Formale Modellierung

Vorlesung 2 vom 20.04.15: Aussagenlogik und natürliches Schließen

Christoph Lüth

Universität Bremen

Sommersemester 2015

16:21:32 2015-07-13

Heute

- ► Einführung in die formale Logik
- ► Aussagenlogik
 - ► Beispiel für eine einfache Logik
 - ► Guter Ausgangspunkt
- ► Natürliches Schließen
 - Wird auch von Isabelle verwendet.
- ▶ Buchempfehlung:

Dirk van Dalen: Logic and Structure. Springer Verlag, 2004.

Fahrplan

- ► Teil I: Formale Logik
 - Einführung
 - ► Aussagenlogik (PL): Syntax und Semantik, Natürliches Schließen
 - ► Konsistenz & Vollständigkeit der Aussagenlogik
 - ▶ Prädikatenlogik (FOL): Syntax und Semantik
 - ► Konsistenz & Vollständigkeit von FOL
 - ▶ FOL mit induktiven Datentypen
 - ► FOL mit rekursiven Definitionen
 - ▶ Logik höherer Stufe (HOL): Syntax und Eigenschaften
 - ▶ Berechungsmodelle (Models of Computation)
 - ▶ Die Unvollständigkeitssätze von Gödel
- ► Teil II: Spezifikation und Verifikation

Formalisierung von Aussagen

- ► Beispielaussagen:
 - 1. John fuhr weiter und stieß mit einem Fußgänger zusammen.
- 2. John stieß mit einem Fußgänger zusammen und fuhr weiter.
- 3. Wenn ich das Fenster öffne, haben wir Frischluft.
- 4. Wenn wir Frischluft haben, dann ist 1+3=4
- 5. Wenn 1+2=4, dann haben wir Frischluft.
- 6. John arbeitet oder ist zu Hause.
- 7. Euklid war ein Grieche oder ein Mathematiker.
- ► Probleme natürlicher Sprache:
 - Mehrdeutigkeit
 - Synonyme
 - ► Versteckte (implizite) Annahmen

Formale Logik

► Es regnet.

- ► Ziel: Formalisierung von Folgerungen wie
 - ► Wenn es regnet, wird die Straße nass.
 ► Nachts ist es dunkel.
 - Es ist hell.
 - ► Also ist die Straße nass.
- Also ist es nicht nachts.
- ► Eine Logik besteht aus
 - ► Einer Sprache £ von Formeln (Aussagen)
 - ► Einer Semantik, die Formeln eine Bedeutung zuordnet
 - ► Schlußregeln (Folgerungsregeln) auf den Formeln.
- ► Damit: Gültige ("wahre") Aussagen berechnen.

Beispiel für eine Logik

- ▶ Sprache $\mathcal{L} = \{\clubsuit, \spadesuit, \heartsuit, \diamondsuit\}$
- ► Schlußregeln:

Aus ♦ folgt ♣ Aus ♦ folgt ♠ Aus ♣ und ♠

folgt ♡

 δ

gilt immer

► Beispielableitung: ♡

Aussagenlogik

- ▶ Sprache *Prop* gegeben durch:
 - 1. Variablen (Atome) $V \subseteq \mathcal{P}rop$ (Menge V gegeben)
 - 2. $\bot \in \mathcal{P}rop$
 - 3. Wenn $\phi, \psi \in \mathcal{P}rop$, dann
 - $\qquad \qquad \phi \wedge \psi \in \mathcal{P}\!\mathit{rop}$
 - $\quad \bullet \ \lor \psi \in \mathcal{P} \mathit{rop}$
 - $\phi \longrightarrow \psi \in \mathcal{P}rop$
 - $\phi \longleftrightarrow \psi \in \mathcal{P}rop$
 - 4. Wenn $\phi \in \mathcal{P}rop$, dann $\neg \phi \in \mathcal{P}rop$.
- $\blacktriangleright \ \mathsf{NB.} \ \mathsf{Pr\"{a}zedenzen:} \ \neg \ \mathsf{vor} \ \land \ \mathsf{vor} \ \lor \ \mathsf{vor} \ \longrightarrow, \longleftrightarrow$

Wann ist eine Formel gültig?

- ▶ Semantische Gültigkeit $\models P$
- ▶ Übersetzung in semantische Domäne
- ► Variablen sind wahr oder falsch
- ► Operationen verknüpfen diese Werte
- ► Syntaktische Gültigkeit ⊢ P
 - ► Formale Ableitung
 - ► Natürliches Schließen
 - ► Sequenzenkalkül
 - ► Andere (Hilbert-Kalkül, gleichungsbasierte Kalküle, etc.)

