Formale Methoden der Softwaretechnik Formal methods of software engineering

Till Mossakowski, Christoph Lüth

SoSe 2011

Quantifiers: Motivating examples

$$\begin{array}{l} \forall x \ Cube(x) \ ("All \ objects \ are \ cubes.") \\ \forall x \ (Cube(x) \rightarrow Large(x)) \ ("All \ cubes \ are \ large.") \\ \forall x \ Large(x) \ ("All \ objects \ are \ large.") \end{array}$$

 $\exists x \ Cube(x)$

"There exists a cube."

 $\exists x \ (Cube(x) \land Large(x))$

"There exists a large cube."

First-order signatures

- A first-order signature consists of
 - a set of predicate symbols with arities, like Smaller⁽²⁾, $Dodec^{(1)}$, $Between^{(3)}$, $\leq^{(2)}$, including propositional symbols (nullary predicate symbols), like $A^{(0)}$, $B^{(0)}$, $C^{(0)}$, (written uppercase)
 - its names or constants for individuals, like *a*, *b*, *c*, (written lowercase)
 - its function symbols with arities, like $f^{(1)}, +^{(2)}, \times^{(2)}$.

Usually, arities are omitted.

In the book "language, proof and logic", the terminology "language" is used. "Signature" is more precise, since it exactly describes the ingredients that are needed to generate a (first-order) language.

$$\begin{array}{ll}t ::= a & \text{constant} \\ t ::= x & \text{variable} \\ & \mid f^{(n)}(t_1, \dots, t_n) & \text{application of function symbols} \\ & \text{to terms} \end{array}$$

Usually, arities are omitted. Variables are: t, u, v, w, x, y, z, possibly with subscripts.

Well-formed formulas

$$F ::= P^{(n)}(t_1, \dots, t_n)$$

$$| t_1 = t_2$$

$$| \bot$$

$$| \neg F$$

$$| (F_1 \land \dots \land F_n)$$

$$| (F_1 \land \dots \lor F_n)$$

$$| (F_1 \rightarrow F_2)$$

$$| (F_1 \leftrightarrow F_2)$$

$$| \forall \nu F$$

$$| \exists \nu F$$

application of predicate symbols equalities contradiction negation conjunction disjunction implication equivalence universal quantification existential quantification

The variable ν is said to be bound in $\forall \nu F$ and $\exists \nu F$.

The outermost parenthese of a well-formed formula can be omitted:

 $Cube(x) \wedge Small(x)$

In general, parentheses are important to determine the scope of a quantifier (see next slide).

Free and bound variables

An occurrence of a variable in a formula that is not bound is said to be free.

$\exists y \ LeftOf(x, y)$	x is free, y is bound	
$(Cube(x) \land Small(x))$	x is free, y is bound	
$ ightarrow \exists y \; LeftOf(x,y)$		
$\exists x \; (Cube(x) \land Small(x))$	Both occurrences of x are bound	
$\exists x \ Cube(x) \land Small(x)$	The first occurrence of x is bound,	
	the second one is free	

Sentences

A sentence is a well-formed formula without free variables.

 \perp $A \wedge B$

 $Cube(a) \lor Tet(b)$

 $\forall x \ (Cube(x) \rightarrow Large(x))$

 $\forall x ((Cube(x) \land Small(x)) \rightarrow \exists y \ LeftOf(x, y))$

伺 と く ヨ と く ヨ と

3

Semantics of quantification

- We need to fix some domain of discourse.
- $\forall x \ S(x)$ is true iff for every object in the domain of discourse with name $n, \ S(n)$ is true.
- $\exists x \ S(x)$ is true iff for some object in the domain of discourse with name $n, \ S(n)$ is true.
- Not all objects need to have names hence we assume that for objects, names n_1, n_2, \ldots can be invented "on the fly".

The game rules

Form	Your commitment	Player to move	Goal
P∨Q	TRUE FALSE	you Tarski's World	Choose one of P, Q that is true.
$P\wedgeQ$	TRUE	Tarski's World you	Choose one of P, Q that is false.
∃x P(x)	TRUE FALSE	you Tarski's World	Choose some b that satisfies the wff $P(x)$.
$\forall x P(x)$	TRUE FALSE	Tarski's World you	Choose some b that does not satisfy $P(x)$.

æ

P

Till Mossakowski, Christoph Lüth FMSE

The four Aristotelian forms

All P's are Q's.
$$\forall x(P(x) \rightarrow Q(x))$$
Some P's are Q's. $\exists x(P(x) \land Q(x))$ No P's are Q's. $\forall x(P(x) \rightarrow \neg Q(x))$ Some P's are not Q's. $\exists x(P(x) \land \neg Q(x))$

Note:

 $\forall x(P(x) \rightarrow Q(x))$ does not imply that there are some P's. $\exists x(P(x) \land Q(x))$ does not imply that not all P's are Q's.