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Abstract

Our objective is to understand the notiontygde in programming languages, present a model of typed,
polymorphic programming languages that reflects recent research in type theory, and examine the relevance of
recent research to the design of practical programming languages.

Object-oriented languages provide both a framework and a motivation for exploring the interaction among
the concepts of type, data abstraction, and polymorphism, since they extend the notion of type to data
abstraction and since type inheritance is an important form of polymorphism. We devwetaicalus-based
model for type systems that allows us to explore these interactions in a simple setting, unencumbered by
complexities of production programming languages.

The evolution of languages from untyped universes to monomorphic and then polymorphic type systems is
reviewed. Mechanisms for polymorphism such as overloading, coercion, subtyping, and parameterization are
examined. A unifying framework for polymorphic type systems is developed in terms of the\tgp&ulilus
augmented to include binding of types by quantification as well as binding of values by abstraction.

The typedA-calculus is augmented by universal quantification to model generic functions with type
parameters, existential quantification and packaging (information hiding) to model abstract data types, and
bounded quantification to model subtypes and type inheritance. In this way we obtain a simple and precise
characterization of a powerful type system that includes abstract data types, parametric polymorphism, and
multiple inheritance in a single consistent framework. The mechanisms for type checking for the augmented
calculus are discussed.

The augmented typexdcalculus is used as a programming language for a variety of illustrative examples.
We christen this languadeun becausdun instead ofA is the functional abstraction keyword and because it is
pleasant to deal with.

Fun is mathematically simple and can serve as a basis for the design and implementation of real
programming languages with type facilities that are more powerful and expressive than those of existing
programming languages. In particular, it provides a basis for the design of strongly typed object-oriented
languages.
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1. From Untyped to Typed Universes
1.1. Organizing Untyped Universes

Instead of asking the questitvhat is a type? we ask why types are needed in programming languages.

To answer this question we look at how types arise in several domains of computer science and mathematics.
The road from untyped to typed universes has been followed many times in many different fields, and largely
for the same reasons. Consider, for example, the following untyped universes:

(1) Bit strings in computer memory

(2) S-expressions in pure Lisp

(3) A-expressions in the-calculus

(4) Sets in set theory

The most concrete of these is the universe of bit strings in computer memory. ‘Untyped’ actually means
that there is only one type, and here the only type is the memory word, which is a bit string of fixed size. This
universe is untyped because everything ultimately has to be represented as bit strings: characters, numbers,
pointers, structured data, programs, etc. When looking at a piece of raw memory there is generally no way of
telling what is being represented. The meaning of a piece of memory is critically determined by an external
interpretation of its contents.

Lisp's S-expressions form another untyped universe, one which is usually built on top of the previous bit-
string universe. Programs and data are not distinguished, and ultimately everything is an S-expression of some
kind. Again, we have only one type (S-expressions), although this is somewhat more structured (atoms and
cons-cells can be distinguished) and has better properties than bit strings.

In theA-calculus, everything is (or is meant to represent) a function. Numbers, data structures and even bit
strings can be represented by appropriate functions. Yet there is only one type: the type of functions from values
to values, where all the values are themselves functions of the same type.

In set theory, everything is either an element or a set of elements and/or other sets. To understand how
untyped this universe is, one must remember that most of mathematics, which is full of extremely rich and
complex structures, is represented in set theory by sets whose structural complexity reflects the complexity of
the structures being represented. For example, integers are generally represented by sets of sets of sets whos:
level of nesting represents the cardinality of the integer, while functions are represented by possibly infinite sets
of ordered pairs with unique first components.

As soon as we start working in an untyped universe, we begin to organize it in different ways for different
purposes. Types arise informally in any domain to categorize objects according to their usage and behavior. The
classification of objects in terms of the purposes for which they are used eventually results in a more or less
well-defined type system. Types arise naturally, even starting from untyped universes.

In computer memory, we distinguish characters and operations, both represented as bit strings. In Lisp,
some S-expressions are called lists while others form legal programsaloulus some functions are chosen
to represent boolean values, others to represent integers. In set theory some sets are chosen to denote ordere
pairs, and some sets of ordered pairs are then called functions.

Untyped universes of computational objects decompose naturally into subsets with uniform behavior. Sets
of objects with uniform behavior may be named and are referred to as types. For example, all integers exhibit
uniform behavior by having the same set of applicable operations. Functions from integers to integers behave
uniformly in that they apply to objects of a given type and produce values of a given type.

After a valiant organization effort, then, we may start thinking of untyped universes as if they were typed.
But this is just an illusion, because it is very easy to violate the type distinctions we have just created. In
computer memory, what is the bit-wise boolearof a character and a machine operation? In Lisp, what is the
effect of treating an arbitrary S-expression as a program? k-tlaéculus, what is the effect of a conditional
over a non-boolean value? In set theory, what is the set-union of the function successor and the function
predecessor?

Such questions are the unfortunate consequence of organizing untyped universes without going all the way
to typed systems; it is then meaningful to ask about the (arbitrary) representations of higher-level concepts and
their interactions.

1.2. Static and Strong Typing

A type system has as its major purpose to avoid embarrassing questions about representations, and to
forbid situations where these questions might come up. In mathematics as in programming, types impose
constraints which help to enforce correctness. Some untyped universes, like naive set theory, were found to be
logically inconsistent, and typed versions were proposed to eliminate inconsistencies. Typed versions of set
theory, just like typed programming languages, impose constraints on object interaction which prevent objects
(in this case sets) from inconsistent interaction with other objects.

A type may be viewed as a set of clothes (or a suit of armor) that protects an underlying untyped
representation from arbitrary or unintended use. It provides a protective covering that hides the underlying
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representation and constrains the way objects may interact with other objects. In an untyped system untyped
objects arenaked in that the underlying representation is exposed for all to see. Violating the type system
involves removing the protective set of clothing and operating directly on the naked representation.

Objects of a given type have a representation that respects the expected properties of the data type. The
representation is chosen to make it easy to perform expected operations on data objects. For example, positional
notation is favored for numbers because it allows arithmetic operations to be easily defined. But there are
nevertheless many possible alternatives in choosing data representations. Breaking the type system allows a data
representation to be manipulated in ways that were not intended, with potentially disastrous results. For
example, use of an integer as a pointer can cause arbitrary modifications to programs and data.

To prevent type violations, we generally impose a static type structure on programs. Types are associated
with constants, operators, variables, and function symbotgpdinference system can be used to infer the
types of expressions when little or no type information is given explicitly. In languages like Pascal and Ada, the
type of variables and function symbols is defined by redundant declarations and the compiler can check the
consistency of definition and use. In languages like ML, explicit declarations are avoided wherever possible and
the system may infer the type of expressions from local context, while still establishing consistent usage.

Programming languages in which the type of every expression can be determined by static program
analysis are said to Istatically typed. Static typing is a useful property, but the requirement that all variables
and expressions are bound to a type at compile time is sometimes too restrictive. It may be replaced by the
weaker requirement that all expressions are guaranteed to be type-consistent although the type itself may be
statically unknown; this can be generally done by introducing some run-time type checking. Languages in
which all expressions are type-consistent are called strongly typed languages. If a language is strongly typed its
compiler can guarantee that the programs it accepts will execute without type errors. In general, we should
strive for strong typing, and adopt static typing whenever possible. Note that every statically typed language is
strongly typed but the converse is not necessarily true.

