Formale Modellierung

Vorlesung 13 vom 14.07.2014: Hybride Systeme

Serge Autexier & Christoph Liith
Universitat Bremen

Sommersemester 2014

1 [46]

Fahrplan

» Teil I: Formale Logik
» Teil Il: Spezifikation und Verifikation
» Formale Modellierung mit der UML und OCL
> Lineare Temporale Logik
» Temporale Logik und Modellpriifung
» Hybride Systeme

» Zusammenfassung, Riickblick, Ausblick

What are Hybrid Systems?
How are they modeled?
Finite Automata
Discrete Automata
Timed Automata
Multi-Phase Automata
Rectangular Automata
Affine Automata
How are properties specified?
Temporal Logic
CTL as a Branching Temporal Logic
ICTL - Integrator CTL
How are safety properties verified?
Forward Reachability
Backward Reachability
Location Elimination
Approximations for Affine Automata

*Thanks to Andreas Nonnengart for the slides

3 [46]

What are Hybrid Systems?

Alur, Henzinger et al

A hybrid system is a digital real-time system that is embedded in an
analog environment. It interacts with the physical world through sensors
and actuators.

Wikipedia

A hybrid system is a system that exhibits both continuous and discrete
dynamic behavior — a system that can both flow (described by differential
equations) and jump (described by a difference equation).

5 [46]

Finite Automata

> There are vertices (states, locations) and edges (transitions)

> and maybe some input alphabet

> and maybe some “accepting” state

7 [46]

2 [46]
What are Hybrid Systems?
4 [46]
How are they modeled?
Finite Automata
Discrete Automata
Timed Automata
Multi-Phase Automata
Rectangular Automata
Affine Automata
6 [46]
Discrete Automata
B
> there are variables involved, and they can be manipulated
> transitions may be guarded
> in general not finite state
8 [46]

Timed Automata

» additional clock variables

> they continuously increase their value in locations
> all of them behave identically

» only operation: reset to 0

9 [46]

Timed Automata

v

additional clock variables

> they continuously increase their value in locations

v

all of them behave identically

v

only operation: reset to 0

Multi-Phase Automata

» additional variables with a fixed rate, not only clocks
> they increase their value according to the rate

> thus not all of them behave identically

> arbitrary operations

11 [46]

Railroad Gate Controller

Train

raise

£ = 100 — |exit
z :=[2000,00)

lower

13 [46]

Affine Automata

» additional variables with arbitrary rate
> the rate may be in terms of the (other) variables
> they represent in general non-linear functions

> arbitrary operations

15 [46]

10 [46]
Rectangular Automata
> additional variables with a bounded rate
> they increase their value according to these bounds
» they represent arbitrary functions wrt/ bounds
> arbitrary operations
x=1-—x:=0
A B
x=0y=0
x>1—x:=0,y:=0
12 [46]
Smart Factory
Labeling Section with stoppers and sensors
14 [46]
How are properties specified?
Temporal Logic
CTL as a Branching Temporal Logic
ICTL - Integrator CTL
16 [46]

Temporal Logic - operators [J and ¢

Linear Temporal Logic

Interpret [0 as Always, Henceforth, from now on
Interpret) as Eventually, Unavoidable

Branching Temporal Logic

Interpret [J as Always, Henceforth, from now on
Interpret) as Eventually in a possible future

17 [46]

Computation Tree Logic lllustrated

VO for each path - always

18 [46]

Computation Tree Logic lllustrated

3O for some path - eventually

19 [46]

Computation Tree Logic lllustrated

VO for each path - eventually

20 [46]

Computation Tree Logic lllustrated

30 for some path - always

21 [46]

Timed (Integrator) CTL

> add clock variables
> these may be used in formulas

> restrict these clocks to certain locations (stopwatches)

230 {ANz <5}
cNMY YO (P — ¢ > 12}

22 [46]

How are safety properties verified?
Forward Reachability
Backward Reachability
Location Elimination

23 [46]

Safety Properties

A safety property is of the form
vOe

where ® is a classical logic formula (with arithmetics)
We call a state s safe if ®(s) is true

It has to be shown that all reachable states are safe (forward reachability)J

or, equivalently,

It has to be shown that no unsafe state is reachable (backward
reachability)

24 [46]

Forward Reachability

The Operator post(S)

Given a set S of states

post(S) = {s | 3s' € S : s' rgi¢r 5}

Fixpoint Iteration

Start with S a the initial states
repeat until post(S) C S: S := S U post(S)

Finally
Check whether ®(S) holds

25 [46]

Backward Reachability

The Operator pre(S)

Given a set S of states

pre(S) ={s|3s' € S:srry5 5}

Fixpoint lteration
Start with S = {s | =®(s)}
repeat until pre(S) C S: S := S U pre(S)

Finally
Check whether the initial state is contained in S

26 [46]

Example: Leaking Gas Burner

< =0
Leak HEBDE NonlLeak
xo;yo;z»o
Xyl

x>30 % x:=0

Safety Property
VOz>60—-20xy <z

| = {Leak(0,0,0)}
post(l) = {Leak(x,y,z) |0 < x <1,y =x,z=x}
U {NonLeak(0,y,z) |0<y <1l,z=y}

27 [46]

Problem: Long Loops

XU v,w =0

Moo R~

IA Q11

Property (many iterations)
VO (u>154 - 59%xw < u+v)

28 [46]

Another Problem: Termination

29 [46]

Location Elimination

General Idea
» Compute the responsibility for a location once and for all
> thereby compute a definition for this location

» insert this definition into the automaton

v

delete the location (and all the transitions to and fro)

