Formale Modellierung Vorlesung 3 vom 15.04.13: Aussagenlogik: Konsistenz & Vollständigkeit

Serge Autexier & Christoph Lüth

Universität Bremen

Sommersemester 2013

Rev. 2129

Organisatorisches

Vorlesung und Übung nächste Woche (22.04, 25.04.) fallen aus!

Fahrplan

- ▶ Teil I: Formale Logik
 - Einführung
 - Aussagenlogik: Syntax und Semantik, Natürliches Schließen
 - Konsistenz & Vollständigkeit der Aussagenlogik
 - Prädikatenlogik (FOL): Syntax und Semantik
 - Konsistenz & Vollständigkeit von FOL
 - ► FOL mit induktiven Datentypen
 - ► FOL mit Induktion und Rekursion
 - Die Gödel-Theoreme
 - Weitere Datentypen: Mengen, Multimengen, Punkte
- ► Teil II: Spezifikation und Verifikation
- ▶ Teil III: Schluß

Das Tagesmenü

- ► Einige Eigenschaften der Aussagenlogik (PL)
- ightharpoonup $\Gamma \vdash \phi$ vs. $\Gamma \models \phi$:
 - Korrektheit
 - Konsistenz
 - Vollständigkeit

▶ Prop bildet eine Boolesche Algebra:

- ▶ Rechnen in Prop:
 - ▶ Substitutivität: wenn $\models \phi_1 \longleftrightarrow \phi_2$, dann $\models \psi \begin{bmatrix} \phi_1 \\ \rho \end{bmatrix} \longleftrightarrow \psi \begin{bmatrix} \phi_2 \\ \rho \end{bmatrix}$ für Atom ρ .
 - ▶ Sei $\phi \approx \psi$ gdw. $\models \phi \longleftrightarrow \psi$, dann ist \approx eine Äquivalenzrelation
- Damit: algebraisches Umformen als Beweisprinzip
 - ▶ Beispiele: $\models (\phi \longrightarrow (\psi \longrightarrow \sigma)) \longleftrightarrow (\phi \land \psi \longrightarrow \sigma)$ $\models \phi \longrightarrow \psi \longrightarrow \phi$

Operatoren durch andere definierbar:

Operatoren durch andere definierbar:

- (\land, \neg) und (\lor, \bot) sind genug (functional complete)
- Anwendung: konjunktive und disjunktive Normalformen (CNF/DNF)
- ▶ Gleichfalls: $A \mid B$ (Sheffer-Strich), $A \downarrow B$ (weder-noch)

Korrektheit (Soundness)

- $ightharpoonup \Gamma \vdash \phi$: Ableitbarkeit
- $ightharpoonup \Gamma \models \phi$: semantische 'Wahrheit'
- ▶ Ist alles wahr, was wir ableiten können? (Korrektheit)
- ▶ Ist alles ableitbar, was wahr ist? (Vollständigkeit)

Korrektheit (Soundness)

- $ightharpoonup \Gamma \vdash \phi$: Ableitbarkeit
- $ightharpoonup \Gamma \models \phi$: semantische 'Wahrheit'
- ▶ Ist alles wahr, was wir ableiten können? (Korrektheit)
- ▶ Ist alles ableitbar, was wahr ist? (Vollständigkeit)

Lemma 1 (Korrektheit von ND)

Wenn
$$\Gamma \vdash \phi$$
, dann $\Gamma \models \phi$

Beweis: Induktion über der Ableitung $\Gamma \vdash \phi$

Konsistenz

► Nur konsistente Logiken (Mengen von Aussagen) sind sinnvoll

Definition 2 (Konsistenz)

Menge Γ von Aussagen konsistent gdw. $\Gamma \not\vdash \bot$

Lemma 3 (Charakterisierung von Konsistenz)

Folgende Aussagen sind äquivalent:

