Formale Modellierung Vorlesung 2 vom 08.04.13: Formale Logik und natürliches Schließen

Serge Autexier & Christoph Lüth

Universität Bremen

Sommersemester 2013

Rev. 2144

Heute

- ► Einführung in die formale Logik
- Aussagenlogik
 - Beispiel für eine einfache Logik
 - Guter Ausgangspunkt
- Natürliches Schließen
 - Wird auch von Isabelle verwendet.
- Buchempfehlung:
 Dirk van Dalen: Logic and Structure. Springer Verlag, 2004.

Fahrplan

- ▶ Teil I: Formale Logik
 - Einführung
 - Aussagenlogik: Syntax und Semantik, Natürliches Schließen
 - Konsistenz & Vollständigkeit der Aussagenlogik
 - Prädikatenlogik (FOL): Syntax und Semantik
 - Konsistenz & Vollständigkeit von FOL
 - ► FOL mit induktiven Datentypen
 - ► FOL mit Induktion und Rekursion
 - Die Gödel-Theoreme
 - Weitere Datentypen: Mengen, Multimengen, Punkte
- ► Teil II: Spezifikation und Verifikation
- ► Teil III: Schluß

Formalisierung von Aussagen

- Beispielaussagen:
 - 1. John fuhr weiter und stieß mit einem Fußgänger zusammen.
 - 2. John stieß mit einem Fußgänger zusammen und fuhr weiter.
 - 3. Wenn ich das Fenster öffne, haben wir Frischluft.
 - 4. Wenn wir Frischluft haben, dann ist 1 + 3 = 4
 - 5. Wenn 1+2=4, dann haben wir Frischluft.
 - 6. John arbeitet oder ist zu Hause.
 - 7. Euklid war ein Grieche oder ein Mathematiker.
- Probleme natürlicher Sprache:
 - Mehrdeutigkeit
 - Synonyme
 - Versteckte (implizite) Annahmen

- ► Ziel: Formalisierung von Folgerungen wie
 - ▶ Wenn es regnet, wird die Straße nass.

- ► Ziel: Formalisierung von Folgerungen wie
 - ▶ Wenn es regnet, wird die Straße nass.
 - ► Es regnet.

- ► Ziel: Formalisierung von Folgerungen wie
 - ▶ Wenn es regnet, wird die Straße nass.
 - Es regnet.
 - Also ist die Straße nass.

- ► Ziel: Formalisierung von Folgerungen wie
 - Wenn es regnet, wird die Straße nass.Nachts ist es dunkel.
 - Es regnet.
 - ► Also ist die Straße nass.

- Ziel: Formalisierung von Folgerungen wie
 - ▶ Wenn es regnet, wird die Straße nass.
- Nachts ist es dunkel.

Es regnet.

Es ist hell.

Also ist die Straße nass.

- Ziel: Formalisierung von Folgerungen wie
 - Wenn es regnet, wird die Straße nass.
- Nachts ist es dunkel.

Es regnet.

Es ist hell.

Also ist die Straße nass.

Also ist es nicht nachts.

- Eine Logik besteht aus
 - ► Einer Sprache *L* von Formeln (Aussagen)
 - ► Einer Semantik, die Formeln eine Bedeutung zuordnet
 - Schlußregeln (Folgerungsregeln) auf den Formeln.
- ▶ Damit: Gültige ("wahre") Aussagen berechnen.

Beispiel für eine Logik

▶ Sprache $\mathcal{L} = \{\clubsuit, \spadesuit, \heartsuit, \diamondsuit\}$

Beispiel für eine Logik

- ▶ Sprache $\mathcal{L} = \{\clubsuit, \spadesuit, \heartsuit, \diamondsuit\}$
- ► Schlußregeln:

$$\overline{\diamondsuit}$$
 δ

Beispielableitung:

Aussagenlogik

- ► Sprache *Prop* gegeben durch:
 - 1. Variablen (Atome) $V \in \mathcal{P}rop$ (Menge V gegeben)
 - 2. $\perp \in \mathcal{P}rop$
 - 3. Wenn $\phi, \psi \in \mathcal{P}rop$, dann
 - $\phi \land \psi \in \mathcal{P}rop$
 - $\phi \lor \psi \in \mathcal{P}rop$
 - $\phi \longrightarrow \psi \in \mathcal{P}rop$
 - $\phi \longleftrightarrow \psi \in \mathcal{P}rop$
 - 4. Wenn $\phi \in \mathcal{P}rop$, dann $\neg \phi \in \mathcal{P}rop$.
- ▶ NB. Präzedenzen: \neg vor \land vor \lor vor \longrightarrow , \longleftrightarrow

Wann ist eine Formel gültig?

