Formale Methoden der Softwaretechnik Vorlesung vom 09.06.11: Das Isabelle-System

Till Mossakowski & Christoph Lüth

Universität Bremen

Sommersemester 2011

Rev. 1483

1 [19]

Heute

- ► Vertrauenswürdigkeit von Isabelle
 - ► Systemarchitektur
 - ► Konservative Erweiterung
- ► Typdefinitionen
 - ► Nützliche Typen

3 [19]

LCF-Architektur

- ► Problem: Korrektheit der Implementierung
- ► Reduktion des Problems:
 - ► Korrektheit eines logischen Kerns
 - ► Rest durch Typisierung
- ► Abstrakter Datentyp thm, Inferenz-Regeln als Operationen

val assume: cterm -> thm
val implies_intr: cterm -> thm -> thm

- ► Logischer Kern:
 - ► Typcheck, Signaturen, Unifikation, Meta-Logik: ca. 5500 LOC
 - ► Handhabbare Größe

5 [19]

Konservative Erweiterung in Isabelle

- ▶ Isabelle: Konstruktion von Theorien durch konservative Erweiterungen
- $\blacktriangleright \ \, \text{Konstantendefinition (zur Signatur Σ):}$

 $c::\sigma \qquad c\equiv t$

- c ∉ Σ
- $t \in \mathcal{T}_{\Sigma}$ (enthält nicht c)
- ightharpoonup Typvariablen in t auch in σ
- ► Lemma: Konstantendefinition ist konservative Erweiterung
- ▶ Weitere konservative Erweiterungen:
 - ► Typdefinitionen, Datentypen.

Fahrplan

- ► Aussagenlogik
- Prädikatenlogik
- ► Isabelle I: Grundlagen
 - ► Aussagenlogik und natürlisches Schließen
 - ▶ Prädikatenlogik und Quantoren
 - ▶ Logik höherer Stufe
 - ▶ Isabelle: Definitionen und konservative Erweiterung
 - ▶ Isabelle: Automatische Beweisprozeduren
- ► Isabelle II: Anwendungen

2 [19]

Vertrauenswürdigkeit

- ► Wann können wir Isabelle-Beweisen trauen?
- 1. Sinnvolle Modellierung
- 2. Isabelle korrekt implementiert
- 3. Logik konsistent
- ▶ Problem: ca. 150 Kloc SML Quellcode, ca. 310 Kloc Beweise
- ► Maßnahmen:
 - 1. Review
- 2. LCF-Systemarchitektur
- 3. Konservative Erweiterung

4 [19

Konservative Erweiterung

- ▶ Signatur $\Sigma = \langle T, \Omega \rangle$
 - ightharpoonup Typdeklarationen T, Operationen Ω
 - ▶ Definiert die Syntax: Terme T_{Σ} über Σ
- ▶ Theorie $Th = \langle \Sigma, Ax \rangle$
 - Axiome Ax
 - ▶ Theoreme: $Thm(\mathcal{T}h) \stackrel{def}{=} \{t \mid \mathcal{T}h \vdash t\}$
- Erweiterung: $\Sigma \subseteq \Sigma'$, $\mathcal{T}h \subseteq \mathcal{T}h'$
 - ▶ Konservativ gdw. $t \in \mathit{Thm}(\mathcal{T}\mathit{h}')$, $t \in \mathcal{T}_{\Sigma}$ dann $t \in \mathit{Thm}(\mathcal{T}\mathit{h})$
 - ▶ Keine neuen Theoreme über alte Symbole

6 [1

Isabelle Theorien

- ► Strukturierung der Entwicklung in Theorien
- ► Theorien bilden DAG
- ► Theorieelemente (Auszug):
- ► Konstantendeklaration: consts f :: T
- ► Konstantendefinitionen definition f :: T where "f == E"
 - $\blacktriangleright \ \ E \ \text{darf f nicht enthalten,} \ \ \textit{FV}(E) \subseteq \textit{FV}(f), \ \ \textit{FV}_{\textit{Type}}(E) \subseteq \textit{FV}_{\textit{Type}}(f)$
- ► Typdeklaration: typedecl t
- ► Typsynonym: types t = S
- ▶ Beweise: lemma oder theorem
- ► Sonstiges (Syntax erweiterbar)

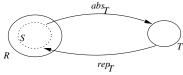
8 [1

7 [19]

Typdefinitionen in Isabelle

Definition eines neuen Typen:

- ▶ Gegeben Typ R, Prädikat $S: R \Rightarrow Bool$
- ▶ Neuer Typ T mit $abs_T : R \Rightarrow T, rep_T : T \Rightarrow R$ so dass
 - ▶ S und T isomorph: $\forall t.abs_T(rep_T t) = t, \forall r.S r \longrightarrow rep_T(abs_T r) = r$
 - ► T nicht leer: ∃t.S t



- Lemma: Typdefinitionen sind konservative Erweiterungen.
- ▶ In dieser Form selten direkt benutzt.