Static typing allows type inconsistencies to be discovered at compile time and guarantees that executed
programs are type-consistent. It facilitates early detection of type errors and allows greater execution-time
efficiency. It enforces a programming discipline on the programmer that makes programs more structured and
easier to read. But static typing may also lead to a loss of flexibility and expressive power by prematurely
constraining the behavior of objects to that associated with a particular type. Traditional statically typed systems
exclude programming techniques which, although sound, are incompatible with early binding of program
objects to a specific type. For example they exclude generic procedures, e.g. sorting, that capture the structure of
an algorithm uniformly applicable to a range of types.

1.3. Kinds of Polymorphism

Conventional typed languages, such as Pascal, are based on the idea that functions and procedures, anc
hence their operands, have a unique type. Such languages are saibtwierphic, in the sense that every
value and variable can be interpreted to be of one and only one type. Monomorphic programming languages
may be contrasted witholymorphic languages in which some values and variables may have more than one
type. Polymorphic functions are functions whose operands (actual parameters) can have more than one type.
Polymorphic types are types whose operations are applicable to values of more than one type.

parametric
universal
inclusion
polymorphism
overloading
ad-hoc
coercion

Figure 1: Varieties of polymorphism.

Strachey [Strachey 67] distinguished, informally, between two major kinds of polymortasametric
polymorphism is obtained when a function works uniformly on a range of types: these types normally exhibit
some common structuréd-hoc polymorphism is obtained when a function works, or appears to work, on
several different types (which may not exhibit a common structure) and may behave in unrelated ways for each
type.

Our classification of polymorphism in Figure 1 refines that of Strachey by introducing a new form of
polymorphism callednclusion polymorphism to model subtypes and inheritance. Parametric and inclusion



5

polymorphism are classified as the two major subcategoriesiwdrsal polymorphism, which is contrasted
with nonuniversal or ad-hoc polymorphism. Thus Figure 1 reflects Strachey's view of polymorphism but adds
inclusion polymorphism to model object-oriented programming.

Parametric polymorphism is so called because the uniformity of type structure is normally achieved by
type parameters, but uniformity can be achieved in different ways, and this more general concept is called
universal polymorphism. Universally polymorphic functions will normally work on an infinite number of types
(all the types having a given common structure), while an ad-hoc polymorphic function will only work on a
finite set of different and potentially unrelated types. In the case of universal polymorphism, one can assert with
confidence that some values (i.e., polymorphic functions) have many types, while in ad-hoc polymorphism this
is more difficult to maintain, as one may take the position that an ad-hoc polymorphic function is really a small
set of monomorphic functions. In terms of implementation, a universally polymorphic function will execute the
same code for arguments of any admissible type, while an ad-hoc polymorphic function may elideneat
code for each type of argument.

There are two major kinds of universal polymorphism, i.e., two major ways in which a value can have
many types. Imparametric polymorphism, a polymorphic function has an implicit or explicit type parameter,
which determines the type of the argument for each application of that functionlusion polymorphism an
object can be viewed as belonging to many different classes which need not be disjoint, i.e. there may be
inclusion of classes. These two views of universal polymorphism are not unrelated, but are sufficiently distinct
in theory and in practice to deserve different names.

The functions that exhibit parametric polymorphism are also cgeeric functions. For example, the
length function from lists of arbitrary type to integers is called a generic length function. A generic function is
one which can work for arguments of many types, generally doing the same kind of work independently of the
argument type. If we consider a generic function as a single value, it has many functional types and is therefore
polymorphic. Ada generic functions are a special case of this conoggstenic.

There are also two major kinds of ad-hoc polymorphisrovénloading the same variable name is used to
denote different functions, and the context is used to decide which function is denoted by a particular instance
of the name. We may imagine that a preprocessing of the program will eliminate overloading by giving different
names to the different functions; in this sense overloading is just a convenient syntactic abbreviation. A
coercion is instead a semantic operation which is needed to convert an argument to the type expected by a
function, in a situation which would otherwise result in a type error. Coercions can be provided statically, by
automatically inserting them between arguments and functions at compile time, or may have to be determined
dynamically by run-time tests on the arguments.

The distinction between overloading and coercion blurs in several situations. This is particularly true
when considering untyped languages and interpreted languages. But even in static, compiled languages there
may be confusion between the two forms of ad-hoc polymorphism, as illustrated by the following example.

3 + 4
30 + 4
3 + 4.0
3.0 + 40

Here, the ad-hoc polymorphism fcan be explained in one of the following ways:

- The operatot has four overloaded meanings, one for each of the four combinations of argument types.

- The operator has two overloaded meanings, corresponding to integer and real addition. When one of
the argument is of type integer and the other is of type real, then the integer argument is coerced to
the type real.

- The operatort+ is defined only for real addition, and integer arguments are always coerced to
corresponding reals.

In this example, we may consider the same expression as exhibiting overloading or coercion, or both (and also
changing meaning), depending on an implementation decision.

Our definition of polymorphism is applicable only to languages with a very clear notion of both type and
value. In particular, there must be a clear distinction between the inherent type of an object and the apparent
type of its syntactic representations in languages that permit overloading and coercion. These issues are further
discussed below.

If we view a type as partially specifying the behavior, or intended usage, of associated values, then
monomorphic type systems constrain objects to have just one behavior, while polymorphic type systems allow
values to be associated with more than one behavior. Strictly monomorphic languages are too restrictive in their
expressive power because they do not allow values, or even syntactic symbols that denote values, to exhibit
different behavior in different contexts of use. Languages like Pascal and Ada have ways of relaxing strict
monomorphism, but polymorphism is the exception rather than the rule and we can say that rticesyiyare
monomorphic. Real and apparent exceptions to the monomorphic typing rule in conventional languages include:

(1) Overloading: integer constants may have both type integer and real.
Operators such as + are applicable to both integer and real arguments.



(2) Coercion: an integer value can be used where a real is expected, and vice versa.
(3) Subtyping: elements of a subrange type also belong to superrange types.
(4)Value sharing: nil in Pascal is a constant which is shared by all the pointer types.

These four examples, which may all be found in the same language, are instances of four radically
different ways of extending a monomorphic type system. Let us see how they fit in the previous description of
different kinds of polymorphism.

Overloading is a purely syntactic way of using the same name for different semantic objects; the compiler
can resolve the ambiguity at compile time, and then proceed as usual.

Coercion allows the user to omit semantically necessary type conversions. The required type conversions
must be determined by the system, inserted in the program, and used by the compiler to generate required type
conversion code. Coercions are essentially a form of abbreviation which may reduce program size and improve
program readability, but may also cause subtle and sometimes dangerous system errors. The need for run-time
coercions is usually detected at compile time, but languages like (impure) Lisp have plenty of coercions that are
only detected and performed at run time.

Subtyping is an instance ofclusion polymorphism. The idea of a type being a subtype of another type is
useful not only for subranges of ordered types such as integers, but also for more complex structures such as a
type representingoyotas which is a subtype of a more general type sudViehicles Every object of a subtype
can be used in a supertype context in the sense that every Toyota is a vehicle and can be operated on by all
operations that are applicable to vehicles.

