Formale Methoden der Softwaretechnik Formal methods of software engineering

Till Mossakowski, Christoph Lüth

SoSe 2011

Propositional Logic

- at the core of many logics, formalisms, programming languages
- used as kind of assembly language for coding problems
- available tools:
 - Boole learning about truth tables
 - Tarski's world Henkin-Hintikka game
 - Fitch natural deduction proofs
 - SPASS resolution proofs
 - Jitpro tableau proofs
 - minisat, zChaff SAT solvers using DPLL
 - Hets friendly interface to SAT solvers and SPASS

Logical consequence

- Q is a logical consequence of P_1, \ldots, P_n , if all worlds that make P_1, \ldots, P_n true also make Q true.
- Q is a tautological consequence of P_1, \ldots, P_n , if all valuations of atomic formulas with truth values that make P_1, \ldots, P_n true also make Q true.
- Q is a TW-logical consequence of P_1, \ldots, P_n , if all worlds from Tarski's world that make P_1, \ldots, P_n true also make Q true.

- With proofs, we try to show (tauto)logical consequence
- Truth-table method can lead to very large tables, proofs are often shorter
- Proofs are also available for consequence in full first-order logic, not only for tautological consequence

Limits of the truth-table method

truth-table method leads to exponentially growing tables

- 20 atomic sentences \Rightarrow more than 1.000.000 rows
- Itruth-table method cannot be extended to first-order logic
- *model checking* can overcome the first limitation (up to 1.000.000 atomic sentences)
- proofs can overcome both limitations

- truth-table method leads to exponentially growing tables
 - 20 atomic sentences \Rightarrow more than 1.000.000 rows
- truth-table method cannot be extended to first-order logic
- *model checking* can overcome the first limitation (up to 1.000.000 atomic sentences)
- proofs can overcome both limitations

- truth-table method leads to exponentially growing tables
 - 20 atomic sentences \Rightarrow more than 1.000.000 rows
- ② truth-table method cannot be extended to first-order logic
 - *model checking* can overcome the first limitation (up to 1.000.000 atomic sentences)
 - proofs can overcome both limitations

- truth-table method leads to exponentially growing tables
 - 20 atomic sentences \Rightarrow more than 1.000.000 rows
- 2 truth-table method cannot be extended to first-order logic
 - *model checking* can overcome the first limitation (up to 1.000.000 atomic sentences)
 - proofs can overcome both limitations

- truth-table method leads to exponentially growing tables
 - 20 atomic sentences \Rightarrow more than 1.000.000 rows
- 2 truth-table method cannot be extended to first-order logic
 - *model checking* can overcome the first limitation (up to 1.000.000 atomic sentences)
 - proofs can overcome both limitations

• A proof consists of a sequence of proof steps

- Each proof step is known to be valid and should
 - be significant but easily understood, in *informal* proofs,
 - follow some proof rule, in formal proofs.
- Some valid patterns of inference that generally go unmentioned in informal (but not in formal) proofs:
 - From $P \land Q$, infer P.
 - From P and Q, infer $P \land Q$.
 - From *P*, infer $P \lor Q$.

- A proof consists of a sequence of proof steps
- Each proof step is known to be valid and should
 - be significant but easily understood, in *informal* proofs,
 - follow some proof rule, in formal proofs.
- Some valid patterns of inference that generally go unmentioned in informal (but not in formal) proofs:
 - From $P \wedge Q$, infer P.
 - From P and Q, infer $P \land Q$.
 - From *P*, infer $P \lor Q$.

- A proof consists of a sequence of proof steps
- Each proof step is known to be valid and should
 - be significant but easily understood, in *informal* proofs,
 follow some *proof rule*, in *formal* proofs.
- Some valid patterns of inference that generally go unmentioned in informal (but not in formal) proofs:
 - From $P \land Q$, infer P.
 - From P and Q, infer $P \wedge Q$.
 - From *P*, infer $P \vee Q$.

- A proof consists of a sequence of proof steps
- Each proof step is known to be valid and should
 - be significant but easily understood, in *informal* proofs,
 - follow some proof rule, in formal proofs.
- Some valid patterns of inference that generally go unmentioned in informal (but not in formal) proofs:
 - From $P \land Q$, infer P.
 - From P and Q, infer $P \wedge Q$.
 - From *P*, infer $P \vee Q$.

