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SoSe 2011

Till Mossakowski, Christoph Lüth FMSE



Logical consequence for Quantifiers

Logical consequence for quantifiers

∀x(Cube(x) → Small(x))
∀x Cube(x)

∀x Small(x)

∀x Cube(x)
∀x Small(x)

∀x(Cube(x) ∧ Small(x))
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Logical consequence for Quantifiers

However: ignoring quantifiers does not work!

∃x(Cube(x) → Small(x))
∃x Cube(x)

∃x Small(x)

∃x Cube(x)
∃x Small(x)

∃x(Cube(x) ∧ Small(x))
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Logical consequence for Quantifiers

Tautologies do not distribute over quantifiers

∃x Cube(x) ∨ ∃x ¬Cube(x)

is a logical truth, but

∀x Cube(x) ∨ ∀x ¬Cube(x)

is not. By contrast,

∀x Cube(x) ∨ ¬∀x Cube(x)

is a tautology.
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Logical consequence for Quantifiers

Truth-functional form

Replace all top-level quantified sub-formulas (i.e. those not
ocurring below another quantifier) by propositional letters.
Replace multiple occurrences of the same sub-formula by the same
propositional letter.
A quantified sentence of FOL is said to be a tautology iff its
truth-functional form is a tautology.

∀x Cube(x) ∨ ¬∀x Cube(x)

becomes
A ∨ ¬A

Till Mossakowski, Christoph Lüth FMSE



Logical consequence for Quantifiers

Truth functional form — examples

262 / The Logic of Quantifiers

1. ¬(Tet(d) ∧ ∀x Small(x)) → (¬Tet(d) ∨ ¬∀y Small(y))

2. ¬(Tet(d)
A

∧ ∀x Small(x)) → (¬Tet(d) ∨ ¬∀y Small(y))

3. ¬(Tet(d)
A

∧ ∀x Small(x)
B
) → (¬Tet(d) ∨ ¬∀y Small(y))

4. ¬(Tet(d)
A

∧ ∀x Small(x)
B
) → (¬Tet(d)

A
∨ ¬∀y Small(y))

5. ¬(Tet(d)
A

∧ ∀x Small(x)
B
) → (¬Tet(d)

A
∨ ¬∀y Small(y)

C
)

6. ¬(A ∧ B) → (¬A ∨ ¬C)

We are now in a position to say exactly which sentences of the quantified

language are tautologies.

Definition A quantified sentence of fol is said to be a tautology if and onlytautologies of fol

if its truth-functional form is a tautology.

Here is a table displaying six first-order sentences and their truth-functional

forms. Notice that although four of the sentences in the left column are log-

ically true, only the first two are tautologies, as shown by their t.f. forms in

the right column.

FO sentence t.f. form

∀x Cube(x) ∨ ¬∀x Cube(x) A ∨ ¬A

(∃y Tet(y) ∧ ∀zSmall(z)) → ∀z Small(z) (A ∧ B) → B

∀x Cube(x) ∨ ∃y Tet(y) A ∨ B

∀x Cube(x) → Cube(a) A → B

∀x (Cube(x) ∨ ¬Cube(x)) A

∀x (Cube(x) → Small(x)) ∨ ∃x Dodec(x) A ∨ B

A useful feature of the truth-functional form algorithm is that it can be

applied to arguments as easily as it can be applied to sentences. All you do is

continue the procedure until you come to the end of the argument, rather than

stopping at the end of the first sentence. For example, applied to argument 3

on page 258, we first get the labeled argument:

∃x (Cube(x) → Small(x))
A

∃x Cube(x)
B

∃x Small(x)
C

and then the truth-functional form:

Chapter 10
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Logical consequence for Quantifiers

Examples of →-Elim

∃x(Cube(x) → Small(x))
∃x Cube(x)

∃x Small(x)

A
B

C

No!

∃xCube(x) → ∃x Small(x)
∃x Cube(x)

∃x Small(x)

A → B
A

B

Yes!
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Logical consequence for Quantifiers

Tautologies and logical truths

Every tautology is a logical truth, but not vice versa.
Example: ∃x Cube(x) ∨ ∃x ¬Cube(x)
is a logical truth, but not a tautology.
Similarly, every tautologically valid argument is a logically valid
argument, but not vice versa.

∀x Cube(x)

∃x Cube(x)

is a logically valid argument, but not tautologically valid.
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Logical consequence for Quantifiers

Different notions of validity
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Logical consequence for Quantifiers

Tautologies and logical truths, cont’d

Propositional logic First-order logic Tarski’ World General notion
Tautology FO validity TW validity Logical Truth

Tautological FO TW Logical
consequence consequence consequence consequence

Tautological FO TW Logical
equivalence equivalence equivalence equivalence
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Logical consequence for Quantifiers

Which ones are FO validities?

∀x SameSize(x , x)
∀x Cube(x) → Cube(b)

(Cube(b) ∧ b = c) → Cube(c)
(Small(b) ∧ SameSize(b, c)) → Small(c)
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Logical consequence for Quantifiers

Replacement method:
Replace predicates by meaningless ones

∀x Outgrabe(x , x)
∀x Tove(x) → Tove(b)

(Tove(b) ∧ b = c) → Tove(c)
(Slithy(b) ∧ Outgrabe(b, c)) → Slithy(c)
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Logical consequence for Quantifiers

Is this a valid FO argument?