- ▶ Semantische Gültigkeit $\models P$
 - Übersetzung in semantische Domäne
 - Variablen sind wahr oder falsch
 - Operationen verknüpfen diese Werte
- Syntaktische Gültigkeit ⊢ P
 - Formale Ableitung
 - ► Natürliches Schließen
 - Sequenzenkalkül
 - ► Andere (Hilbert-Kalkül, gleichungsbasierte Kalküle, etc.)

Semantik

▶ Domäne: {0,1} (0 für falsch, 1 für wahr)

Definition (Semantik aussagenlogischer Formeln) Für Valuation $v: V \to \{0,1\}$ ist $\llbracket \cdot \rrbracket_v : Prop \to \{0,1\}$ definiert als $\llbracket w \rrbracket_v = v(w) \pmod{w \in V}$ $[\![\bot]\!]_{v} = 0$ $\llbracket \phi \wedge \psi \rrbracket_{\mathsf{V}} = \min(\llbracket \phi \rrbracket_{\mathsf{V}}, \llbracket \psi \rrbracket_{\mathsf{V}})$ $\llbracket \phi \lor \psi \rrbracket_{\mathsf{V}} = \max(\llbracket \phi \rrbracket_{\mathsf{V}}, \llbracket \psi \rrbracket_{\mathsf{V}})$ $\llbracket \phi \longrightarrow \psi \rrbracket_{\mathsf{V}} = 0 \iff \llbracket \phi \rrbracket_{\mathsf{V}} = 1 \text{ und } \llbracket \psi \rrbracket_{\mathsf{V}} = 0$ $\llbracket \phi \longleftrightarrow \psi \rrbracket_{\mathsf{V}} = 1 \iff \llbracket \phi \rrbracket_{\mathsf{V}} = \llbracket \psi \rrbracket_{\mathsf{V}}$ $[\![\neg \phi]\!]_{v} = 1 - [\![\phi]\!]_{v}$

Semantische Gültigkeit und Folgerung

ightharpoonup Semantische Gültigkeit: $\models \phi$

$$\models \phi$$
 gdw. $\llbracket \phi
rbracket_v = 1$ für alle v

▶ Semantische Folgerung: sei $\Gamma \in Prop$, dann

$$\Gamma \models \psi \text{ gdw. } [\![\psi]\!]_{\mathit{V}} = 1 \text{ wenn } [\![\phi]\!]_{\mathit{V}} = 1 \text{ für alle } \phi \in \Gamma$$

- Die Wahrheitstabellenmethode:
 - ▶ Berechne $\llbracket \phi \rrbracket_{v}$ für alle Möglichkeiten für v
- ▶ Beispiel: $\models (\phi \longrightarrow \psi) \longleftrightarrow (\neg \psi \longrightarrow \neg \phi)$

- Die Wahrheitstabellenmethode:
 - ▶ Berechne $\llbracket \phi \rrbracket_v$ für alle Möglichkeiten für v
- ▶ Beispiel: $\models (\phi \longrightarrow \psi) \longleftrightarrow (\neg \psi \longrightarrow \neg \phi)$

- Die Wahrheitstabellenmethode:
 - ▶ Berechne $\llbracket \phi \rrbracket_{\nu}$ für alle Möglichkeiten für ν
- ▶ Beispiel: $\models (\phi \longrightarrow \psi) \longleftrightarrow (\neg \psi \longrightarrow \neg \phi)$

$\phi \psi \phi \longrightarrow \psi \neg \psi \neg \phi \neg \psi \longrightarrow \neg \phi (\phi - \psi)$	1)
0 0 1 1 1 1	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1
1 0 0 1 0 0	1

- ► Die Wahrheitstabellenmethode:
 - lacktriangle Berechne $[\![\phi]\!]_v$ für alle Möglichkeiten für v
- ▶ Beispiel: $\models (\phi \longrightarrow \psi) \longleftrightarrow (\neg \psi \longrightarrow \neg \phi)$

ϕ	ψ	$\phi \longrightarrow \psi$	$\neg \psi$	$\neg \phi$	$\neg \psi \longrightarrow \neg \phi$	$(\phi \longrightarrow \psi) \longleftrightarrow (\neg \psi \longrightarrow \neg \phi)$
0	0	1	1	1	1	1
0	1	1	0	1	1	1
1	0	0	1	0	0	1
1	1	1	0	0	1	1