- A proof consists of a sequence of proof steps
- Each proof step is known to be valid and should
 - be significant but easily understood, in *informal* proofs,
 - follow some proof rule, in formal proofs.
- Some valid patterns of inference that generally go unmentioned in informal (but not in formal) proofs:
 - From $P \land Q$, infer P.
 - From P and Q, infer $P \wedge Q$.
 - From *P*, infer $P \vee Q$.

- A proof consists of a sequence of proof steps
- Each proof step is known to be valid and should
 - be significant but easily understood, in *informal* proofs,
 - follow some proof rule, in formal proofs.
- Some valid patterns of inference that generally go unmentioned in informal (but not in formal) proofs:
 - From $P \wedge Q$, infer P.
 - From P and Q, infer $P \wedge Q$.
 - From *P*, infer $P \lor Q$.

• Well-defined set of formal proof rules

- Formal proofs in Fitch can be mechanically checked
- For each connective, there is
 - an *introduction rule*, e.g. "from P, infer $P \lor Q$ ".
 - an *elimination rule*, e.g. "from $P \land Q$, infer P".

- Well-defined set of formal proof rules
- Formal proofs in Fitch can be mechanically checked
- For each connective, there is
 - an *introduction rule*, e.g. "from *P*, infer $P \lor Q$ ".
 - an *elimination rule*, e.g. "from $P \land Q$, infer P".

- Well-defined set of formal proof rules
- Formal proofs in Fitch can be mechanically checked
- For each connective, there is
 - an *introduction rule*, e.g. "from P, infer $P \lor Q$ ".
 - an *elimination rule*, e.g. "from $P \land Q$, infer P".

- Well-defined set of formal proof rules
- Formal proofs in Fitch can be mechanically checked
- For each connective, there is
 - an *introduction rule*, e.g. "from P, infer $P \lor Q$ ".
 - an *elimination rule*, e.g. "from $P \land Q$, infer P".

- Well-defined set of formal proof rules
- Formal proofs in Fitch can be mechanically checked
- For each connective, there is
 - an *introduction rule*, e.g. "from P, infer $P \lor Q$ ".
 - an elimination rule, e.g. "from $P \land Q$, infer P".

Formal proofs in Fitch

____ ▶

Fitch rule: Reiteration

Reiteration (Reit):

Conjunction Elimination $(\land \text{ Elim})$

$$\begin{array}{c|c} \mathsf{P}_1 \land \ldots \land \mathsf{P}_i \land \ldots \land \mathsf{P}_n \\ \vdots \\ \mathsf{P}_i \end{array}$$

æ

- 4 聞 と 4 臣 と 4 臣 と

i.

Conjunction Introduction (\wedge Intro) P_1 \downarrow P_n \vdots $P_1 \wedge \ldots \wedge P_n$

< 4 ₽ > < Ξ

э

Disjunction Introduction (\lor Intro) P_i \vdots \triangleright $P_1 \lor \ldots \lor P_i \lor \ldots \lor P_n$

▲□ ► < □ ► </p>

∃ >

To prove *S* from $P_1 \vee \ldots \vee P_n$, prove *S* from each of P_1, \ldots, P_n . *Claim:* there are irrational numbers *b* and *c* such that b^c is rational. *Proof:* $\sqrt{2}^{\sqrt{2}}$ is either rational or irrational.

Case 1: If $\sqrt{2}^{\sqrt{2}}$ is rational: take $b = c = \sqrt{2}$. Case 2: If $\sqrt{2}^{\sqrt{2}}$ is irrational: take $b = \sqrt{2}^{\sqrt{2}}$ and $c = \sqrt{2}$. Then $b^{c} = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{(\sqrt{2} \cdot \sqrt{2})} = \sqrt{2}^{2} = 2$.

To prove S from $P_1 \vee \ldots \vee P_n$, prove S from each of P_1, \ldots, P_n . Claim: there are irrational numbers b and c such that b^c is rational.

Proof: $\sqrt{2}^{\sqrt{2}}$ is either rational or irrational. Case 1: If $\sqrt{2}^{\sqrt{2}}$ is rational: take $b = c = \sqrt{2}$. Case 2: If $\sqrt{2}^{\sqrt{2}}$ is irrational: take $b = \sqrt{2}^{\sqrt{2}}$ and $c = \sqrt{2}$. Then $b^c = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{(\sqrt{2} \cdot \sqrt{2})} = \sqrt{2}^2 = 2$.

To prove S from $P_1 \vee \ldots \vee P_n$, prove S from each of P_1, \ldots, P_n . Claim: there are irrational numbers b and c such that b^c is rational.

