Formale Methoden der Softwaretechnik 1 Vorlesung vom 26.10.09: Formale Logik und natürliches Schließen

Christoph Lüth, Lutz Schröder

Universität Bremen

Wintersemester 2009/10

Heute

- ► Einführung in die formale Logik
- Aussagenlogik
 - ▶ Beispiel für eine einfache Logik
 - ► Guter Ausgangspunkt
- ► Natürliches Schließen
 - ► Wird auch von Isabelle verwendet.
- Buchempfehlung:
 Dirk van Dalen: Logic and Structure. Springer Verlag, 2004.

Fahrplan

- ► Teil I: Grundlagen der Formalen Logik
 - ► Einführung
 - ► Natürliches Schließen, Aussagenlogik
 - ▶ Prädikatenlogik 1. Stufe
 - ► Grundlagen von Isabelle
 - ► Logik höherer Ordnung
- ► Teil II: Arbeiten mit Isabelle
- ▶ Teil III: Modellierung imperative Programme

Formale Logik

- ► Ziel: Formalisierung von Folgerungen wie
 - Wenn es regnet, wird die Straße nass.
 Nachts ist es dunkel.
 - Es regnet.

- Es ist hell.
- ► Also ist die Straße nass.
- Also ist es nicht nachts.
- ► Eine Logik besteht aus
 - ightharpoonup Einer Sprache $\mathcal L$ von Formeln (Aussagen)
 - ► Schlußregeln (Folgerungsregeln) auf diesen Formeln.
- ▶ Damit: Gültige ("wahre") Aussagen berechnen.

Beispiel für eine Logik I

- ▶ Sprache $\mathcal{L} = \{\clubsuit, \spadesuit, \heartsuit, \diamondsuit\}$
- ► Schlußregeln:

▶ Beispielableitung: ♡

Beispiel für eine Logik II

- ▶ Sprache $\mathcal{L} = \{\clubsuit, \spadesuit, \heartsuit, \diamondsuit\}$
- ► Schlußregeln:

 $\stackrel{\diamondsuit}{\bullet}$ α

 $\frac{\diamondsuit}{\blacktriangle} \beta$

 $\frac{}{\overset{\bullet}{\square}} \stackrel{\bullet}{\wedge} \gamma$

; \rightarrow

▶ Beispielableitung: ♡

Aussagenlogik

- ► Sprache *Prop* gegeben durch:
 - 1. Variablen $V \subseteq \mathcal{P}rop$ (Menge V gegeben)
 - 2. $\mathit{false} \in \mathcal{P}\mathit{rop}$
 - 3. Wenn $\phi, \psi \in \mathcal{P}\mathit{rop}$, dann
 - $\qquad \qquad \phi \wedge \psi \in \mathcal{P} \! \mathit{rop}$
 - $\phi \lor \psi \in \mathcal{P}rop$
 - $\quad \bullet \quad \phi \longrightarrow \psi \in \mathcal{P}\!\mathit{rop}$
 - $\qquad \qquad \phi \longleftrightarrow \psi \in \mathcal{P}\!\mathit{rop}$
 - 4. Wenn $\phi \in \mathcal{P}rop$, dann $\neg \phi \in \mathcal{P}rop$.

Wann ist eine Formel gültig?

- ▶ Semantische Gültigkeit $\models P$: Wahrheitstabellen etc.
 - ► Wird hier nicht weiter verfolgt.
- ► Syntaktische Gültigkeit ⊢ P: formale Ableitung,
 - ► Natürliches Schließen
- Sequenzenkalkül
- ► Andere (Hilbert-Kalkül, gleichungsbasierte Kalküle, etc.)
- ▶ Ziel: Kalkül, um Gültigkeit in Prop zu beweisen

Natürliches Schließen

- ► Vorgehensweise:
- 1. Erst Kalkül nur für \land , \longrightarrow , false
- 2. Dann Erweiterung auf alle Konnektive.
- ► Für jedes Konnektiv: Einführungs- und Eliminitationsregel
- ▶ NB: konstruktiver Inhalt der meisten Regeln

Natürliches Schließen — Die Regeln

Konsistenz

- ▶ Def: Γ konsistent gdw. Γ $\not\vdash$ false
- ► Lemma: Folgende Aussagen sind äquivalent:
- (i) Γ konsistent
- (ii) Es gibt ein ϕ so dass $\Gamma \not\vdash \phi$
- (iii) Es gibt kein ϕ so dass $\Gamma \vdash \phi$ und $\Gamma \vdash \neg \phi$
- ▶ Satz: Aussagenlogik mit natürlichem Schließen ist konsistent.
- Satz: Aussagenlogik mit natürlichem Schließen ist vollständig und entscheidbar

11

Die fehlenden Konnektive

► Einführung als Abkürzung:

$$\neg \phi \stackrel{\scriptscriptstyle def}{=} \phi \longrightarrow \mathit{false}$$

$$\phi \vee \psi \ \stackrel{\scriptscriptstyle def}{=} \ \neg (\neg \phi \wedge \neg \psi)$$

$$\phi \longleftrightarrow \psi \stackrel{\text{\tiny def}}{=} (\phi \longrightarrow \psi) \land (\psi \longrightarrow \phi)$$

► Ableitungsregeln als Theoreme.

12

Die fehlenden Schlußregeln

Zusammenfassung

- ► Formale Logik formalisiert das (natürlichsprachliche) Schlußfolgern
- ▶ Logik: Aussagen plus Schlußregeln (Kalkül)
- ▶ Aussagenlogik: Aussagen mit ∧, →, false
 - $\blacktriangleright \ \, \neg \text{, } \lor \text{, } \longleftrightarrow \text{als abgeleitete Operatoren}$
- ▶ Natürliches Schließen: intuitiver Kalkül
- ► Aussagenlogik konsistent, vollständig, entscheidbar.
- ▶ Nächstes Mal: Quantoren, HOL.

14