- ► Die Wahrheitstabellenmethode:
 - ▶ Berechne $\llbracket \phi \rrbracket_{\nu}$ für alle Möglichkeiten für ν
- ▶ Beispiel: $\models (\phi \longrightarrow \psi) \longleftrightarrow (\neg \psi \longrightarrow \neg \phi)$

ϕ	ψ	$\phi \longrightarrow \psi$	$\neg \psi$	$\neg \phi$	$\neg \psi \longrightarrow \neg \phi$	$(\phi \longrightarrow \psi) \longleftrightarrow (\neg \psi \longrightarrow \neg \phi)$
0	0	1	1	1	1	1
0	1	1	0	1	1	1
1	0	0	1	0	0	1
1	1	1	0	0	1	1

- ▶ Problem: Aufwand exponentiell 2^a zur Anzahl a der Atome
- ► Vorteil: Konstruktion von Gegenbeispielen

Natürliches Schließen (ND)

- Vorgehensweise:
 - 1. Erst Kalkül nur für $\wedge, \longrightarrow, \bot$
 - 2. Dann Erweiterung auf alle Konnektive.
- ► Für jedes Konnektiv: Einführungs- und Eliminationsregel
- ► NB: konstruktiver Inhalt der meisten Regeln

Beispiel für Natürliches Schließen

- ▶ Sprache $\mathcal{L} = \{\clubsuit, \spadesuit, \heartsuit, \diamondsuit\}$
- ► Schlußregeln:

Beispielableitung:

Natürliches Schließen — Die Regeln

$$\frac{\phi \quad \psi}{\phi \land \psi} \land I \qquad \frac{\phi \land \psi}{\phi} \land E_L \qquad \frac{\phi \land \psi}{\psi} \land E_R$$

$$[\phi]
\vdots \qquad \qquad \frac{\phi \quad \phi \longrightarrow \psi}{\psi} \longrightarrow E$$

$$\frac{\psi}{\phi \longrightarrow \psi} \longrightarrow I \qquad \vdots$$

$$[\phi \longrightarrow \bot]
\vdots$$

$$\vdots$$

$$\frac{\bot}{\phi} \bot \qquad \text{raa}$$

Die fehlenden Konnektive

► Einführung als Abkürzung:

$$\begin{array}{ccc}
\neg \phi & \stackrel{\mathsf{def}}{=} & \phi \longrightarrow \bot \\\\
\phi \lor \psi & \stackrel{\mathsf{def}}{=} & \neg (\neg \phi \land \neg \psi) \\\\
\phi \longleftrightarrow \psi & \stackrel{\mathsf{def}}{=} & (\phi \longrightarrow \psi) \land (\psi \longrightarrow \phi)
\end{array}$$

Ableitungsregeln als Theoreme.

Die fehlenden Schlußregeln

 $\frac{\phi \longrightarrow \psi \quad \psi \longrightarrow \phi}{\phi \longleftrightarrow \psi} \longleftrightarrow I$

$$\begin{array}{c}
[\phi] \\
\vdots \\
\frac{\bot}{\neg \phi} \neg I
\end{array}
\qquad
\begin{array}{c}
\frac{\phi \quad \neg \phi}{\bot} \neg E
\end{array}$$

$$\begin{array}{c}
[\phi] \quad [\psi] \\
\vdots \quad \vdots \\
\phi \lor \psi \quad \sigma \quad \sigma \\
\hline
\sigma
\end{array}$$

 $\frac{\phi \quad \phi \longleftrightarrow \psi}{\psi} \longleftrightarrow E_L \quad \frac{\psi \quad \phi \longleftrightarrow \psi}{\phi} \longleftrightarrow E_F$

Zusammenfassung

- ► Formale Logik formalisiert das (natürlichsprachliche) Schlußfolgern
- ▶ Logik: Formeln, Semantik, Schlußregeln (Kalkül)
- ▶ Aussagenlogik: Aussagen mit \land , \longrightarrow , \bot
 - ightharpoonup ¬, \lor , \longleftrightarrow als abgeleitete Operatoren
- ▶ Semantik von Aussagenlogik $\llbracket \cdot \rrbracket_v : Prop \rightarrow \{0,1\}$
- ▶ Natürliches Schließen: intuitiver Kalkül
- Nächste Woche:
 - Sequenzenkalkül
 - Konsistenz und Vollständigkeit von Aussagenlogik