Value sharing is a special casepafametric polymorphism. We could think of the symbailil as being
heavily overloaded, but this would be some strange kind of open-ended overloadiihgs as/alid element of
an infinite collection of types which haven't even been declared yet. Moreover, all the nfedeabte the
same value, which is not the common case for overloading. We could also think that there is a wiifferent
every type, but all thail's have the same representation and can be identified. The fact that an object having
many types is uniformly represented for all types is characteristic of parametric polymorphism.

How do these relaxed forms of typing relate to polymorphism? As is implicit in the choice of names,
universal polymorphism is consideréicie polymorphism, while ad-hoc polymorphism is some kind of
apparent polymorphism whose polymorphic character disappears at close range. Overloading is not true
polymorphism: instead of a value having many types, we allow a symbol to have many types, but the values
denoted by that symbol have distinct and possibly incompatible types. Similarly, coercions do not achieve true
polymorphism: an operator may appear to accept values of many types, but the values must be converted to
some representation before the operator can use them; hence that operator really works on (has) only one type.
Moreover, the output type is no longer dependent on the input type, as is the case in parametric polymorphism.

In contrast to overloading and coercion, subtyping is an example of true polymorphism: objects of a
subtype can be uniformly manipulated as if belonging to their supertypes. In the implementation, the
representations are chosen very carefully, so that no coercions are necessary when using an object of a subtype
in place of an object of the supertype. In this sense the same object has many types (for example, in Simula a
member of a subclass may be a longer memory segment than a member of its superclass, and its initial segment
has the same structure as the member of the superclass). Similarly, operations are careful to interpret the
representations uniformly so that they can work uniformly on elements of subtypes and supertypes.

Parametric polymorphism is the purest form of polymorphism: the same object or function can be used
uniformly in different type contexts without changes, coercions or any kind of run-time tests or special
encodings of representations. However, it should be noted that this uniformity of behavior requires that all data
be represented, or somehow dealt with, uniformly (e.g., by pointers).

The four ways of relaxing monomorphic typing discussed thus far become more powerful and interesting
when we consider them in connection with operators, functions and procedures. Let us look at some additional
examples.  The symbok could be overloaded to denote at the same time integer sum, real sum, and string
concatenation. The use of the same symbol for these three operations reflects an approximate similarity of
algebraic structure but violates the requirements of monomorphism. The ambiguity can usually be resolved by
the type of the immediate operands of an overloaded operator, but this may not be enough. For egample, if
overloaded to denote integ2rand real2.0, then2+2 is still ambiguous and is resolvable only in a larger
context such as assignment to a typed variable. The set of possibilities can explode if we allow user-defined
overloaded operators.

Algol 68 is well known for its barogue coercion scheme. The problems to be solved here are very similar
to overloading, but in addition coercions have run-time effects. A two-dimensional array with only one row can
be coerced to a vector, and a vector with only one component can be coerced to a scalar. The conditions for
performing a coercion may have to be detected at run time, and may actually arise from programming errors,
rather than planning. The Algol 68 experience suggests that coercions should generally be explicit, and this
view has been taken by many later language designs.

Inclusion polymorphism can be found in many common languages, of which Simula 67 is the earliest
example. Simula'slasses are user-defined types organized in a simple inclusion (or inheritance) hierarchy
where every class has a unique immediate superclass. Simula's objects and procedures are polymorphic becaust
an object of a subclass can appear wherever an object of one of its superclasses is required. Smalltalk [Goldberg



83], although an untyped language, also popularized this view of polymorphism. More recently, Lisp Flavors
[Weinreb 81] (untyped) have extended this style of polymorphism to multiple immediate superclasses, and
Amber (typed) [Cardelli 85] further extends it to higher-order functions.

The paradigmatic language for parametric polymorphism is ML [Milner 84], which was entirely built
around this style of typing. In ML, it is possible to write a polymorphic identity function which works for every
type of argument, andlangth function which maps a list of arbitrary element type into its integer length. It is
also possible to write a generic sorting package that works on any type with an ordering relation. Other
languages that used or helped develop these ideas include CLU [Liskov 81], Russell [Demers 79, Hook 84],
Hope [Burstall 80], Ponder [Fairbairn 82] and Poly [Matthews 85].

Finally, we should mention generic procedures of the kind found in Ada, which are parametrized templates
that must be instantiated with actual parameter values before they can be used. The polymorphism of Ada's
generic procedures is similar to the parametric polymorphism of languages like ML, but is specialized to
particular kinds of parameters. Parameters may be type parameters, procedure parameters, or value parameters
Generic procedures with type parameters are polymorphic in the sense that formal type parameters can take
different actual types for different instantiations. However, generic type polymorphism in Ada is syntactic since
generic instantiation is performed at compile time with actual type values that must be determinable (manifest)
at compile time. The semantics of generic procedures is macro-expansion driven by the type of the arguments.
Thus, generic procedures can be considered as abbreviations for sets of monomorphic procedures. With respect
to polymorphism, they have the advantage that specialized optimal code can be generated for the different forms
of inputs. On the other hand, in true polymorphic systems code is generated only once for every generic
procedure.

1.3. The Evolution of Types In Programming Languages

In early programming languages, computation was identified with numerical computation and values
could be viewed as having a single arithmetic type. However, as early as 1954, Fortran found it convenient to
distinguish between integers and floating-point numbers, in part because differences in hardware representation
made integer computation more economical and in part because the use of integers for iteration and array
computation was logically different from the use of floating point numbers for numerical computation.

Fortran distinguished between integer and floating point variables by the first letter of their names. Algol
60 made this distinction explicit by introducing redundant identifier declarations for integer real and Boolean
variables. Algol 60 was the first significant language to have an explicit notion of type and associated
requirements for compile time type checking. Its block-structure requirements allowed not only the type but also
the scope (visibility) of variables to be checked at compile time.

The Algol 60 notion of type was extended to richer classes of values in the 1960s. Of the numerous typed
languages developed during this period, PL/I, Pascal, Algol 68, and Simula, are noteworthy for their
contributions to the evolution of the concept of type.

PL/I attempts to combine the features of Fortran, Algol 60, Cobol, and Lisp. Its types include typed arrays,
records, and pointers. But it has numerous type loopholes, such as not requiring the type of values pointed to by
pointer variables to be specified, which weaken the effectiveness of compile-time type checking.

Pascal provides a cleaner extension of types to arrays records and pointers, as well as user-defined types.
However, Pascal does not define type equivalence, so that the question of when two type expressions denote the
same type is implementation-dependent. There are also problems with type granularity. For example, Pascal's
notion of array type, which includes the array bounds as part of the type, is too restrictive in that procedures that
operate uniformly on arrays of different dimensions cannot be defined. Pascal leaves loopholes in strong type
specification by not requiring the full type of procedures passed as parameters to be specified, and by allowing
the tag field of variant records to be independently manipulated. The ambiguities and insecurities of the Pascal
type system are discussed in [Welsh 77].