- (i) Γ konsistent
- (ii) Es gibt kein ϕ so dass $\Gamma \vdash \phi$ und $\Gamma \vdash \neg \phi$
- (iii) Es gibt ein ϕ so dass $\Gamma \not\vdash \phi$

Konsistenz

► Nur konsistente Logiken (Mengen von Aussagen) sind sinnvoll

Definition 2 (Konsistenz)

Menge Γ von Aussagen konsistent gdw. $\Gamma \not\vdash \bot$

Lemma 3 (Charakterisierung von Konsistenz)

Folgende Aussagen sind äquivalent:

- (iv) Γ inkonsistent $(\Gamma \vdash \bot)$
- (v) Es gibt ein ϕ so dass $\Gamma \vdash \phi$ und $\Gamma \vdash \neg \phi$
- (vi) Für alle ϕ , $\Gamma \vdash \phi$

Maximale Konsistenz

▶ Wenn es ν so dass $\llbracket \psi \rrbracket_{\nu} = 1$ für $\psi \in \Gamma$, dann Γ konsistent.

Definition 4 (Maximale Konsistenz)

Γ maximal konsistent gdw.

- (i) Γ konsistent, und
- (ii) wenn $\Gamma \Subset \Gamma'$ und Γ' konsistent, dann $\Gamma = \Gamma'$

Lemma 5 (Konstruktion maximal konsistenter Mengen)

Für jedes konsistente Γ gibt es maximal konsistentes Γ^* mit $\Gamma \in \Gamma^*$

Eigenschaften maximal konsistenter Mengen

- ▶ Wenn $\Gamma \cup \{\phi\}$ inkonsistent, dann $\Gamma \vdash \neg \phi$ (Beweis: $\neg I$)
- ▶ Wenn $\Gamma \cup \{\neg \phi\}$ inkonsistent, dann $\Gamma \vdash \phi$ (Beweis: raa)

Lemma 6

Wenn Γ maximal konsistent, dann geschlossen unter Ableitbarkeit: $\Gamma \vdash \phi$ dann $\phi \in \Gamma$.

- ► Wenn Γ maximal konsistent ist, dann:
 - (i) entweder $\phi \in \Gamma$ oder $\neg \phi \in \Gamma$
 - (ii) $\phi \wedge \psi \in \Gamma$ gdw. $\phi, \psi \in \Gamma$
- (iii) $\phi \longrightarrow \psi \in \Gamma$ gdw. (wenn $\phi \in \Gamma$ dann $\psi \in \Gamma$)

Vollständigkeit

Lemma 7

Wenn Γ konsistent, dann gibt es v so dass $\llbracket \phi \rrbracket_v = 1$ für $\phi \in \Gamma$.

Damit:

- ▶ Wenn $\Gamma \not\vdash \phi$ dann gibt es v so dass $\llbracket \psi \rrbracket_v = 1$ für $\psi \in \Gamma$, $\llbracket \phi \rrbracket_v = 0$.
- ▶ Wenn $\Gamma \not\vdash \phi$ dann $\Gamma \not\models \phi$.

Theorem 8 (Vollständigkeit der Aussagenlogik)

$$\Gamma \vdash \phi$$
 gdw. $\Gamma \models \phi$

Deshalb: Aussagenlogik entscheidbar

Zusammenfassung

- Aussagenlogik ist eine Boolesche Algebra.
 - Äquivalenzumformung als Beweisprinzip
- Aussagenlogik und natürliches Schließen sind korrekt und vollständig.
 - ▶ Beweis der Vollständigkeit: maximale Konsistenz
 - ► Konstruktion des Herbrand-Modells, Aufzählung aller (wahren, ableitbaren) Aussagen
- ▶ Ausagenlogik ist entscheidbar: für Γ und ϕ , $\Gamma \vdash \phi$ oder $\Gamma \not\vdash \phi$.
- ▶ Nächste VL (29.04.13): Prädikatenlogik