30 [46]

Elimination Example

A B c

N x=2 2
<y mxzy—»xy:o
,,7:0 = -——
g Q

y=1

N VOx+y<10

Reachability Theory for B

A(x,y) = x <y — B(x,y)

B(x,y) > x<y

B(x,y) > x+y <10

B(x,y) 2 V6 0<SAX =x+20Ay =y+0AX <y — B(x,y')
B(x,y) = x =y — C(0,0)

31 [46]

Elimination Approach

Reachability Theory simplified

Alx,y) = x <y = B(x,y)

B(x,y) = x<y

B(x,y) > x+y <10

B(x,y) = x <xX'Ax+2xy =x'+2xy Ax' <y = B(x,y’)
B(x,y) = x =y — C(0,0)

Fixpoint Computation (Definition for B)

B(x,y) = x < y — €(0,0)
B(x,y) »x <y —2+xy<x+5

Insertion (in A)

A(x,y) = x <y = €(0,0)
Alx,y) > x <y —=2xy<x+5

32 [46]

Elimination Result

O VOx+y<10

777’:0 x<y—ox,y:=0

Ix<y—=2y<x+5

o VOx+y<10

Elimination Approach

Advantages

» with each elimination the verification problem decreases

> no need for multiple turns through the automaton

> in a sense mixes (and generalizes) standard reachability approaches

34 [46]
Approximation of Affine Behavior
x € [0,1]
x=0Ay=1(ye[-1,0]
M xep
y€o,1]
y
1
1 x
36 [46]
One More Splitting
.;(Y
b
x € [0.5,1]
yelo]
38 [46]

33 [46]
Approximations for Affine Automata
35 [46]
Location Splitting
y=-x
x€[0,1]
y€o0.1]
x=y y
Xx=0Ay=1 y x x=0.5 v x
x € [0,0.5] x€[0.5,1]
37 [46]
One More Splitting
X €[0.5,1] % €[0.5,1]
y € [=0.5,0] ¥ €[-0.5,0]
x € [0,0.5] x € [0.5,1]
y €[0.5,1] yelo1]
% €[0.5,1]
y € [-0.5,0]
x € [0,0.5]
y €[0,0.5]
39 [46]

Eliminating A

Positive A-clauses

x=0Ay=1— Alx,y) initial state
B(x,y) & x =05Ay € [0.5,1] = A(x,y) from B to A
C(x,y) =y =0.5Ax € [0,0.5] — A(x, y) from C to A

Alx,y) =y <yAx' €[0,05 Ay €051 Ax+y <x' +y — A(x',y’) continuous change

Fixpoint Computation and Definition of A

x€[0,05] Ay €05, 1] A1 < x+y— Alx,y)
C(x,y) =+ y=05Ay =05Ax€[0,05Ax<x' Ax" €[0,0.5] = A(x',y’)

Insertion of A’s Definition

x=05Ay€[0.51] = B(x,y)
x=05Ay=05— C(x,y)
Clx,y) = x €[0,05] Ay =05Ax" € [x,05] Ay =y — C(x',y)

40 [46]

After Eliminating A

x=y
y=—x

x €[0.5,1]
y€[o0,1]

x € [0,05] Ay =05 A x:€ [x,0.5]

B

=0.5Ay€[0.5,1

Eliminating C

Positive C-clauses

x=05Ay =05 C(x,y)
B(x,y) = x=0.5Ay € [0,0.5] = C(x,y)
Clx,y) =»x<x' Ay <ynx' €[0,05] Ay’ €[0,05] — C(x',y")

Fixpoint Computation and Definition of C

x=0.5Ay € [0,0.5] = C(x,y)
B(x,y) > x=05Ay € [0,0.5] Ax’ =0.5Ay" €[0,y] = C(x',y’)

Insertion of C's Definition

x=0.5Ay €[0,0.5] = B(x,y)
B(x,y) » x=05Ay €[0,05]Ax" =05Ay" €[0,y] - B(x',y’)

41 [46]
After Eliminating C
B
W SN
e sl pE=00AY G ROFATHE Rl
_—osnyEBos \ YELI feo
43 [46]

42 [46]
Eliminating B
Positive B-clauses
x=05Ay €[05,1] — B(x,y)
x=0.5Ay € [0,0.5] = B(x,y)
Blx,y) > x <x' Ay SyAx +2y <x+2yAx €051 Ay €[0,1] = B(x',y')
Fixpoint Computation and Definition of B
x+2y <25Ax €051 Ay € [0,1] = B(x,y) J
Final Insertion and Result
x€[0,05] Ay €051 A1 < x+y — Alx,y)
x+2y <25Ax€[0.51 Ay €[0,1] — B(x,y)
x=05Ay € [0,0.5 — C(x.y)
44 [46]

After Eliminating All

45 [46]

Summary
» Modelling of systems with continuous state changes requires different
techniques

» Inspired by state machines, but with continuous behaviour in states
expressed by first derivatives

v

Different aspects
> Timed Automata
> Multi-Phase Automata
> Rectangular Automata

> Affine Automata

» Properties formulated using CTL;

» Verification approaches beyond forward /bachward reachability analysis

46 [46]

	What are Hybrid Systems?
	How are they modeled?
	Finite Automata
	Discrete Automata
	Timed Automata
	Multi-Phase Automata
	Rectangular Automata
	Affine Automata

	How are properties specified?
	Temporal Logic
	CTL as a Branching Temporal Logic
	ICTL - Integrator CTL

	How are safety properties verified?
	Forward Reachability
	Backward Reachability
	Location Elimination

	Approximations for Affine Automata

