Formale Methoden der Softwaretechnik Vorlesung vom 16.06.11: Isabelle: Automatische B<u>eweisprozeduren</u>

Till Mossakowski & Christoph Lüth

Universität Bremen

Sommersemester 2011

Rev. 1489

1 [13]

Überblick

- ► Grundlagen der Termersetzung
- ► Automatische Beweisprozeduren im Überblick

3 [13]

Grundlagen der Termersetzung

- ▶ Gleichungen s = t zu Regeln $s \rightarrow t$ orientieren
- ▶ Ableitungsrelation $s \Rightarrow_{\mathcal{R}} t$ definieren
- $\qquad \qquad \textbf{ Äquivalenzabschluss bilden } s_1 \Leftarrow_{\mathcal{R}} s_2 \Rightarrow_{\mathcal{R}} s_3 \Rightarrow_{\mathcal{R}} s_4 \dots s_n$
- ▶ Frage: Wann ist $s \Leftrightarrow_{\mathcal{R}} t$ dasselbe wie s = t?

5 [13]

Relationen und Abschlüsse

- ► Für Relationen R, S ist Komposition $R \circ S = \{(a, c) \mid \exists b. (a, b) \in R, (b, c) \in S\}$
- ▶ Für Relation R ist die inverse Relation $R^{-1} = \{(b, a) \mid (a, b) \in R\}$
- ▶ R transitiv wenn $R \circ R \subseteq R$
- ▶ R reflexiv wenn $\forall x. (x, x) \in R$
- ▶ R symmetrisch wenn $R^{-1} \subseteq R$
- ► Transitiv-reflexiver Abschluss:

$$R^* = \bigcap_{S} R \subseteq S, S$$
 reflexiv und transitiv

Äquivalenzabschluss:

$$R^{=}=\bigcap_{S}R\subseteq S, S$$
 reflexiv, transitiv und symmetrisch

▶ Notation: $\Rightarrow_{\mathcal{R}} = \rightarrow_{\mathcal{R}}^*$, $\Leftrightarrow_{\mathcal{R}} = \rightarrow_{\mathcal{R}}^=$

Fahrplan

- ► Aussagenlogik
- Prädikatenlogik
- ► Isabelle I: Grundlagen
 - ► Aussagenlogik und natürlisches Schließen
 - ▶ Prädikatenlogik und Quantoren
 - ▶ Logik höherer Stufe
 - ▶ Isabelle: Definitionen und konservative Erweiterung
 - ▶ Isabelle: Automatische Beweisprozeduren
- ► Isabelle II: Anwendungen

2 [13]

Grundlagen der Termersetzung

- lacktriangle Gegeben: Menge von Gleichungen $\mathcal{E} = \{s_i = t_i\}_{i=1,...,n}$
- ▶ Problem: Wann folgt u = v aus \mathcal{E} durch Gleichungsumformung?

4 [1:

Termersetzung

- ▶ Gegeben: Menge von Regeln $\mathcal{R} = \{s_i \to t_i\}_{i=1,...,n}$ Signatur Σ , Variablen X
- ▶ Ein Kontext ist $C \in T_{\Sigma}(X \cup \{\Box\})$, der \Box genau einmal enthält.
- ▶ Für Kontext C, Term $t \in T_{\Sigma}(X)$ ist $C[t] = \sigma(C)$ mit $\sigma(\Box) = t$ und $\sigma(x) = x$ (für $x \neq \Box$).
- ► Ein-Schritt-Ersetzungsrelation:

$$\begin{array}{ll} s \rightarrow_{\mathcal{R}} t \iff & \exists \ I \rightarrow r \in \mathcal{R}, \\ & \exists \ \mathsf{Kontext} \ \ C, \sigma : X \rightarrow \mathcal{T}_{\Sigma}(X) \\ s = C[\sigma(I)], t = C[\sigma(r)] \end{array}$$

6 [13]