Algol 68 has a more rigorous notion of type than Pascal, with a well-defined notion of type equivalence
(structural equivalence). The notion of typaofle in Algol 68) is extended to include procedures as first-class
values. Primitive modes includiet, real, char, bool, string, bits, bytes, format, file, while mode constructors
(type constructors) includaray, struct, proc, union, andref for respectively constructing array types, record
types, procedure types, union (variant) types, and pointer types. Algol 68 has carefully defined rules for
coercion, using dereferencing, deproceduring, widening, rowing, uniting, and voiding to transform values to the
type required for further computation. Type checking in Algol 68 is decidable, but the type-checking algorithm
is so complex that questions of type equivalence and coercion cannot always be checked by the user. This
complexity was felt by some to be a flaw, resulting in a reaction against complex type systems. Thus, later
languages, like Ada, had simpler notion of type equivalence with severely restricted coercion.

Simula is the firsobject-oriented language. Its notion of type includes classes whose instances may be
assigned as values of class-valued variables and may persist between execution of the procedures they contain.
Procedures and data declarations of a class constitute its interface and are accessible to users. Subclasses inher
declared entities in the interface of superclasses and may define additional operations and data that specialize
the behavior of the subclass. Instances of a class are like data abstractions in having a declarative interface and a
state that persists between invocation of operations, but lack the information-hiding mechanism of data
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abstractions. Subsequent object-oriented languages like Smalltalk and Loops combine the class concept derived
from Simula with a stronger notion of information hiding.

Modula-2 [Wirth 83] is the first widespread language to use modularization as a major structuring
principle (these ideas were first developed in Mesa). Typed interfaces specify the types and operations available
in a module; types in an interface can be n@meue to achieve data abstraction. An interface can be specified
separately from its implementation, thereby separating the specification and implementation tasks. Block
structured scoping, preserved within modules, is abandoned at a more global level in favor of flexible inter-
module visibility rules achieved by import and export lists. Module interfaces are similar to class declarations
(except for the above-mentioned scoping rules), but unlike class instances, module instances are not first-class
values. A linking phase is necessary to interconnect module instances for execution; this phase is specified by
the module interfaces but is external to the language.

ML has introduced the notion of parametric polymorphism in languages. ML types can contain type
variables which are instantiated to different types in different contexts. Hence it is possible to partially specify
type information and to write programs based on partially specified types which can be used on all the instances
of those types. A way of partially specifying types is just to omit type declarations: the most general (less
specific) types which fit a given situation are then automatically inferred.

The above historical framework provides a basis for a deeper discussion of the relations between types,
data abstraction, and polymorphism in real programming languages. We consider the untyped data abstractions
(packages) of Ada, indicate the impact on methodology of requiring data abstractions to have type and
inheritance, discuss the interpretation of inheritance as subtype polymorphism, and examine the relation
between the subtype polymorphism of Smalltalk and the parametric polymorphism of ML.

Ada has a rich variety of modules, including subprograms to support procedure-oriented programming,
packages to support data abstractions, and tasks to support concurrent programming. But it has a relatively weak
notion of type, excluding procedures and packages from the domain of typed objects, and including task types
relatively late in the design process as an afterthought. Its choice of name equivalence as type equivalence is
weaker than the notion of structural equivalence used in Algol 68. Its severe restriction against implicit coercion
weakens its ability to provide polymorphic operations applicable to operands of many types.

Packages in Ada have an interface specification of named components that may be simple variables,
procedures, exceptions, and even types. They may hide a local state eithgriyateadata type or in the
package body. Packages are like record instances in having a user interface of named components. Ada
packages differ from records in that record components must be typed values while package components may
be procedures, exceptions, types, and other named entities. Since packages are not themselves types they cannc
be parameters, components of structures, or values of pointer variables [Wegner 83]. Packages in Ada are
second-class objects while class instances in Simula or objects in object-oriented languages are first-class
objects.

The differences in behavior between packages and records in Ada is avoided in object-oriented languages
by extending the notion of type to procedures and data abstractions. In the context of this discussion it is useful
to define object-oriented languages as extensions of procedure-oriented languages that support typed data
abstractions with inheritance. Thus we say that a language is object-oriented iff it satisfies the following
reguirements:

- It supports objects that are data abstractions with an interface of named
operations and a hidden local state

- Objects have an associated object type

- Types may inherit attributes from supertypes

These requirements may be summarized as:
object-oriented = data abstractions + object types + type inheritance

The usefulness of this definition may be illustrated by considering the impact of each of these
requirements on methodology. Data abstraction by itself provides a way of organizing data with associated
operations that differs considerably from the traditional methodology of procedure- oriented programming. The
realization ofdata abstraction methodology was one of the primary objectives of Ada, and this methodology is
described at length in the Ada literature in publications such as [Booch 83]. However Ada satisfies only the first
of our three requirements for object-oriented programming and it is interesting to examine the impact of object
types and inheritance on data abstraction methodology [Hendler 86].

The requirement that all objects have a type allows objects to be first-class values so that they can be
managed as data structures within the language as well as used for computation. The requirement of type
inheritance allows relations among types to be specified. Inheritance may be viewed as a type composition
mechanism which allows the properties of one or more types to be reused in the definition of a new type. The
specificationB inherits A may be viewed as an abbreviation mechanism which avoids redefining the attributes
of type A in the definition of type B. However, inheritance is more than a shorthand, since it imposes structure
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among a collection of related types that can greatly reduce the conceptual complexity of a system specification.
This is illustrated by the Smalltalk object hierarchy in [Goldberg 83].

The Smalltalk object hierarchy is a description of the Smalltalk programming environment in Smalltalk. It
is conceptually similar to the Lisgpply function which describes the Lisp language interpreter in Lisp, but is a
great deal more complex. It describes a collection of over 75 related system object types by an inheritance
hierarchy. The object types include numerical, structured, input-output, concurrent, and display objects. The
object hierarchy carefully factors out properties common to numeric objects into the supertype Number. It
factors out properties common to different kinds of structured objects into the supertype Collection. It further
factors out properties common to numbers, collections, and other kinds of objects into the supertype Obiject. In
doing this the collection of over 75 object types that comprise the Smalltalk environment is described as a
relatively simple structured hierarchy of object types. The shorthand provided by the object hierarchy in reusing
superclasses whose attributes are shared by subclasses is clearly incidental to the conceptual parsimony
achieved by imposing a coherent structure on the collection of object types.

The Smalltalk object hierarchy is also significant as an illustration of the power of polymorphism. We may
characterize a polymorphic function as a function applicable to values of more than one typeusiot
polymorphism as a relation among types which allows operations to be applied to object of different types
related by inclusion. Objects are seen as collections of such polymorphic operations (attributes). This view
emphasizes the sharing of operations by operands of many types as a primary feature of polymorphism.

The Smalltalk object hierarchy realizes polymorphism in the above sense by factoring out attributes
common to a collection of subtypes into a supertype. Attributes common to numerical types are factored out
into the supertype Number. Attributes common to structured types are factored out into the supertype
Collection. Attributes common to all types are factored out into the supertype Object. Thus polymorphism is
intimately related to the notion of inheritance, and we can say that the expressive power of object-oriented type
systems is due in large measure to the polymorphism they facilitate.

In order to complete our discussion of the evolution of types in programming languages we examine the
type mechanisms of ML [Milner 84]. ML is an interactive functional programming language in which type
specifications omitted by the user may be reintroduced by type inference.If the usef®meérhe system
responds7:int", computing the value of the expression and inferring that the operands and the value are of type
int. If the user enters the function declaratliénn f x = x+1" the system respond&int - int", defining a
function value for f and inferring that it is of tyg@nt - int". ML supports type inference not only for traditional
types but also for parametric (polymorphic) types, such as the length function for li&ts.réc length x = if
x = nil then 0 else 1l+length(tail(x));" is entered, ML will infer thatlength" is a function from lists of
arbitrary element type to integeterfgth: 'a list - int). If the user then entetkength[1;2;3]", applyinglength
to a list of integers, the system infers theaigth is to be specialized to the tyfiat list - int" and then applies
the specialized function to the list of integers.

