte: Freiheit von Ausnahmen und Unter/Überläufen, Programmsicherheit, Laufzeitverhalten (WCET) Werkzeuge: absint Halbautomatisch: Korrektheitsannotationen, Überprüfung automatisch (nicht immer sound, aber vollständig) Werkzeuge: JML (ESC/Java, Krakatao; Java), Boogie und Why (generisches VCG), Frama-C (C), VCC (C), Spark (ADA) Interaktiv: Einbettung der Sprache in interaktiven Theorembeweiser (Isabelle, Coq) Beispiele: L4.verified, VeriSoft, SAMS


15 [18]


Die Sprache C: V	Was haben wir ausgelasser	1?
Semantik:		
	e Semantik: Seiteneffekte, Sequence $ ightarrow$ Umständlich zu modellieren, Effek	
 Implementationsabhä Verhalten 	ängiges, unspezifiziertes und undefinie	ertes
	\longrightarrow Genauere Unterscheidung in	der Semantik
Kontrollstrukturen:		
► switch	\longrightarrow lst im allgemeinen	Fall ein goto
▶ goto, setjmp/longjmp	\longrightarrow Tiefe Änderung der Semantik (ϵ	continuations)
V	10 ftel	NEW YORK

Die Sprache C: Was habe	en wir ausgelassen?	
Für realistische C-Programme: ▶ Compiler-Erweiterungen (gcc, c.)	lang)	
► Büchereien (Standardbücherei, F	'osix,)	
► Nebenläufigkeit		
Korrekte Software	12 [18]	DK W

