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Propositional Logic

Propositional Logic

@ at the core of many logics, formalisms, programming
languages

@ used as kind of assembly language for coding problems

@ available tools:

o Boole — learning about truth tables

Tarski's world — Henkin-Hintikka game

Fitch — natural deduction proofs

SPASS — resolution proofs

Jitpro — tableau proofs

minisat, zChaff — SAT solvers using DPLL

Hets — friendly interface to SAT solvers and SPASS
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The rule system of Fitch (natural deduction)

Logical consequence

@ @ is a logical consequence of Pq,..., P,, if all worlds that
make Pi,..., P, true also make @ true.

@ @ is a tautological consequence of Py,..., P,, if all valuations
of atomic formulas with truth values that make Pq,..., P,
true also make @ true.

@ @ is a TW-logical consequence of P, ..., P,, if all worlds
from Tarski's world that make P4, ..., P, true also make @
true.
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The rule system of Fitch (natural deduction)

Proofs

e With proofs, we try to show (tauto)logical consequence

@ Truth-table method can lead to very large tables, proofs are
often shorter

@ Proofs are also available for consequence in full first-order
logic, not only for tautological consequence
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The rule system of Fitch (natural deduction)

Limits of the truth-table method

© truth-table method leads to exponentially growing tables
e 20 atomic sentences = more than 1.000.000 rows

@ truth-table method cannot be extended to first-order logic

e model checking can overcome the first limitation (up to
1.000.000 atomic sentences)

@ proofs can overcome both limitations

Till Mossakowski, Christoph Liith FMSE



The rule system of Fitch (natural deduction)

Proofs

@ A proof consists of a sequence of proof steps

Till Mossakowski, Christoph Lu FMSE



The rule system of Fitch (natural deduction)

Proofs

@ A proof consists of a sequence of proof steps
@ Each proof step is known to be valid and should

Till Mossakowski, Christoph FMSE



The rule system of Fitch (natural deduction)

Proofs

@ A proof consists of a sequence of proof steps
@ Each proof step is known to be valid and should
e be significant but easily understood, in informal proofs,

Some valid patterns of inference that generally go
unmentioned in informal (but not in formal) proofs:

Till Mossakowski, Christoph Liith FMSE



The rule system of Fitch (natural deduction)

Proofs

@ A proof consists of a sequence of proof steps
@ Each proof step is known to be valid and should

e be significant but easily understood, in informal proofs,
o follow some proof rule, in formal proofs.
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The rule system of Fitch (natural deduction)

Proofs

@ A proof consists of a sequence of proof steps
@ Each proof step is known to be valid and should
e be significant but easily understood, in informal proofs,
o follow some proof rule, in formal proofs.
@ Some valid patterns of inference that generally go
unmentioned in informal (but not in formal) proofs:
e From P A Q, infer P.

o From P and Q, infer P A Q.
e From P, infer PV Q.
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The rule system of Fitch (natural deduction)

Formal proofs in Fitch

@ Well-defined set of formal proof rules

@ Formal proofs in Fitch can be mechanically checked
@ For each connective, there is

e an introduction rule, e.g. “from P, infer PV Q".
e an elimination rule, e.g. "from P A Q, infer P".
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The rule system of Fitch (natural deduction)

Formal proofs in Fitch

P
Q
R
TSl Justification 1
Sn Justification n
S Justification n+1
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The rule system of Fitch (natural deduction)

Fitch rule: Reiteration

Reiteration (Reit):

P

Till Mossakowski, Christoph Liith FMSE



The rule system of Fitch (natural deduction)

Conjunction Elimination
(A Elim)

PiA... AP;,A... AP,

DPi
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The rule system of Fitch (natural deduction)

Conjunction Introduction
(A Intro)

Py
I
P

n

> Pl/\/\Pn
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The rule system of Fitch (natural deduction)

Disjunction Introduction
(V Intro)

P:

> Pl\/\/PZ\/\/Pn
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The rule system of Fitch (natural deduction)

Proof by cases (disjunction elimination)

To prove S from Py V...V P,, prove S from each of Py,..., P,.

Till Mossakowski, Christoph Liith FMSE



The rule system of Fitch (natural deduction)

Proof by cases (disjunction elimination)

To prove S from Py V...V P,, prove S from each of Py,..., P,.
Claim: there are irrational numbers b and ¢ such that b€ is
rational.

Till Mossakowski, Christoph Liith FMSE



The rule system of Fitch (natural deduction)

Proof by cases (disjunction elimination)

To prove S from Py V...V P,, prove S from each of Py,..., P,.
Claim: there are irrational numbers b and ¢ such that b€ is
rational.

2. . . . .
Proof- \@f is either rational or irrational.

Till Mossakowski, Christoph Liith FMSE



The rule system of Fitch (natural deduction)

Proof by cases (disjunction elimination)

To prove S from Py V...V P,, prove S from each of Py,..., P,.
Claim: there are irrational numbers b and ¢ such that b€ is
rational.

Proof- \@ﬁ is either rational or irrational.
Case I: If ﬁﬁ is rational: take b= ¢ = /2.
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The rule system of Fitch (natural deduction)

Proof by cases (disjunction elimination)

To prove S from Py V...V P,, prove S from each of Py,..., P,.
Claim: there are irrational numbers b and ¢ such that b€ is
rational.