When we say that a parametric function is applicable to lists of arbitrary type we really mean that it may
be specialized by (implicitly or explicitly) providing a type parameter T, and that the specialized function may
then be applied to the specialized operands. There is an important distinction between the parametric function
length for lists of arbitrary type and the specialized function for lists of tgheFunctions likelength are
applicable to lists of arbitrary type because they have a uniform parametric representation that allows them to be
specialized by supplying a type parameter. This distinction between a parametric function and its specialized
versions is blurred in languages like ML, because type parameters omitted by the user are automatically
reintroduced by the type inference mechanism.

Supertypes in object-oriented languages may be viewed as parametric types whose parameter is omitted by
the user. In order to understand the similarity between parametric types and supertypes it is useful to introduce a
notation where supertype parameters must be explicitly supplied in specializing a supertype to a subtype. We
shall see below th&un has explicit type parameters for both parametric types and supertypes in order to
provide a uniform model for both parametric and subtype polymorphism. This results in a uniform treatment of
type inference when parameters are omitted in parametric types and supertypes.

1.5. Type Expression Sublanguages

As the set of types of a programming language becomes richer, and its set of definable types becomes
infinite, it becomes useful to define the set of types by a type expression sublanguage. The set of type
expressions of current strongly typed programming languages is generally a simple sublanguage of the complete
language that is nevertheless not altogether trivial. Type expression sublanguages generally include basic types
like integer and boolean and composite types like arrays, records, and procedures constructed from basic types.

Type ::= BasicType | ConstructedType
BasicType ::= Int | Bool | ...
ConstructedType ::= Array(Type) | Type - Type | ...

The type expression sublanguage should be sufficiently rich to support types for all values with which we
wish to compute, but sufficiently tractable to permit decidable and efficient type checking. One of the purposes
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of this paper is to examine tradeoffs between richness and tractability for type expression sublanguages of
strongly typed languages.

The type expression sublanguage can generally be specified by a context-free grammar. However, we are
interested not only in the syntax of the type expression sublanguage but also in its semantics. That is, we are
interested in what types denote and in relations among type expressions. The most basic relation among type
expressions is type equivalence. However, we are also interested in similarity relations among types that are
weaker than equivalence, such as inclusion which is related to subtypes. Similarity relations among type
expressions that permit a type expression to denote more than one type, or to be compatible with many types,
are referred to as polymorphism.

The usefulness of a type system lies not only in the set of types that can be represented but also in the
kinds of relationships among types that can be expressed. The ability to express relations among types involves
some ability to perform computations on types to determine whether they satisfy the desired relationship. Such
computations could in principle be as powerful as computations performable on values. However, we are
concerned only with simple, easily computable relationships that express uniform behavior shared by
collections of types.

The reader interested in a discussion of type expression languages and type-checking algorithms for
languages like Pascal and C is referred to chapter 6 of [Aho 85], which considers type checking for overloading,
coercion, and parametric polymorphisiun adds abstract data types to the set of basic types and adds subtype
and inheritance to the forms of polymorphism that are supported.

1.6. Preview of Fun

Fun is aA-calculus-based language that enriches the first-order typssdculus with second-order
features designed to model polymorphism and object-oriented languages.

Section 2 reviews the untyped and typedalculus and develops first-order features of Fo@ type
expression sublanguageéun has the basic typeBool, Int, Real, String and constructed types for record,
variant, function, and recursive types. This sdiiraf-order types is used as a base for introducing parametric
types, abstract data types, and type inheritance by means of second-order language features in subsequen
sections.

Section 3 briefly reviews theoretical models of types related to featuFampespecially models which
view types as sets of values. Viewing types as sets allows us to define parametric polymorphism in terms of set
intersection of associated types and inheritance polymorphism in terms of subsets of associated types. Data
abstraction may also be defined in terms of set operations (in this case unions) on associated types.

Sections 4, 5, and 6 respectively augment the first-okeealculus with universal quantification for
realizing parameterized types, existential quantification for realizing data abstraction, and bounded
guantification for realizing type inheritance. The syntactic extensions of the type expression sublanguage
determined by these features may be summarized as follows:

Type ::= ... | QuantifiedType

QuantifiedType ::=
OA. Type | Universal Quantification
A. Type | Existential Quantification
OAOType. Type | CAOType. Type Bounded Quantification

Universal quantification enriches the first-ordercalculus with parameterized types that may be
specialized by substituting actual type parameters for universally quantified parameters. Universally quantified
types are themselves first-class types and may be actual parameters in such a substitution.

Existential quantification enriches first-order features by allowing abstract data types with hidden
representation. The interaction of universal and existential quantification is illustrated in section 5.3 for the case
of stacks with a universally quantified element type and an existentially quantified hidden data representation.

Fun supports information hiding not only through existential quantification but also throudgt its
construct, which facilitates hiding of local variables of a module body. Hiding by metatsofeferred to as
first-order hiding because it involves hiding of local identifiers and associated values, while hiding by means of
existential quantifiers is referred to as second-order hiding because it involves hiding of type representations.
The relation between these two forms of hiding is illustrated in section 5.2 by contrasting hiding in package
bodies with hiding in private parts of Ada packages.

Bounded quantification enriches the first-ordecalculus by providing explicit subtype parameters.
Inheritance (i.e. subtypes and supertypes) is modeled by explicit parametric specialization of supertypes to the
subtype for which the operations will actually be executed. In object-oriented languages every type is
potentially a supertype for subsequently defined subtypes and should therefore be modelled by a bounded
quantified type. Bounded quantification provides an explanatory mechanism for object-oriented polymorphism
that is cumbersome to use explicitly but useful in illuminating the relation between parametric and inherited
polymorphism.
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Section 7 briefly reviews type checking and type inheritanc&dor. It is supplemented by an appendix
listing type inference rules.

Section 8 provides a hierarchical classification of object-oriented type systemsepresents the
topmost (most general) type system of this classification. The relatieunato less general systems associated
with ML, Galileo, Amber, and other languages with interesting type systems is reviewed.

It is hoped that readers will have as much fun reading daouts the authors have had writing about it.

2. Thexa-Calculus
2.1. The Untyped\-Calculus

The evolution from untyped to typed universes may be illustrated by-théulus, initially developed as
an untyped notation to capture the essence of the functional application of operators to operands. Expressions in
theA-calculus have the following syntax (we dsa instead of the traditional to bring out the correspondence
with programming language notations):

e =X -- a variable is a-expression
e :=fun(x)e -- functional abstraction &
e =e(e) -- operatore applied to operand

The identity function and successor function may be specified iA-ttaculus as follows (with some
syntactic sugar explained later). We use the keywaitde to introduce a new name bound to a value or a
function:

value id = fun(x) x -- identity function
value succ = fun(x) x+1 -- successor function (for integers)

The identity function may be applied to an arbitrargxpression and always yields theexpression
itself. In order to define addition on integers in the pw@alculus we pick a representation for integers and
define the addition operation so that its effechegxpressions representing the integers n and m is to produce
the A-expression that represemst m. The successor function should be applied onl}-&xpressions that
represent integers and suggests a notion of typing. The infix notatiors an abbreviation for the functional
notation+ (x) (1). The symbold and+ above should in turn be viewed as abbreviations for a)paedculus
expression for the number 1 and addition.

