Propositional Logic The Boolean Connectives Formalisation The truth table method The Henkin-Hintikka game

Formal methods of software engineering

Till Mossakowski, Christoph Lüth

SoSe 2011

Propositional Logic

- at the core of many logics, formalisms, programming languages
- used as kind of assembly language for coding problems
- available tools:
 - Boole learning about truth tables
 - Tarski's world Henkin-Hintikka game
 - Fitch natural deduction proofs
 - SPASS resolution proofs
 - Jitpro tableau proofs
 - minisat, zChaff SAT solvers using DPLL
 - Hets friendly interface to SAT solvers and SPASS

Negation — Truth table

Р	¬P
TRUE	FALSE
FALSE	TRUE

Conjunction — Truth table

Р	P Q P	
TRUE	TRUE	TRUE
TRUE	FALSE	FALSE
FALSE	TRUE	FALSE
FALSE	FALSE	FALSE

Disjunction — Truth table

Р	Q	$P \lor Q$
TRUE	TRUE	TRUE
TRUE	FALSE	TRUE
FALSE	TRUE	TRUE
FALSE	FALSE	FALSE

Formalisation

- Sometimes, natural language double negation means logical single negation
- The English expression and sometimes suggests a temporal ordering; the FOL expression ∧ never does.
- The English expressions but, however, yet, nonetheless, and moreover are all stylistic variants of and.
- Natural language disjunction can mean *invlusive-or* (\vee) or *exclusive-or*. A xor $B \Leftrightarrow (A \vee B) \wedge (\neg A \vee \neg B)$

Logical necessity

- logically necessary, or logically valid, if it is true in all circumstances (worlds),
- logically possible, if it is true in some circumstances (worlds),
- *logically impossible*, if it is true in no circumstances (worlds).

Logical necessity

- logically necessary, or logically valid, if it is true in all circumstances (worlds),
- logically possible, if it is true in some circumstances (worlds),
- *logically impossible*, if it is true in no circumstances (worlds).

Logical necessity

- logically necessary, or logically valid, if it is true in all circumstances (worlds),
- logically possible, if it is true in some circumstances (worlds),
- logically impossible, if it is true in no circumstances (worlds).

Logically impossible $P \land \neg P$ $a \neq a$

Logically and physically possible

Logically necessary $P \lor \neg P$ a = a

Logically impossible $P \land \neg P$ $a \neq a$

Logically and physically possible

Logically necessary $P \lor \neg P$ a = a

Logically impossible $P \land \neg P$ $a \neq a$

Logically and physically possible

Logically necessary $P \lor \neg P$ a = a

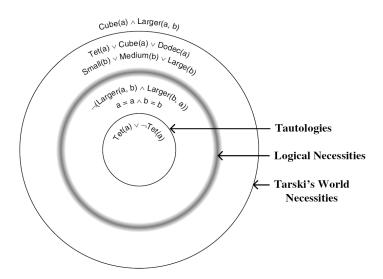
Logically impossible $P \land \neg P$ $a \neq a$

Logically and physically possible

Logically necessary

$$P \vee \neg P$$

$$a = a$$



The truth table method (Boole)

- ullet A sentence is a tautology if and only if it evaluates to TRUE in all rows of its complete truth table.
- Truth tables can be constructed with the program Boole.

- Two sentences P and Q are tautologically equivalent, if they
 evaluate to the same truth value in all valuations (rows of the
 truth table).
- Q is a tautological consequence of P_1, \ldots, P_n if and only if every row that assigns TRUE to each of $P1, \ldots P_n$ also assigns TRUE to Q.
- If Q is a tautological consequence of $P_1, \ldots P_n$, then Q is also a *logical consequence* of P_1, \ldots, P_n .
- Some logical consequences are not tautological ones.

- Two sentences P and Q are tautologically equivalent, if they
 evaluate to the same truth value in all valuations (rows of the
 truth table).
- Q is a tautological consequence of P_1, \ldots, P_n if and only if every row that assigns TRUE to each of $P1, \ldots P_n$ also assigns TRUE to Q.
- If Q is a tautological consequence of $P_1, \ldots P_n$, then Q is also a *logical consequence* of P_1, \ldots, P_n .
- Some logical consequences are not tautological ones.

- Two sentences P and Q are tautologically equivalent, if they
 evaluate to the same truth value in all valuations (rows of the
 truth table).
- Q is a tautological consequence of P_1, \ldots, P_n if and only if every row that assigns TRUE to each of $P1, \ldots P_n$ also assigns TRUE to Q.
- If Q is a tautological consequence of $P_1, \ldots P_n$, then Q is also a *logical consequence* of P_1, \ldots, P_n .
- Some logical consequences are not tautological ones.

- Two sentences P and Q are tautologically equivalent, if they
 evaluate to the same truth value in all valuations (rows of the
 truth table).
- Q is a tautological consequence of P_1, \ldots, P_n if and only if every row that assigns TRUE to each of P_1, \ldots, P_n also assigns TRUE to Q.
- If Q is a tautological consequence of $P_1, \ldots P_n$, then Q is also a *logical consequence* of P_1, \ldots, P_n .
- Some logical consequences are not tautological ones.

de Morgan's laws and double negation

$$\neg (P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$$
$$\neg (P \lor Q) \Leftrightarrow (\neg P \land \neg Q)$$
$$\neg \neg P \Leftrightarrow P$$

Note: \neg binds stronger than \land and \lor . Bracktes are needed to override this.