Proof- \@ 2 is either rational or irrational.
Case I: If ﬁ |s rational: take b= ¢ = /2.
Case 22 If \@ is irrational: take b = f\f and ¢ = V2.

Then b€ = (v2/2)V2 = 22D _ 52 _ o
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The rule system of Fitch (natural deduction)

Disjunction Elimination
(v Elim)

PLV... VP,

Py
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The rule system of Fitch (natural deduction)

The proper use of subproofs

1. BAA)V(AACQ)

2. BAA

3.B A Elim: 2

4. A A Elim: 2

5 ANC

6. A A Elim: 5
7. A VvV Elim: 1, 2-4, 56
8. AANB A Intro: 7, 3

Till Mossakowski, Christoph Liith FMSE



The rule system of Fitch (natural deduction)

The proper use of subproofs (cont'd)

@ In justifying a step of a subproof, you may cite any earlier step
contained in the main proof, or in any subproof whose
assumption is still in force. You may never cite individual
steps inside a subproof that has already ended.
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The rule system of Fitch (natural deduction)

The proper use of subproofs (cont'd)

@ In justifying a step of a subproof, you may cite any earlier step
contained in the main proof, or in any subproof whose
assumption is still in force. You may never cite individual
steps inside a subproof that has already ended.

o Fitch enforces this automatically by not permitting the
citation of individual steps inside subproofs that have ended.
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The rule system of Fitch (natural deduction)

1 Introduction

(L Intro)
i
-P
> L
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The rule system of Fitch (natural deduction)

Proof by contradiction

To prove =S, assume S and prove a contradiction L.
(L may be infered from P and —P.)
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To prove =S, assume S and prove a contradiction L.
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Assume Cube(c) V Dodec(c) and Tet(b).
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Proof by contradiction

To prove =S, assume S and prove a contradiction L.
(L may be infered from P and —P.)

Assume Cube(c) V Dodec(c) and Tet(b).

Claim: =(b = ¢).

Proof: Let us assume b = c.

Case 1. If Cube(c), then by b = ¢, also Cube(b), which
contradicts Tet(b).
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Proof by contradiction

To prove =S, assume S and prove a contradiction L.
(L may be infered from P and —P.)

Assume Cube(c) V Dodec(c) and Tet(b).

Claim: =(b = ¢).

Proof: Let us assume b = c.

Case 1. If Cube(c), then by b = ¢, also Cube(b), which
contradicts Tet(b).

Case 2: Dodec(c) similarly contradicts Tet(b).
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The rule system of Fitch (natural deduction)

Proof by contradiction

To prove =S, assume S and prove a contradiction L.

(L may be infered from P and —P.)

Assume Cube(c) V Dodec(c) and Tet(b).

Claim: =(b = ¢).

Proof: Let us assume b = c.

Case 1. If Cube(c), then by b = ¢, also Cube(b), which
contradicts Tet(b).

Case 2: Dodec(c) similarly contradicts Tet(b).

In both case, we arrive at a contradiction. Hence, our assumption
b = ¢ cannot be true, thus (b = ¢).
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The rule system of Fitch (natural deduction)

Negation Introduction

(= Intro)
P
1L

>| =P
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The rule system of Fitch (natural deduction)

Negation Elimination

(= Elim)
ﬁﬁP
>| P
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The rule system of Fitch (natural deduction)

Arguments with inconsistent premises

A proof of a contradiction L from premises Py, ..., P, (without
additional assumptions) shows that the premises are inconsistent.
An argument with inconsistent premises is always valid, but more
importantly, always unsound.

Home(max) V Home(claire)

—Home(max)

—Home(claire)

Home(max) A Happy(carl)
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The rule system of Fitch (natural deduction)

1 Elimination

(L Elim)
1
>| P
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The rule system of Fitch (natural deduction)

Example proof in fitch
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The rule system of Fitch (natural deduction)

Arguments without premises

A proof without any premises shows that its conclusion is a logical
truth.
Example: —=(P A =P).
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The rule system of Fitch (natural deduction)

The Con rules in Fitch

@ Taut Con proves all tautological consequences.

@ FO Con proves all first-order consequences
(like a = ¢ follows from a= b A b = c).

@ Ana Con proves (almost) all Tarski's world consequences.
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The rule system of Fitch (natural deduction)

Consistency

A set of sentences 7 is called formally inconsistent, if
THr L.

Example: {AV B,—-A,-B}.
Otherwise, T is called formally consistent.
Example: {AV B, A,-B}
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The rule system of Fitch (natural deduction)

Soundness

Theorem 1. The proof calculus F7 is sound, i.e. if
TETS,

then
TETS.

Proof: by induction on the length of the proof.
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The rule system of Fitch (natural deduction)

Completeness

Theorem 2 (Bernays, Post). The proof calculus Fr is complete,
i.e. if

TETS,
then

TrFT S.
Theorem 2 follows from:

Theorem 3. Every formally consistent set of sentences is
tt-satisfiable.
Lemma 4. TU{=S} 7 Lifand only if T -1 S.
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