Formale Modellierung Vorlesung 3 vom 15.04.13: Aussagenlogik: Konsistenz & Vollständigkeit

Serge Autexier & Christoph Lüth

Universität Bremen

Sommersemester 2013

Rev. 2129

Organisatorisches

Vorlesung und Übung nächste Woche (22.04, 25.04.) fallen aus!

Fahrplan

- ► Teil I: Formale Logik
 - Einführung
 - ▶ Aussagenlogik: Syntax und Semantik, Natürliches Schließen
 - ► Konsistenz & Vollständigkeit der Aussagenlogik
 - ▶ Prädikatenlogik (FOL): Syntax und Semantik
 - ► Konsistenz & Vollständigkeit von FOL
 - ▶ FOL mit induktiven Datentypen
 - ▶ FOL mit Induktion und Rekursion
 - ▶ Die Gödel-Theoreme
 - ▶ Weitere Datentypen: Mengen, Multimengen, Punkte
- ► Teil II: Spezifikation und Verifikation
- ► Teil III: Schluß

3 [13]

Das Tagesmenü

- ► Einige Eigenschaften der Aussagenlogik (PL)
- ▶ $\Gamma \vdash \phi$ vs. $\Gamma \models \phi$:
- Korrektheit
- Konsistenz
- ▶ Vollständigkeit

4 [13]

Eigenschaften der Aussagenlogik

▶ *Prop* bildet eine Boolesche Algebra:

$$\begin{split} &\models (\phi \lor \psi) \lor \sigma \longleftrightarrow \phi \lor (\psi \lor \sigma) \\ &\models (\phi \land \psi) \land \sigma \longleftrightarrow \phi \land (\psi \land \sigma) \\ &\models \phi \lor \psi \longleftrightarrow \psi \lor \phi \\ &\models \phi \land \psi \longleftrightarrow \psi \land \phi \\ &\models \phi \lor (\psi \land \sigma) \longleftrightarrow (\phi \lor \psi) \land (\phi \lor \sigma) \\ &\models \phi \land (\psi \lor \sigma) \longleftrightarrow (\phi \land \psi) \lor (\phi \land \sigma) \\ &\models \neg (\phi \lor \psi) \longleftrightarrow \neg \phi \land \neg \psi \\ &\models \neg (\phi \land \psi) \longleftrightarrow \neg \phi \lor \neg \psi \\ &\models \phi \lor \phi \longleftrightarrow \phi \\ &\models \phi \land \phi \longleftrightarrow \phi \\ &\models \neg \neg \phi \longleftrightarrow \phi \end{split}$$

5 [13]

Eigenschaften der Aussagenlogik

- ► Rechnen in *Prop*:
 - $\begin{array}{c} {\color{red} \blacktriangleright} \ \, {\color{blue} \textbf{Substitutivität:}} \\ \text{wenn} \models \phi_1 \longleftrightarrow \phi_2, \, \text{dann} \models \psi{\tiny \begin{bmatrix} \phi_1 \\ \rho \end{bmatrix}} \longleftrightarrow \psi{\tiny \begin{bmatrix} \phi_2 \\ \rho \end{bmatrix}} \ \, \text{für Atom } \rho. \end{array}$
 - ▶ Sei $\phi \approx \psi$ gdw. $\models \phi \longleftrightarrow \psi$, dann ist \approx eine Äquivalenzrelation
- ▶ Damit: algebraisches Umformen als Beweisprinzip
 - ▶ Beispiele: \models $(\phi \longrightarrow (\psi \longrightarrow \sigma)) \longleftrightarrow (\phi \land \psi \longrightarrow \sigma)$ $\models \phi \longrightarrow \psi \longrightarrow \phi$

6 [13

Eigenschaften der Aussagenlogik

► Operatoren durch andere definierbar:

$$\begin{split} &\models (\phi \longleftrightarrow \psi) \longleftrightarrow (\phi \longrightarrow \psi) \land (\psi \longrightarrow \phi) \\ &\models (\phi \longrightarrow \psi) \longleftrightarrow (\neg \phi \lor \psi) \\ &\models \phi \lor \psi \longleftrightarrow (\neg \phi \longrightarrow \psi) \\ &\models \phi \lor \psi \longleftrightarrow \neg (\neg \phi \land \neg \psi) \\ &\models \phi \land \psi \longleftrightarrow \neg (\neg \phi \lor \neg \psi) \\ &\models \neg \phi \longleftrightarrow (\phi \longrightarrow \bot) \\ &\models \bot \longleftrightarrow (\phi \land \neg \phi) \end{split}$$

- ▶ (\land, \neg) und (\lor, \bot) sind genug (functional complete)
- ► Anwendung: konjunktive und disjunktive Normalformen (CNF/DNF)
- ▶ Gleichfalls: $A \mid B$ (Sheffer-Strich), $A \downarrow B$ (weder-noch)