Correctness of integer addition requires no assumptions about what happens wheaxphession
representing addition is applied deexpressions that do not represent integers. However, if we want our
notation to have good error-checking properties, it is desirable to define the effect of addition on arguments that
are not integers as an error. This is accomplished in typed programming languages by type checking that
eliminates, at compilet time, the possibility of operations on objects of an incorrect type.

Type checking in tha-calculus, just as in conventional programming languages, has the effect that large
classes oh-expressions legal in the untypketalculus become illegal. The class of illegally-typed expressions
depends on the type system one adopts, and, although undesirable, it may even depend on a paricular type
checking algorithm.

The idea ofA-expressions operating on functions to produce other functions can be illustrated by the
functiontwice which has the following form:

value twice = fun(f) fun(y) f(f(y)) -- twice function

The application of twice to the successor function yielNseapression that computes the successor of the
successor.

twice(succ) O  fun(y) succ(succ(y))
twice (fun(x)x+1) O  fun(y) (fun(xX)x+1) ((fun(x)x+1) (y))

The above discussion illustrates how types arise when we specialize an untyped notation suth as the
calculus to perform particular kinds of computation such as integer arithmetic. In the next section we introduce
explicit types into the\-calculus. The resulting notation is similar to functional notation in traditional typed
programming languages.

2.2. The Typedr-Calculus

The typedA-calculus is like theé\-calculus except that every variable must be explicitly typed when
introduced as a bound variable. Thus the successor function in the\tgaémlilus has the following form:
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value succ = fun (x: Int) x+1

The functiontwice from integers to integers has a paramétenose type idnt - Int (the type of functions
from integers to integers) and may be written as follows:

value twice = fun(f: Int - Int) fun (y:Int) f(f(y))

This notation approximates that of functional specification in typed programming languages but omits
specification of the result type. We may denote the result type wittuas keyword as follows:

value succ = fun(x: Int) (returns Int) x + 1

However, the type of the result can be determined from the form of the function batlywWe shall omit
result type specifications in the interests of brevity. Type inference mechanisms that allow this information to be
recovered during compilation are discussed in a later section.

Type declarations are introduced by the keywiyme. Throughout this paper, type names begin with
upper-case letters while value and function names begin with lower-case letters.

type IntPair = Int x Int
type IntFun = Int - Int

Type declarations introduce names (abbreviations) for type expressions; theycdeatohew types in any
sense. This is sometimes expressed by saying that westusetdiral equivalence on types instead afame
equivalence: two types are equivalent when they have the same structure, regardless of the names we use as
abbreviations.

The fact that a value has a typd is indicated by:T.

(3,4): IntPair
succ: IntFun

We need not introduce variables by type declarations of thevfar because the type of a variable may

be determined from the form of the assigned value. For example the fantRaat below has the typtPair
can be determined by the fact tfa#) has typdnt x Int, which has been declared equivalenit®air.

value intPair = (3,4)

However, if we want to indicate the type of a variable as part of its initialization we can do so by the
notationvalue var:T = value.

value intPair: IntPair = (3,4)
value succ: Int - Int=fun(x: Int) x + 1

Local variables can be declared by fleé&in construct, which introduces a new initialized variable
(following let) in a local scope (an expression followimy. The value of the construct is the value of that
expression.

leta=3ina+1 yields4
If we want to specify types, we can also write:
leta:Int=3ina+1

Thelet-in construct can be defined in terms of bdsreexpressions:

leta: T=MinN = (fun(a:T) N)(M)

2.3. Basic Types, Structured Types and Recursion
The typedA-calculus is usually augmented with various kinds of basic and structured types. For basic
types we shall use:

Unit the trivial type, with only elemertj
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Bool with anif-then-else operation

Int with arithmetic and comparison operations
Real with arithmetic and comparison operations
String with string concatenation (infix)

Structured types can be built up from these basic types by means of type constructors. The type
constructors in our language include function spaceg),(Cartesian productsx), record types (also called
labeled Cartesian products) and variant types (also called labeled disjoint sums).

A pair is an element of a Cartesian product type, e.g.

value p = 3,true : Int x Bool
Operations on pairs are selectors for the first and second components:

fst(p) yields 3
snd(p) yields true

A record is an unordered set of labeled values. Its type may be specified by indicating the type associated
with each of its labels. A record type is denoted by a sequence of labeled types, separated by commas and
enclosed in curly braces:

type ARecordType = {a: Int, b: Bool, c: String}

A record of this type may be created by initializing each of the record labels to a value of the required
type. It is written as a sequence of labeled values separated by commas and enclosed in curly braces:

value r: ARecordType = {a = 3, b = true, c = "abcd"}

The labels must be unique within any given record or record type. The only operation on records is field
selection, denoted by the usulat notation:

r.b yields true
Since functions are first-class values, records may in general have function components.

type FunctionRecordType = {f1: Int -, Int, f2: Real - Real}
value functionRecord = {f1 = succ, f2 = sin}

A record type can be defined in terms of existing record types by an op&ratich concatenates two
record types:

type NewFunctionRecordType = FunctionRecordType & {f3: Bool - Bool}

This is intended as an abbreviation, instead of writing the three fields f1, f2, and f3 explicitly. It is only valid
when used on record types, and when no duplicated labels are involved.

A data structure can be made local and private to a collection of functidesibydeclarations. Records
with function components are a particularly convenient way of achieving this; here is a private counter variable
shared by aincrement and atotal function:

value counter =
let count = ref(0)
in {increment = fun(n:Int) count := count + n,
total = fun() count

counter.increment(3)
counter.total() yields 3

This example involves side-effects, as the main use of private variables is to update them privately. The
primitive ref returns an updateable reference to an object, and assignments are restricted to work on such
references. This is an common form of information hiding that allows updating of local state by using static
scoping to restrict visibility.

A variant type is also formed from an unordered set of labeled types, which are now enclosed in brackets:
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type AVariantType = [a: Int, b:Bool, c: String]
An element of this type can either be an integer lab&ledboolean labeldd, or a string labeled:

value vl =[a = 3]
value v2 = [b = true]
value v3 = [c = "abcd"]

The only operation on variants is case selection. A case statement for a variantdfayipetType, has
the following form:

case variant of
[a = variable of type Int] action for case a
[b = variable of type Bool] action for case b
[c = variable of type String] action for case c

where in each case a new variable is introduced and bound to the respective contents of the variant. That
variable can then be used in the respective action.
Here is a function which, given an element of tyMariantType above, returns a string:

value f = fun (x: AVariantType)
case x of
[a = aniInt] "it is an integer"
[b = aBool] "it is a boolean"
[c = aString] "it is the string: " ~ aString
otherwise "error"

where the contents of the variant objpeetre bound to the identifieenint, aBool oraString depending on the
case.

