Formale Methoden der Softwaretechnik 1 Vorlesung vom 02.11.09: Prädikatenlogik erster Stufe

Christoph Lüth, Lutz Schröder

Universität Bremen

Wintersemester 2009/10

Das Tagesmenü

- ► Logik mit Quantoren
- ► Von Aussagenlogik zur Prädikatenlogik
- ▶ Natürliches Schließen mit Quantoren
- ▶ Die Notwendigkeit von Logik höherer Stufe

Fahrplan

- ► Teil I: Grundlagen der Formalen Logik
 - Einführung
 - Natürliches Schließen, Aussagenlogik
 - Prädikatenlogik 1. Stufe
 - ► Gleichungslogik und natürliche Zahlen
- ▶ Teil II: Arbeiten mit Isabelle
- ► Teil III: Modellierung imperative Programme

Prädikatenlogik

- Beschränkung der Aussagenlogik:
 - ► Eine Zahl *n* ist eine Primzahl genau dann wenn sie nicht 1 ist und nur durch 1 und sich selbst teilbar ist.

Prädikatenlogik

- Beschränkung der Aussagenlogik:
 - Eine Zahl n ist eine Primzahl genau dann wenn sie nicht 1 ist und nur durch 1 und sich selbst teilbar ist.
 - ▶ Eine Zahl m ist durch eine Zahl n teilbar genau dann wenn es eine Zahl p gibt, so dass $m = n \cdot p$.

Prädikatenlogik

- Beschränkung der Aussagenlogik:
 - Eine Zahl n ist eine Primzahl genau dann wenn sie nicht 1 ist und nur durch 1 und sich selbst teilbar ist.
 - ▶ Eine Zahl m ist durch eine Zahl n teilbar genau dann wenn es eine Zahl p gibt, so dass $m = n \cdot p$.
 - Nicht in Aussagenlogk formalisierbar.
- ► Ziel: Formalisierung von Aussagen wie
 - ▶ Alle Zahlen sind ein Produkt von Primfaktoren.
 - Es gibt keine größte Primzahl.

Erweiterung der Sprache

- ► Terme beschreiben die zu formalisierenden Objekte.
- ► Formeln sind logische Aussagen.
- ► Unser Alphabet:
 - ▶ Prädikatensymbole: P_1, \ldots, P_n, \doteq mit Arität $\mathit{ar}(P_i) \in \mathbb{N}$, $\mathit{ar}(\dot{=}) = 2$
 - ▶ Funktionssymbole: $f_1, ..., f_m$ mit Arität $ar(t_i) \in \mathbb{N}$
 - ► Menge X von Variablen (abzählbar viele)
 - ▶ Konnektive: \land , \longrightarrow , false, \forall , abgeleitet: \lor , \longleftrightarrow , \neg , \longleftrightarrow , \exists

Terme

- ▶ Menge *Term* der Terme gegeben durch:
 - ▶ Variablen: $X \subseteq Term$
 - ▶ Funktionssymbol f mit ar(f) = n und $t_1, ..., t_n \in \mathcal{T}erm$, dann $f(t_1, ..., t_n) \in \mathcal{T}erm$
 - ▶ Sonderfall: n = 0, dann ist f eine Konstante, $f \in Term$

6

Formeln

- ▶ Menge *Form* der Formeln gegeben durch:
 - ▶ false ∈ Form
 - ▶ Wenn $\phi \in \mathcal{F}orm$, dann $\neg \phi \in \mathcal{F}orm$
 - $\begin{array}{ll} \blacktriangleright \ \ \text{Wenn} \ \phi, \psi \in \mathcal{F}\!\textit{orm}, \ \ \text{dann} & \phi \wedge \psi \in \mathcal{F}\!\textit{orm}, \\ & \phi \longrightarrow \psi \in \mathcal{F}\!\textit{orm}, \quad \phi \longleftrightarrow \psi \in \mathcal{F}\!\textit{orm} \end{array}$

7

Formeln

- ▶ Menge *Form* der Formeln gegeben durch:
 - ▶ false ∈ Form
 - ▶ Wenn $\phi \in \mathcal{F}orm$, dann $\neg \phi \in \mathcal{F}orm$

 - ▶ Wenn $\phi \in \mathcal{F}orm, x \in X$, dann $\forall x. \phi \in \mathcal{F}orm, \exists x. \phi \in \mathcal{F}orm$
 - Prädikatensymbol p mit ar(p) = m und $t_1, \ldots, t_m \in \mathcal{T}erm$, dann $p(t_1, \ldots, t_m) \in \mathcal{F}orm$
 - ▶ Sonderfall: $t_1, t_2 \in Term$, dann $t_1 \doteq t_2 \in \mathcal{F}orm$

7

▶ Alle Zahlen sind gerade oder ungerade.

- ► Alle Zahlen sind gerade oder ungerade.
- ► Keine Zahl ist gerade und ungerade.

- ▶ Alle Zahlen sind gerade oder ungerade.
- ▶ Keine Zahl ist gerade und ungerade.
- ► Es gibt keine größte Primzahl.

- ▶ Alle Zahlen sind gerade oder ungerade.
- ▶ Keine Zahl ist gerade und ungerade.
- Es gibt keine größte Primzahl.
- ► Für jede Primzahl gibt es eine, die größer ist.