∀x(Tet(x) → Large(x))
¬Large(b)

¬Tet(b)

Replacement with nonsense predicates:

∀x(Borogove(x) → Mimsy(x))
¬Mimsy(b)

¬Borogove(b)
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Logical consequence for Quantifiers

Is this a valid FO argument?

Replacement with a meaningless
predicate:

¬∃x Larger(x, a)
¬∃x Larger(b, x)
Larger(c, d)

Larger(a, b)

¬∃x R(x, a)
¬∃x R(b, x)
R(c, d)

R(a, b)

Till Mossakowski, Christoph Lüth FMSE



Logical consequence for Quantifiers

A counterexample
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Logical consequence for Quantifiers

First-order equivalence

Two well-formed formulas P and Q (possibly containing free
variables) are logically equivalent, if in all circumstances, they are
satisfied by the same objects. This is written as

P ⇔ Q

Substitution principle

If P ⇔ Q, then S(P) ⇔ S(Q).

Here, S( ) is a sentence with a “hole”.

Till Mossakowski, Christoph Lüth FMSE



Logical consequence for Quantifiers

TW consequence 6= FO consequence

We have encountered arguments that are valid in Tarski’s World
but not FO valid.

∀x(Cube(x) ↔ SameShape(x, c))

Cube(c)

The replacement method yields an invalid argument:

∀x(P(x) ↔ Q(x, c))

P(c)
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Logical consequence for Quantifiers

The axiomatic method

Axiomatic method: bridge the gap between Tarski’s World validity
and FO validity by systematically expressing facts about the
meanings of the predicates, and introduce them as axioms. Axioms
restrict the possible interpretation of predicates.
Axioms may be used as premises within arguments/proofs.
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Logical consequence for Quantifiers

The argument revisited

∀x(Cube(x) ↔ SameShape(x, c))
∀xSameShape(x, x)

Cube(c)

The replacement method yields a valid argument:

∀x(P(x) ↔ Q(x, c))
∀xQ(x, x)

P(c)
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Logical consequence for Quantifiers

The basic shape axioms

1 ¬∃x(Cube(x) ∧ Tet(x))

2 ¬∃x(Tet(x) ∧ Dodec(x))

3 ¬∃x(Dodec(x) ∧ Cube(x))

4 ∀x(Tet(x) ∨ Dodec(x) ∨ Cube(x))

Till Mossakowski, Christoph Lüth FMSE



Logical consequence for Quantifiers

An argument using the shape axioms

¬∃x(Dodec(x) ∧ Cube(x))
∀x(Tet(x) ∨ Dodec(x) ∨ Cube(x))
¬∃x Tet(x)

∀x(Cube(x) ↔ ¬Dodec(x))

¬∃x(P(x) ∧ Q(x))
∀x(R(x) ∨ P(x) ∨ Q(x))
¬∃x R(x)

∀x(Q(x) ↔ ¬P(x))
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Logical consequence for Quantifiers

SameShape introduction and elimination axioms

1 ∀x∀y((Cube(x) ∧ Cube(y)) → SameShape(x , y))

2 ∀x∀y((Dodec(x) ∧ Dodec(y)) → SameShape(x , y))

3 ∀x∀y((Tet(x) ∧ Tet(y)) → SameShape(x , y))

4 ∀x∀y((SameShape(x , y) ∧ Cube(x)) → Cube(y))

5 ∀x∀y((SameShape(x , y) ∧ Dodec(x)) → Dodec(y))

6 ∀x∀y((SameShape(x , y) ∧ Tet(x)) → Tet(y))
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Logical consequence for Quantifiers

Euclid’s axiomatization of geometry

1 Any two points can be joined by a straight line.

2 Any straight line segment can be extended indefinitely in a straight
line.

3 Given any straight line segment, a circle can be drawn having the
segment as radius and one endpoint as center.

4 All right angles are congruent.

5 Parallel postulate. If two lines intersect a third in such a way that
the sum of the inner angles on one side is less than two right angles,
then the two lines inevitably must intersect each other on that side
if extended far enough.
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Logical consequence for Quantifiers

Peano’s axiomatization of the naturals

1 0 is a natural number.

2 For every natural number, its successcor is a natural number.

3 There is no natural number whose successor is 0.

4 Two different natural numbers have different successors.
5 If K is a set such that:

0 is in K , and
for every natural number in K , its successor also is in K ,

then K contains every natural number.
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Logical consequence for Quantifiers

Formalization of Peano’s axioms

1 a constant 0

2 a unary function symbol suc

3 ∀n ¬suc(n) = 0

4 ∀m∀n suc(m) = suc(n) → m = n

5 (Φ(x/0) ∧ ∀n(Φ(x/n) → Φ(x/suc(n)))) → ∀n Φ(x/n)
if Φ is a formula with a free variable x , and
Φ(x/t) denotes the replacement of x with t within Φ
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Logical consequence for Quantifiers

Other famous axiom systems

Zermelo-Fraenkel axiomatization of set theory

axiomatizations in algebra: monoids, groups, rings, fields,
vector spaces . . .

Hoare’s axiomatization of imperative programming with
while-loops, if-then-else and assignment
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	Logical consequence for Quantifiers