In the untyped\-calculus it is possible to express recursion operators and to use them to define recursive
functions. However, all computations expressible in the typediculus must terminate (roughly, the type of a
function is always strictly more complex than the type of its result, hence after some number of applications of
the function we obtain a basic type; moreover, we do not have non-terminating primitives). Hence, recursive
definitions are introduced as a new primitive concept. The factorial function can be expressed as:

rec value fact =
fun (n:Int) if n=0 then 1 else n * fact(n-1)

For simplicity we assume that the only values which can be recursively defined are functions.
Finally, we introduce recursive type definitions. This allows us, for example, to define the type of integer
lists out of record and variant types:

rec type IntList =
[nil:Unit,
cons: {head: Int, tail: IntList}

A integer list is either nil (represented[ag = ()]) or the cons of an integer and an integer list (represented as,
e.g.,[cons = {head = 3, tail = nil}]).

3. Types are Sets of Values

What is an adequate notiontgpe which can account for polymorphism, abstraction and parametrization?

In the previous sections we have started to describe a particular type system by giving informal typing rules for
the linguistic constructs we use. These rules are enough to characterize the type system at an intuitive level, and
can be easily formalized as a type inference system. The rules are sound and can stand on their own, but have
been discovered and justified by studying a particular semantics of types, developed in [Hindley 69] [Milner 78]
[Damas 82] [MacQueen 84a] and [Mitchell 84].

Although we do not need to discuss that semantic theory of types in detail, it may be useful to explain the
basic intuitions behind it. These intuitions can in turn be useful in understanding the typing rules, particularly
regarding the concept of subtypes which will be introduced later.

There is a universe V of all values, containing simple values like integers, data structures like pairs,
records and variants, and functions. This is a complete partial order, built using Scott's techniques [Scott 76],
but in first approximation we can think of it as just a large set of all possible computable values.
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A type is a set of elements of V. Not all subsets of V are legal types: they must obey some technical
properties. The subsets of V obeying such properties are cdéald. All the types found in programming
languages are ideals in this sense, so we don't have to worry too much about subsets of V which are not ideals.

Hence, a type is an ideal, which is a set of values. Moreover, the set of all types (ideals) over V, when
ordered by set inclusion, forms a lattice. The top of this lattice is the type Top (the set of all values, i.e. V itself).
The bottom of the lattice is, essentially, the empty set (actually, it is the singleton set containing the least
element of V).

The phrasdnaving a type is then interpreted asembership in the appropriate set. As ideals over V may
overlap, a value can have many types.

The set of types of any given programming language is generally only a small subset of the set of all ideals
over V. For example any subset of the integers determines an ideal (and hence a type), and so does the set of all
pairs with first element equal to 3. This generality is welcome, because it allows one to accommodate many
different type systems in the same framework. One has to decide exactly which ideals are to be considered
interesting in the context of a particular language.

A particular type system is then a collection of ideals of V, which is usually identified by giving a
language of type expressions and a mapping from type expressions to ideals. The ideals in this collection are
elevated to the rank aypes for a particular language. For example, we can choose the integers, integer pairs
and integer-to-integer functions as our type system. Different languages will have different type systems, but all
these type systems can be built on top of the domain V (provided that V is rich enough to start with), using the
same techniques.

A monomorphic type system is one in which each value belongs to at most one type (except for the least
element of V which, by definition of ideal, belongs to all types). As types are sets, a value may belong to many
types. A polymorphic type system is one in which large and interesting collections of values belong to many
types. There is also a grey arearoktly monomorphic andimost polymorphic systems, so the definitions are
left imprecise, but the important point is that the basic model of ideals over V can explain all these degrees of
polymorphism.

Since types are sets, subtypes simply correspond to subsets. Moreover, the semantic Ess&gion
subtype of T2 corresponds to the mathematical condiffdn] T2 in the type lattice. This gives a very simple
interpretation for subrange types and inheritance, as we shall see in later sections.

Finally, if we take our type system as consisting of the single set V, we have a type-free system in which
all values have the same type. Hence we can express typed and untyped languages in the same semantic domair
and compare them.

The type lattice contains many more points than can be named in any type language. In fact it includes an
uncountable number of points, since it includes every subset of the integers. The objective of a language for
talking about types is to allow the programmer to hame those types that correspond to interesting kinds of
behavior. In order to do this the language contains type constructors, including function type constructors (e.g.,
type T = T1- T2) for constructing a function type T from domain and range types T1, T2. These constructors
allow an unbound number of interesting types to be constructed from a finite set of primitive types. However,
there may be useful types of the type lattice that cannot be denoted using these constructors.

In the remaining sections of this paper we introduce more powerful type constructors that allow us to talk
about types corresponding to infinite unions and intersections in the type lattice. In particular, universal
quantification will allow us to name types whose lattice points are infinite intersections of types, while
existential quantification will allow us to name types corresponding to infinite unions. Our reason for
introducing universal and existential quantification is the importance of the resulting types in increasing the
expressive power of typed programming languages. It is fortunate that these concepts are also mathematically
simple and that they correspond to well-known mathematical constructions.

The ideal model is not the only model of types which has been studied. With respect to other denotational
models, however, it has the advantage of explaining simple and polymorphic types in an intuitive way, hamely
as sets of values, and of allowing a natural treatment of inheritance. Less satisfactory is its treatment of type
parametrization, which is rather indirect since types cannot be values, and its treatment of type operators, which
involves getting out of the model and considering functions over ideals. In view of this intuitive appeal, we have
chosen the ideal model as our underlying view of types, but much of our discussion could be carried over, and
sometimes even improved, if we chose to refer to other models.

The idea of types as parameters is fully developed in the secondiecdiulus [Bruce 84]. The (only
known) denotational models the second-oddenlculus areetract models [Scott 76]. Here, types are not sets
of objects but special functions (called retracts); these can be interpreted as identifying sets of objects, but are
objects themselves. Because of the property that types are objects, retract models can more naturally explain
explicit type parameters, while ideal models can more naturally explain implicit type parameters.
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4. Universal Quantification

4.1. Universal Quantification and Generic Functions

The typedi-calculus is sufficient to express monomorphic functions. However it cannot adequately model
polymorphic functions. For example, it requires the previously defined funtiore to be unnecessarily
restricted to functions from integers to integers when we would have liked to define it polymorphically for
functionsa - a from an arbitrary type to itself. The identity function can similarly be defined only for
specific types such as integefsn(x:Int)x. We cannot capture the fact that its form does not depend on any
specific type. We cannot express the idea of a functional form that is the same for a variety of types, and we
must explicitly bind variables and values to a specific type at a time when such binding may be premature.

The fact that a given functional form is the same for all types may be expressed by universal
quantification. In particular, the identity function may be expressed as follows:

value id = all[a] fun(x:a) x

In this definition ofid, a is a type variable andll[a] provides type abstraction far so thatid is the
identity for all types. In order to apply this identity function to an argument of a specific type we must first
supply the type as a parameter and then the argument of the given type:

id [Int] (3)

(We use the convention that type parameters are enclosed in square brackets while typed arguments are
enclosed in parentheses.)

We refer to functions likéd which require a type parameter before they can be applied to functions of a
specific type ageneric functions. id is the generic identity function.

Note thatall is a binding operator just likiin and requires a matching actual parameter to be supplied
during function application. Howeveall[a] serves to bind a type whifan(x:a) serves to bind a variable of a
given (possibly generic) type.