Eigenschaften von $\Rightarrow_{\mathcal{R}}$

- ▶ t ist in Normalform, wenn $t \Rightarrow_{\mathcal{R}} s \Longrightarrow s = t$
- ▶ s ist Normalform von t (NF(t)), wenn $t \Rightarrow_{\mathcal{R}} s$ und s in Normalform
- ▶ s und t sind reduzierbar $(s \downarrow t)$, wenn $\exists u.s \Rightarrow_{\mathcal{R}} u, t \Rightarrow_{\mathcal{R}} u$
- ▶ Eigenschaften von $\Rightarrow_{\mathcal{R}}$:
- ▶ Church-Rosser: $s \Leftrightarrow_{\mathcal{R}} t \text{ dann } s \downarrow t$
- ▶ Konfluenz: $s_1 \Leftarrow_{\mathcal{R}} t \Rightarrow_{\mathcal{R}} s_2 \text{ dann } s_1 \downarrow s_2$
- ► Termination: Keine unendliche Kette $s_1 \rightarrow_{\mathcal{R}} s_2 \rightarrow_{\mathcal{R}} s_3 \dots s_n$ ($\Rightarrow_{\mathcal{R}}$ wohlfundiert)

8 [13

Sätze

- ▶ Lemma: $\Rightarrow_{\mathcal{R}}$ Church-Rosser gdw. $\Rightarrow_{\mathcal{R}}$ konfluent
- ▶ Lemma: Wenn $\Rightarrow_{\mathcal{R}}$ terminierend und konfluent, dann
 - 1. Normalform eindeutig
 - 2. $s \Leftrightarrow_{\mathcal{R}} t \text{ gdw. } NF(s) = NF(t)$
- ▶ Satz: $s \Leftrightarrow_{\mathcal{R}} t \text{ gdw. } s =_{\mathcal{E}} t$

9 [13]

Simplifikation

- ► Simplifikation ist Termersetzung:
 - ▶ Gegeben Theorem s = t, ersetze s durch t.
- ► Benutzung: apply (simp)
- ▶ Nutzt Gleichungen und Ungleichungen:
 - ► Funktionsdefinitionen
 - ▶ Vereinfachungsregeln für Datentypen
 - Deklarierte Theoreme
 - ► Annahmen des lokalen Subgoals
- lacksquare Benutzt bedingte Gleichungen: $s_1=t_1,\ldots,s_n=t_n\Longrightarrow s=t$
 - ▶ Ersetzt s durch t, wenn Gleichungen $s_1 = t_1 \dots s_n = t_n$ rekursiv gezeigt werden können.
- ▶ Instantiiert keine Meta-Variablen
- ▶ Erzeugt keine neuen Subgoals, nur Vereinfachung

11 [13]

Zusammenfassung

- Automatische Beweisprozeduren in Isabelle: simp, blast, clarify, auto
- ► Wann welche benutzen?
 - ightharpoonup Gleichungsumformung, Reduktion: simp
 - ▶ Regeln der Logik (Quantoren und Junktoren): clarify, blast
 - "Triviale" Schritte: auto (nur als letzte Methode!)

13 [13]

Kriterien für Konfluenz und Termination

- ightharpoonup $\Rightarrow_{\mathcal{R}}$ konfluent, wenn alle kritischen Paare reduzierbar
- ightharpoonup ightharpoonup terminierend, wenn Terminationsordnung existiert

10 [11

Klassische Beweiser

- ► Beweisplaner: blast
 - ► Konstruiert Beweis durch Suche
 - ▶ Gelingt oder schlägt fehl: keine neuen Subgoals
- ► Klassischer Beweiser: clarify
 - ▶ Wendet Einführungs- und Eliminationsregeln systematisch an
 - ► Keine neuen Subgoals, nur Vereinfachung
 - ▶ Sicher: keine unbeweisbaren Subgoals
 - ▶ clarsimp: Kombination mit Simplifikation
- ▶ Vollautomatisch: auto
 - ► Kombination verschiedener Beweiser
 - ▶ Instantiiert Meta-Variablen, erzeugt neue Subgoals
 - ▶ Unsicher: kann unbeweisbare Subgoals erzeugen

12 [13