Semantik

▶ Domäne: {0,1} (0 für falsch, 1 für wahr)

Definition (Semantik aussagenlogischer Formeln)

Für Valuation $v:V \to \{0,1\}$ ist $[\![\cdot]\!]_v:Prop \to \{0,1\}$ definiert als

$$\begin{split} \llbracket w \rrbracket_v &= v(w) \pmod{w \in V} \\ \llbracket \bot \rrbracket_v &= 0 \\ \llbracket \phi \land \psi \rrbracket_v &= \min(\llbracket \phi \rrbracket_v, \llbracket \psi \rrbracket_v) \\ \llbracket \phi \lor \psi \rrbracket_v &= \max(\llbracket \phi \rrbracket_v, \llbracket \psi \rrbracket_v) \\ \llbracket \phi \longrightarrow \psi \rrbracket_v &= 0 \Longleftrightarrow \llbracket \phi \rrbracket_v &= 1 \text{ und } \llbracket \psi \rrbracket_v &= 0 \\ \llbracket \phi \longleftrightarrow \psi \rrbracket_v &= 1 \Longleftrightarrow \llbracket \phi \rrbracket_v &= \llbracket \psi \rrbracket_v \\ \llbracket \neg \phi \rrbracket_v &= 1 - \llbracket \phi \rrbracket_v \end{split}$$

9 [17]

Semantische Gültigkeit und Folgerung

• Semantische Gültigkeit: $\models \phi$

$$\models \phi$$
 gdw. $\llbracket \phi \rrbracket_{v} = 1$ für alle v

▶ Semantische Folgerung: sei $\Gamma \subseteq Prop$, dann

 $\Gamma \models \psi \text{ gdw. } [\![\psi]\!]_{\nu} = 1 \text{ wenn } [\![\phi]\!]_{\nu} = 1 \text{ für alle } \phi \in \Gamma$

10 [17]

Beweisen mit semantischer Folgerung

- ► Die Wahrheitstabellenmethode:
 - ▶ Berechne $\llbracket \phi \rrbracket_{V}$ für alle Möglichkeiten für V
- ▶ Beispiel: $\models (\phi \longrightarrow \psi) \longleftrightarrow (\neg \psi \longrightarrow \neg \phi)$

φ	ψ	$\phi \longrightarrow \psi$	$\neg \psi$	$\neg \phi$	$\neg \psi \longrightarrow \neg \phi$	$(\phi \longrightarrow \psi) \longleftrightarrow (\neg \psi \longrightarrow \neg \phi)$
0	0	1	1	1	1	1
0	1	1	0	1	1	1
1	0	0	1	0	0	1
1	1	1	0	0	1	1

- ▶ Problem: Aufwand exponentiell 2ª zur Anzahl a der Atome
- ► Vorteil: Konstruktion von Gegenbeispielen

11 [17]

Syntakische Gültigkeit: Natürliches Schließen

- ▶ Sprache $\mathcal{L} = \{\clubsuit, \spadesuit, \heartsuit, \diamondsuit\}$
- ► Schlußregeln:

► Beispielableitung: ♡

12 [17]

Natürliches Schließen (ND) für Aussagenlogik

- ► Vorgehensweise:
- 1. Erst Kalkül nur für $\wedge, \longrightarrow, \bot$
- 2. Dann Erweiterung auf alle Konnektive.
- ► Für jedes Konnektiv: Einführungs- und Eliminationsregel
- ► NB: konstruktiver Inhalt der meisten Regeln

Natürliches Schließen — Die Regeln

14 [1

Die fehlenden Konnektive

► Einführung als Abkürzung:

$$\neg \phi \stackrel{\text{def}}{=} \phi \longrightarrow \bot$$

$$\phi \lor \psi \stackrel{\text{def}}{=} \neg (\neg \phi \land \neg \psi)$$

$$\phi \longleftrightarrow \psi \stackrel{\text{def}}{=} (\phi \longrightarrow \psi) \land (\psi \longrightarrow \phi)$$

► Ableitungsregeln als Theoreme.

Die fehlenden Schlußregeln

15 [1

Zusammenfassung

- ▶ Formale Logik formalisiert das (natürlichsprachliche) Schlußfolgern
- ▶ Logik: Formeln, Semantik, Schlußregeln (Kalkül)
- ▶ Aussagenlogik: Aussagen mit \land , \longrightarrow , \bot
 - $\,\blacktriangleright\,\,\neg$, $\,\vee$, $\,\longleftrightarrow\,$ als abgeleitete Operatoren
- ▶ Semantik von Aussagenlogik $\llbracket \cdot \rrbracket_v : Prop \rightarrow \{0,1\}$
- ▶ Natürliches Schließen: intuitiver Kalkül
- ► Nächste Woche:
 - ▶ Konsistenz und Vollständigkeit von Aussagenlogik

17 [17]