Negation normal form

- Substitution of equivalents: If P and Q are logically equivalent: $P \Leftrightarrow Q$ then the results of substituting one for the other in the context of a larger sentence are also logically equivalent: $S(P) \Leftrightarrow S(Q)$
- A sentence is in negation normal form (NNF) if all occurrences of ¬ apply directly to atomic sentences
- Any sentence built from atomic sentences using just ∧, ∨, and
 ¬ can be put into negation normal form by repeated
 application of the de Morgan laws and double negation.

Negation normal form

- Substitution of equivalents: If P and Q are logically equivalent: $P \Leftrightarrow Q$ then the results of substituting one for the other in the context of a larger sentence are also logically equivalent: $S(P) \Leftrightarrow S(Q)$
- A sentence is in negation normal form (NNF) if all occurrences of ¬ apply directly to atomic sentences.
- Any sentence built from atomic sentences using just ∧, ∨, and
 ¬ can be put into negation normal form by repeated
 application of the de Morgan laws and double negation.

Negation normal form

- Substitution of equivalents: If P and Q are logically equivalent: $P \Leftrightarrow Q$ then the results of substituting one for the other in the context of a larger sentence are also logically equivalent: $S(P) \Leftrightarrow S(Q)$
- A sentence is in negation normal form (NNF) if all occurrences of ¬ apply directly to atomic sentences.
- Any sentence built from atomic sentences using just ∧, ∨, and
 ¬ can be put into negation normal form by repeated
 application of the de Morgan laws and double negation.

Distributive laws

For any sentences P, Q, and R:

• *Distribution of* ∧ *over* ∨:

$$P \wedge (Q \vee R) \Leftrightarrow (P \wedge Q) \vee (P \wedge R).$$

• *Distribution of* ∨ *over* ∧:

$$P \vee (Q \wedge R) \Leftrightarrow (P \vee Q) \wedge (P \vee R)$$

Distributive laws

For any sentences P, Q, and R:

Distribution of ∧ over ∨:

$$P \wedge (Q \vee R) \Leftrightarrow (P \wedge Q) \vee (P \wedge R).$$

• *Distribution of* ∨ *over* ∧:

$$P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R).$$

Conjunctive and disjunctive normal form

- A sentence is in conjunctive normal form (CNF) if it is a conjunction of one or more disjunctions of one or more literals.
- Distribution of ∨ over ∧ allows you to transform any sentence in negation normal form into conjunctive normal form.

Conjunctive and disjunctive normal form

- A sentence is in conjunctive normal form (CNF) if it is a conjunction of one or more disjunctions of one or more literals.
- Distribution of ∨ over ∧ allows you to transform any sentence in negation normal form into conjunctive normal form.

Disjunctive normal form

- A sentence is in *disjunctive normal form* (DNF) if it is a disjunction of one or more conjunctions of one or more literals.
- Distribution of ∧ over ∨ allows you to transform any sentence in negation normal form into disjunctive normal form.
- Some sentences are in both CNF and DNF.

Disjunctive normal form

- A sentence is in *disjunctive normal form* (DNF) if it is a disjunction of one or more conjunctions of one or more literals.
- Distribution of ∧ over ∨ allows you to *transform* any sentence in negation normal form into disjunctive normal form.
- Some sentences are in both CNF and DNF.

Disjunctive normal form

- A sentence is in *disjunctive normal form* (DNF) if it is a disjunction of one or more conjunctions of one or more literals.
- Distribution of ∧ over ∨ allows you to transform any sentence in negation normal form into disjunctive normal form.
- Some sentences are in both CNF and DNF.

The Henkin-Hintikka game (Tarski's world)

The Henkin-Hintikka game

Is a sentence true in a given world?

- Players: you and the computer (Tarski's world)
- You claim that a sentence is true (or false), Tarski's world will claim the opposite
- In each round, the sentence is reduced to a simpler one
- When an atomic sentence is reached, its truth can be directly inspected in the given world

You have a *winning strategy* exactly in those cases where your claim is *correct*.

Negation — Game rule

Form	Your commitment	Player to move	Goal
$\neg P$	either		Replace $\neg P$ by P and
			switch commitment

Conjunction — Game rule

Form	Your commitment	Player to move	Goal
	TRUE	Tarski's World	Choose one of P ,
$P \wedge Q$			Q that is false.
	FALSE	you	

Disjunction — Game rule

Form	Your commitment	Player to move	Goal
	TRUE	you	Choose one of P ,
$P \lor Q$			Q that is true.
	FALSE	Tarski's World	

Logic, Boolean logic and Tarski's world

- logically necessary, or logically valid, if it is true in all circumstances (worlds),
- TW-necessary, if it is true in all worlds of Tarski's world,
- a tautology, if it is true in all valuations of the atomic sentences with {TRUE, FALSE}.

Logic, Boolean logic and Tarski's world

- logically necessary, or logically valid, if it is true in all circumstances (worlds),
- TW-necessary, if it is true in all worlds of Tarski's world,
- a tautology, if it is true in all valuations of the atomic sentences with {TRUE, FALSE}.

Logic, Boolean logic and Tarski's world

- logically necessary, or logically valid, if it is true in all circumstances (worlds),
- TW-necessary, if it is true in all worlds of Tarski's world,
- a tautology, if it is true in all valuations of the atomic sentences with {TRUE, FALSE}.