- ▶ Alle Zahlen sind gerade oder ungerade.
- ▶ Keine Zahl ist gerade und ungerade.
- Es gibt keine größte Primzahl.
- ► Für jede Primzahl gibt es eine, die größer ist.
- ▶ Eine Funktion f ist stetig an der Stelle x_0 , gdw. es für jedes $\varepsilon > 0$ ein $\delta > 0$ gibt, so dass für alle x mit $|x x_0| < \delta$ gilt $|f(x) f(x_0)| < \epsilon$.

Freie und gebundene Variable

- ▶ Variablen in $t \in Term$, $p \in Form$ sind frei, gebunden, oder bindend.
 - \triangleright x bindend in $\forall x.\phi, \exists x.\psi$
 - ▶ Für $\forall x.\phi$ und $\exists x.\phi$ ist x in Teilformel ϕ gebunden
 - ► Ansonsten ist *x* frei
- ▶ $FV(\phi)$: Menge der freien Variablen in ϕ
- ► Beispiel:

$$(q(x) \vee \exists x. \forall y. p(f(x), z) \wedge q(a)) \vee \forall r(x, z, g(x))$$

Substitution

- ▶ $t \begin{bmatrix} s \\ x \end{bmatrix}$ ist Ersetzung von x durch s in t
- Definiert durch strukturelle Induktion:

$$y \begin{bmatrix} s \\ x \end{bmatrix} \stackrel{\text{def}}{=} \begin{cases} s & x = y \\ y & x \neq y \end{cases}$$

$$f(t_1, \dots, t_n) \begin{bmatrix} s \\ x \end{bmatrix} \stackrel{\text{def}}{=} f(t_1 \begin{bmatrix} s \\ x \end{bmatrix}, \dots, t_n \begin{bmatrix} s \\ x \end{bmatrix})$$

$$false \begin{bmatrix} s \\ x \end{bmatrix} \stackrel{\text{def}}{=} false$$

$$(\phi \land \psi) \begin{bmatrix} s \\ x \end{bmatrix} \stackrel{\text{def}}{=} \phi \begin{bmatrix} s \\ x \end{bmatrix} \land \psi \begin{bmatrix} s \\ x \end{bmatrix}$$

$$(\phi \longrightarrow \psi) \begin{bmatrix} s \\ x \end{bmatrix} \stackrel{\text{def}}{=} \phi \begin{bmatrix} s \\ x \end{bmatrix} \longrightarrow \psi \begin{bmatrix} s \\ x \end{bmatrix}$$

$$p(t_1, \dots, t_n) \begin{bmatrix} s \\ x \end{bmatrix} \stackrel{\text{def}}{=} p(t_1 \begin{bmatrix} s \\ x \end{bmatrix}, \dots, t_n \begin{bmatrix} s \\ x \end{bmatrix})$$

$$(\forall y. \phi) \begin{bmatrix} s \\ x \end{bmatrix} \stackrel{\text{def}}{=} p(t_1 \begin{bmatrix} s \\ x \end{bmatrix}, \dots, t_n \begin{bmatrix} s \\ x \end{bmatrix})$$

$$\forall y. \phi \qquad x = y$$

$$\forall y. (\phi \begin{bmatrix} s \\ x \end{bmatrix}) \qquad x \neq y, y \notin FV(s)$$

$$\forall z. ((\phi \begin{bmatrix} s \\ y \end{bmatrix}) \begin{bmatrix} s \\ x \end{bmatrix}) \qquad x \neq y, y \in FV(s)$$

$$\text{mit } z \notin FV(s) \text{ (}z \text{ frisch)}$$

Natürliches Schließen mit Quantoren

$$\frac{\phi}{\forall x.\phi} \ \forall I \quad (*) \qquad \qquad \frac{\forall x.\phi}{\phi \begin{bmatrix} t \\ x \end{bmatrix}} \ \forall E \quad (\dagger)$$

- (*) Eigenvariablenbedingung: x nicht frei in offenen Vorbedingungen von ϕ (x beliebig)
- ▶ (†) Ggf. Umbenennung durch Substitution

► Gegenbeispiele für verletzte Seitenbedingungen

Der Existenzquantor

$$\exists x. \phi \stackrel{\text{def}}{=} \neg \forall x. \neg \phi$$

$$[\phi]$$

$$\vdots$$

$$\frac{\phi \begin{bmatrix} t \\ x \end{bmatrix}}{\exists x. \phi} \exists I \ (\dagger)$$

$$\frac{\exists x. \phi \quad \psi}{\psi} \exists E \ (*)$$

- (*) Eigenvariablenbedingung: x nicht frei in ψ , oder einer offenenen Vorbedingung außer ϕ
- ▶ (†) Ggf. Umbenennung durch Substitution

Zusammenfassung

- Prädikatenlogik: Erweiterung der Aussagenlogik um
 - Konstanten- und Prädikatensymbole
 - Gleichheit
 - Quantoren
- ► Das natürliche Schließen mit Quantoren
 - Variablenbindungen Umbenennungen bei Substitution
 - Eigenvariablenbedingung
- ▶ Das nächste Mal: Gleichungen und natürliche Zahlen