Korrektheit (Soundness)

- ▶ $\Gamma \vdash \phi$: Ableitbarkeit
- $ightharpoonup \Gamma \models \phi$: semantische 'Wahrheit'
- ▶ Ist alles wahr, was wir ableiten können? (Korrektheit)
- ► Ist alles ableitbar, was wahr ist? (Vollständigkeit)

Lemma 1 (Korrektheit von ND)

Wenn $\Gamma \vdash \phi$, dann $\Gamma \models \phi$

Beweis: Induktion über der Ableitung $\Gamma \vdash \phi$

8 [13

Konsistenz

▶ Nur konsistente Logiken (Mengen von Aussagen) sind sinnvoll

Definition 2 (Konsistenz)

Menge Γ von Aussagen konsistent gdw. $\Gamma \not\vdash \bot$

Lemma 3 (Charakterisierung von Konsistenz)

Folgende Aussagen sind äquivalent:

- (i) Γ konsistent
- (ii) Es gibt kein ϕ so dass $\Gamma \vdash \phi$ und $\Gamma \vdash \neg \phi$
- (iii) Es gibt ein ϕ so dass $\Gamma \not\vdash \phi$
- (iv) Γ inkonsistent $(\Gamma \vdash \bot)$
- (v) Es gibt ein ϕ so dass $\Gamma \vdash \phi$ und $\Gamma \vdash \neg \phi$
- (vi) Für alle ϕ , $\Gamma \vdash \phi$

9 [13]

Eigenschaften maximal konsistenter Mengen

- ▶ Wenn $\Gamma \cup \{\phi\}$ inkonsistent, dann $\Gamma \vdash \neg \phi$ (Beweis: $\neg I$)
- ▶ Wenn $\Gamma \cup \{\neg \phi\}$ inkonsistent, dann $\Gamma \vdash \phi$ (Beweis: raa)

Lemma 6

Wenn Γ maximal konsistent, dann geschlossen unter Ableitbarkeit: $\Gamma \vdash \phi$ dann $\phi \in \Gamma$.

- ► Wenn Γ maximal konsistent ist, dann:
- (i) entweder $\phi \in \Gamma$ oder $\neg \phi \in \Gamma$
- (ii) $\phi \wedge \psi \in \Gamma$ gdw. $\phi, \psi \in \Gamma$
- (iii) $\phi \longrightarrow \psi \in \Gamma$ gdw. (wenn $\phi \in \Gamma$ dann $\psi \in \Gamma$)

11 [13

Zusammenfassung

- Aussagenlogik ist eine Boolesche Algebra.
 - $\blacktriangleright \;\; \ddot{\mathsf{A}}\mathsf{quivalenzum}\mathsf{formung} \;\; \mathsf{als} \;\; \mathsf{Beweisprinzip}$
- ► Aussagenlogik und natürliches Schließen sind korrekt und vollständig.
 - ▶ Beweis der Vollständigkeit: maximale Konsistenz
 - Konstruktion des Herbrand-Modells, Aufzählung aller (wahren, ableitbaren)
 Aussagen
- $\qquad \textbf{Ausagenlogik ist entscheidbar: für } \Gamma \text{ und } \phi \text{, } \Gamma \vdash \phi \text{ oder } \Gamma \not\vdash \phi.$
- ▶ Nächste VL (29.04.13): Prädikatenlogik

13 [13

Maximale Konsistenz

▶ Wenn es ν so dass $\llbracket \psi \rrbracket_{\nu} = 1$ für $\psi \in \Gamma$, dann Γ konsistent.

Definition 4 (Maximale Konsistenz)

Γ maximal konsistent gdw.

- (i) Γ konsistent, und
- (ii) wenn $\Gamma \Subset \Gamma'$ und Γ' konsistent, dann $\Gamma = \Gamma'$

Lemma 5 (Konstruktion maximal konsistenter Mengen)

Für jedes konsistente Γ gibt es maximal konsistentes Γ^* mit $\Gamma \Subset \Gamma^*$

10 [13]

Vollständigkeit

Lemma 7

Wenn Γ konsistent, dann gibt es v so dass $\llbracket \phi \rrbracket_v = 1$ für $\phi \in \Gamma$.

Damit

- ▶ Wenn $\Gamma \not\vdash \phi$ dann gibt es v so dass $\llbracket \psi \rrbracket_v = 1$ für $\psi \in \Gamma$, $\llbracket \phi \rrbracket_v = 0$.
- ▶ Wenn $\Gamma \not\vdash \phi$ dann $\Gamma \not\models \phi$.

Theorem 8 (Vollständigkeit der Aussagenlogik)

 $\Gamma \vdash \phi \; \textit{gdw.} \; \Gamma \models \phi$

Deshalb: Aussagenlogik entscheidbar

12 [13