9 [19]

Beispiel: Produkte

- Ausgangstyp $R_{\alpha,\beta} \equiv \alpha \Rightarrow \beta \Rightarrow Bool$
- ▶ Neuer Typ $T_{\alpha,\beta} \equiv \alpha \times \beta$
 - ▶ Idee: Prädikat $p: \alpha \Rightarrow \beta \Rightarrow Bool$ repräsentiert (a, b) $p \times y = true \longleftrightarrow x = a \land y = b$
- $S f = \exists a b. (f = \lambda x y. x = a \land y = b)$
- ► Repräsentationsfunktion:

 $rep_{\times}(a, b) = p \text{ mit } p \times y = true \longleftrightarrow x = a \land y = b$

► Abstraktionsfunktion:

 $abs_{\times}p = \iota a \, b. \, p \, a \, b$

▶ Damit Eigenschaften als Theoreme herleitbar.

[19]

Nützliche Isabelle/HOL-Typen

- ► Vordefinierte Typen
- ► Algebraische Datentypen
- ► Benannte Produkte (labelled records)

11 [19]

Natürliche Zahlen und unendliche Datentypen

- ► Natürliche Zahlen: nicht konservativ!
- ► Erfordert zusätzliches Axiom Unendlichkeit.
- ▶ Neuer Typ ind mit Konstanten $Z :: ind, S : ind \Rightarrow ind$ und

inj
$$S$$
 $S \times \neq Z$

- Damit nat definierbar.
- ▶ Warum ind? Auch für andere Datentypen

2 [19]

Nützliche vordefinierte Typen

Theorie	Тур	Bedeutung
Set	'a set	getypte Mengen* ('a=> bool)
Sum	'a + 'b	Summentyp
Product_Type	'a * 'b	Produktyp
Nat	nat	Natürliche Zahlen
Int	int	ganze Zahlen
Real	real	reelle Zahlen
Complex	complex	komplexe Zahlen
Datatype	'a option	Haskell's Maybe, Some x oder None
List	'a list	Listen
Map	'a ~=> 'b	partielle Abbildungen
		('a => 'b option)

* Typsynonym

http://isabelle.in.tum.de/dist/library/HOL/index.html

13 [19]

Algebraische Datentypen

- ► In Isabelle/HOL wie in Haskell
- ► Eigenschaften werden (hinter den Kulissen) bewiesen:
 - ► Injektivität der Konstruktoren
 - ► Disjunktheit der Konstruktoren
 - ► Generiertheit durch Konstrukturen
 - ► Abgeleitete Schemen:
 - ► Induktion
 - ► Fallunterscheidung
- ► Einschränkung: nur kovariante Rekursion

14 [19

Algebraische Datentypen

► Beispiel:

► Nicht erlaubt:

datatype T = C "T=> bool"

Labelled Records

- ▶ In Isabelle/HOL ähnlich wie in Haskell
- Syntax:

- ► Definiert:
 - ► Konstrukturen (|x= 3, y= 4|)
 - ► Selektoren x :: point2d => int
 - ► Update p (|x := 3 |)
- ► Erweiterbar:

record point3d = point2d +
 z :: int

16 [19]

Definition von Funktionen

- ► In HOL: alle Funktionen total
 - ► Need-to-know Prinzip: undefiniert ist unbeweisbar
- ► Der einfache Fall: primitiv rekursiv
- ▶ Der allgemeine Fall
- ► Immer mit Terminationsbeweis

17 [19]

Zusammenfassung

- ► Isabelle: LCF-Architektur mit logischem Kern und Meta-Logik
- ► Konservative Erweiterung: erhält Konsistenz
- ▶ Typdefinitionen: Einschränkung bestehender Typen
- ► Der Typ ind: Unendlichkeitsaxiom
- Nützliche Typen: vordefinierte, algebraische Datentypen, labelled records
- ▶ Funktionsdefinition: fun und function
 - Fast wie in Haskell, aber immer total.

19 [1

Rekursion

Primitiv: Allgemein:

 $\mathbf{fun}\ f :: \ \tau \qquad \qquad \mathbf{function}\ f :: \ \tau$

where where

equations equations

by completeness-proof

termination by termination-proof

18 [19]