Proof: $\sqrt{2}^{\sqrt{2}}$ is either rational or irrational.

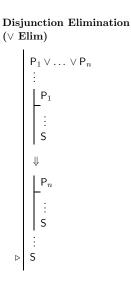
Case 1: If $\sqrt{2}^{\sqrt{2}}$ is rational: take $b = c = \sqrt{2}$. Case 2: If $\sqrt{2}^{\sqrt{2}}$ is irrational: take $b = \sqrt{2}^{\sqrt{2}}$ and $c = \sqrt{2}$. Then $b^{c} = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{(\sqrt{2} \cdot \sqrt{2})} = \sqrt{2}^{2} = 2$.

To prove S from $P_1 \vee \ldots \vee P_n$, prove S from each of P_1, \ldots, P_n . Claim: there are irrational numbers b and c such that b^c is rational.

Proof: $\sqrt{2}^{\sqrt{2}}$ is either rational or irrational. Case 1: If $\sqrt{2}^{\sqrt{2}}$ is rational: take $b = c = \sqrt{2}$. Case 2: If $\sqrt{2}^{\sqrt{2}}$ is irrational: take $b = \sqrt{2}^{\sqrt{2}}$ and $c = \sqrt{2}$ Then $b^c = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{(\sqrt{2} \cdot \sqrt{2})} = \sqrt{2}^2 = 2$.

To prove S from $P_1 \vee \ldots \vee P_n$, prove S from each of P_1, \ldots, P_n . Claim: there are irrational numbers b and c such that b^c is rational.

Proof: $\sqrt{2}^{\sqrt{2}}$ is either rational or irrational. Case 1: If $\sqrt{2}^{\sqrt{2}}$ is rational: take $b = c = \sqrt{2}$. Case 2: If $\sqrt{2}^{\sqrt{2}}$ is irrational: take $b = \sqrt{2}^{\sqrt{2}}$ and $c = \sqrt{2}$. Then $b^c = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{(\sqrt{2} \cdot \sqrt{2})} = \sqrt{2}^2 = 2$.



æ

<ロト <部ト < 注ト < 注ト

The proper use of subproofs

1. $(B \land A) \lor (A \land C)$	
2. $B \land A$	
3. B	\land Elim: 2
4. A	\wedge Elim: 2
1. $(B \land A) \lor (A \land C)$ 2. $B \land A$ 3. B 4. A 5. $A \land C$ 6. A 7. A 8. $A \land B$	
6. A	\land Elim: 5
7. A	∨ Elim : 1, 2–4, 5–6
8. A ∧ B	\wedge Intro: 7, 3

<ロト <部ト < 注ト < 注ト

æ

The proper use of subproofs (cont'd)

- In justifying a step of a subproof, you may cite any *earlier step* contained in the main proof, or in any subproof whose assumption is *still in force*. You may *never* cite individual steps inside a subproof that has *already ended*.
- Fitch enforces this automatically by not permitting the citation of individual steps inside subproofs that have ended.

The proper use of subproofs (cont'd)

- In justifying a step of a subproof, you may cite any *earlier step* contained in the main proof, or in any subproof whose assumption is *still in force*. You may *never* cite individual steps inside a subproof that has *already ended*.
- Fitch enforces this automatically by not permitting the citation of individual steps inside subproofs that have ended.

$\begin{array}{c|c} \bot \text{ Introduction} \\ (\bot \text{ Intro}) \\ \\ & \\ P \\ \vdots \\ \neg P \\ \vdots \\ & \\ \triangleright \\ \bot \end{array}$

<ロ> <同> <同> < 同> < 同>

æ

Proof by contradiction

To prove $\neg S$, assume S and prove a contradiction \bot . $(\perp \text{ may be inferred from } P \text{ and } \neg P.)$

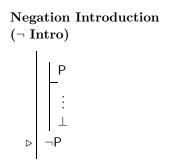
To prove $\neg S$, assume S and prove a contradiction \bot . $(\perp \text{ may be inferred from } P \text{ and } \neg P.)$ Assume $Cube(c) \lor Dodec(c)$ and Tet(b). Claim: \neg (b = c).

To prove $\neg S$, assume S and prove a contradiction \bot . $(\perp \text{ may be inferred from } P \text{ and } \neg P.)$ Assume $Cube(c) \lor Dodec(c)$ and Tet(b). Claim: \neg (b = c). *Proof:* Let us assume b = c.

To prove $\neg S$, assume S and prove a contradiction \bot . $(\bot \text{ may be inferred from } P \text{ and } \neg P.)$ Assume $Cube(c) \lor Dodec(c)$ and Tet(b). $Claim: \neg(b = c)$. Proof: Let us assume b = c. Case 1: If Cube(c), then by b = c, also Cube(b), which contradicts Tet(b). Case 2: Dodec(c) similarly contradicts Tet(b). In both case, we arrive at a contradiction. Hence, our assumption b = c cannot be true, thus $\neg(b = c)$.

To prove $\neg S$, assume S and prove a contradiction \bot . $(\perp \text{ may be inferred from } P \text{ and } \neg P.)$ Assume $Cube(c) \lor Dodec(c)$ and Tet(b). Claim: \neg (b = c). *Proof:* Let us assume b = c. Case 1: If Cube(c), then by b = c, also Cube(b), which contradicts Tet(b). Case 2: Dodec(c) similarly contradicts Tet(b).

To prove $\neg S$, assume S and prove a contradiction \bot . $(\perp \text{ may be inferred from } P \text{ and } \neg P.)$ Assume $Cube(c) \lor Dodec(c)$ and Tet(b). Claim: \neg (*b* = *c*). *Proof:* Let us assume b = c. Case 1: If Cube(c), then by b = c, also Cube(b), which contradicts Tet(b). Case 2: Dodec(c) similarly contradicts Tet(b). In both case, we arrive at a contradiction. Hence, our assumption b = c cannot be true, thus $\neg (b = c)$.



æ

-≣->

• 同 • • 三 • •

Negation Elimination (\neg Elim) $\begin{vmatrix} \neg \neg P \\ \vdots \\ P \end{vmatrix}$

▲ 同 ▶ → ● 三

э

э

Arguments with inconsistent premises

A proof of a contradiction \perp from premises P_1, \ldots, P_n (without additional assumptions) shows that the premises are *inconsistent*. An argument with inconsistent premises is always *valid*, but more importantly, always *unsound*.

```
Home(max) \lor Home(claire)
```

```
\negHome(max)
```

```
\negHome(claire)
```

```
\mathsf{Home}(\mathsf{max}) \land \mathsf{Happy}(\mathsf{carl})
```

$\begin{array}{c|c} \bot & \textbf{Elimination} \\ (\bot & \textbf{Elim}) \\ \\ & & \downarrow \\ & \vdots \\ & & \triangleright & \mathsf{P} \end{array}$

æ

<ロト <部ト < 注ト < 注ト

Example proof in fitch

æ

∃ >

Image: A image: A

Arguments without premises

A proof without any premises shows that its conclusion is a *logical truth*.

Example: $\neg (P \land \neg P)$.

The Con rules in Fitch

• Taut Con proves all tautological consequences.

- **FO Con** proves all first-order consequences (like a = c follows from $a = b \land b = c$).
- Ana Con proves (almost) all Tarski's world consequences.

The Con rules in Fitch

- Taut Con proves all tautological consequences.
- FO Con proves all first-order consequences (like a = c follows from $a = b \land b = c$).

• Ana Con proves (almost) all Tarski's world consequences.

The Con rules in Fitch

- Taut Con proves all tautological consequences.
- FO Con proves all first-order consequences (like a = c follows from $a = b \land b = c$).
- Ana Con proves (almost) all Tarski's world consequences.

Consistency

A set of sentences \mathcal{T} is called *formally inconsistent*, if

$\mathcal{T}\vdash_{\mathcal{T}} \bot.$

Example: $\{A \lor B, \neg A, \neg B\}$.

Otherwise, \mathcal{T} is called *formally consistent*.

Example: $\{A \lor B, A, \neg B\}$

Soundness

Theorem 1. The proof calculus \mathcal{F}_T is sound, i.e. if

 $\mathcal{T} \vdash_{\mathcal{T}} S$,

then

$$\mathcal{T}\models_{\mathcal{T}} S.$$

Proof: by induction on the length of the proof.

Completeness

Theorem 2 (Bernays, Post). The proof calculus $\mathcal{F}_{\mathcal{T}}$ is complete, i.e. if

$$\mathcal{T}\models_{\mathcal{T}} S,$$

then

$$\mathcal{T} \vdash_{\mathcal{T}} S.$$

Theorem 2 follows from:

Theorem 3. Every formally consistent set of sentences is tt-satisfiable.

Lemma 4. $\mathcal{T} \cup \{\neg S\} \vdash_{\mathcal{T}} \bot$ if and only if $\mathcal{T} \vdash_{\mathcal{T}} S$.