Although types are applied, there is no implication that types can be manipulated as values: types and
values are still distinct and type abstractions and application serve type-checking purposes only, with no run-
time implications. In fact we may decide to omit the type information in square brackets:

value id = fun(x:a) x wherea is now afree type variable
id(3)

Here the type-checking algorithm has the task of recognizingathiat a free type variable and
reintroducing the originall[a] and[Int] information. This is part of what a polymorphic type-checker can do,
like the one used in the ML language. In fact ML goes further and allows the programmer to omit even the
remaining type information:

value id = fun(x) x
id(3)

ML has a type inference mechanism that allows the system to infer the types of both monomorphic and
polymorphic expressions, so that type specifications omitted by the programmer can be reintroduced by the
system. This has the advantage that the programmer can use the shorthand of the\aatigodas while the
system can translate the untyped input into fully typed expressions. However, there are no known fully
automatic type inference algorithms for the powerful type systems we are going to consider. In order for us to
clarify what is happening, and not to depend on the current state of type-checking technology, we shall always
write down enough type information to make the type checking task trivial.

Going back to the fully explicit language, let's extend our notation so that the type of a polymorphic
function can be explicitly talked about. We denote the type of a generic function from an arbitrary type to itself
by Oa. a - a:

type Genericld=Oa. a - a
id: Genericld

Here is an example of a function taking a parameter of a universally quantified type. The funsttion
takes a function of the above type and returns two instances of it, specialized for integers and booleans:

value inst = fun(f: Oa. a - a) (f[Int],f[Bool])

value intid = fst(inst(id)) tInt - Int
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value boolid = snd(inst(id)) : Bool - Bool

In general, function parameters of universally quantified types are most useful when they have to be used
on different types in the body of a single function, e.g., a list length function passed as a parameter and used on
lists of different types.

In order to show some of the freedom we have in defining polymorphic functions, we now write two
versions oftwice which differ in the way type parameters are passed. The first vetwior]l, has a function
parametef which is of a universal type. The specification

fun(f: Oa. a - a) body-of-function

specifies the type of function parameftéo be generic and to admit functions from any given type into the same
type. Applied instances dfin the body otwicel must have a formal type paramefigf and require an actual
type to be supplied when applyitgicel. The full specification otwicel requires binding of the type
parametet as a universally quantified type and bindingab t.

value twicel = all[t] fun(f: Oa. a - a) fun(x: t) ftJ(f[t](x))

Thustwicel has three bound variables for which actual parameters must be supplied during function
application.

allft] -- requires an actual parameter which is a type
fun(f: Da. a - a) -- requires a function of the typéa. a - a
fun(x: t) -- requires an argument of the type substituted for

An application otwicel to the typdnt, the functionid, and the argumeXis specified as follows:
twicel[Int](id)(3)

Note that the third argumeB8thas the typént of the first argument and that the second argumdestof a
universally quantified type. Note also thaicel[Int](succ) would not be legal becausacc does not have the
typela. a - a.

The functiontwice2 below differs fromtwicel in the type of the argumefitwhich is not universally
guantified. Now we do not need to apfil} in the body of twice:

value twice2 = all[t] fun(f: t - t) fun(x: t) f(f(x))
twice2[Int] yields fun(f: Int - Int) fun(x: Int) f(f(x))

It is now possible to compute twice @fcc:

twice2[Int](succ) yields fun(x: Int) succ(succ(x))
twice2[Int](succ)(3) yields 5

Thustwice? first receives the type parametet which serves to specialize the functfao belnt - Int,
then receives the functiaucc of this type, and then receives a specific element of theltyge which the
functionsucc is applied twice.

An extra type application is required favice2 of id, which has to be first specializedId:

twice2[Int](id[Int])(3)

Note that both\-abstraction (function abstraction) and universal quantification (generic type abstraction)
are binding operators that require formal parameters to be replaced by actual parameters. Separation between
types and values is achieved by having different binding operations for types and values and different
parenthesis syntax when actual parameters are supplied.

The extension of th&-calculus to support two different kinds of binding mechanism, one for types and
one for variables, is both practically useful in modeling parametric polymorphism and mathematically
interesting in generalizing thecalculus to model two qualitatively different kinds of abstraction in the same
mathematical model. In the next few sections we introduce still a third kind of abstraction and associated
binding mechanism, but first we have to introduce the notion of parametric types.

In Fun, types and values are rigorously distinguished (values are objects and types are sets); hence we
need two distinct binding mechanisnfisn andall. These two kinds of bindings can be unified in some type
models where types are values, achieving some economy of concepts, but this unification does not fit our
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underlying semantics. In such models it is also possible to unify the parametric type-binding mechanism
described in the next section witm andall.

4.2. Parametric Types

If we have two type definitions with similar structure, for example:

type BoolPair = Bool x Bool
type IntPair = Int x Int

we may want to factor the common structure in a sipgtametric definition and use the parametric type in
defining other types:

type Pair[T] =T xT
type PairOfBool = Pair[Bool]
type PairOfint = Pair[Int]

A type definition simply introduces a new name for a type expression and it is equivalent to that type
expression in any context. A type definition does not introduzavatype. Hence3,4 is anintPair because it
has typdnt x Int, which is the definition ontPair.

A parametric type definition introduces a ngxpe operator. Pair above is a type operator mapping any
typeT to a typel x T. HencePair[Int] is the typdnt x Int, and it follows thaB,4 has typePair[Int].

Type operators are not types: they operate on types. In particular, one should not confuse the following
notations:

type A[T]=T - T
typeB=0OT.T - T

whereA is a type operator which, when applied to a fypgives the type of functions fromto T, andB is the
type of the identity function and is never applied to types.

Type operators can be used in recursive definitions, as in the following definition of generic lists. Note that
we cannot think otist[Item] below as an abbreviation which has tonhecro-expanded to obtain the real
definition (this would cause an infinite expansion). Rather, we should thinktcds a new type operator which
is recursively defined and maps any type to lists of that type:

rec type List[ltem] =
[nil: Unit,
cons: {head: Item, tail: List[ltem]}

]

A generic empty list can be defined, and then specialized, as:

value nil = all Item. [nil = ()]
value intNil = nil[Int]
value boolNil = nil[Bool]

Now, [nil = ()] has typedList[Item], for anyltem (as it matches the definition bfst[ltem]). Hence the types of
the generiail and its specializations are:

nil : Oltem. List[ltem]
intNil : List[Int]
boolNil : List[Bool]

Similarly, we can define a genegons function, and other list operations:

value cons : Oltem. (Item x List[Item]) - List[ltem] =
all Item.
fun (h: Item, t: List[Item])
[cons = {head = h, tail = }]

Note thatcons can only build homogeneous lists, because of the way its arguments and result are related by the
sameltem type.
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We should mention that there are problems in deciding, in general, when two parametric recursive type
definitions represent the same type. [Solomon 78] describes the problem and a reasonable solution which
involves restricting the form of parametric type definitions.

5. Existential Quantification

Type specifications for variables of a universally quantified type have the following form, for any type
expression(a):

p: Da. t(a) (e.g.id: Ja.a - a)

By analogy with universal quantification, we can try to give meaning to existentially quantified types. In
general, for any type expressitia),

p: k. t(a)
has the property

For some type, p has the typ#&(a)
For example:

(3,4):(a.axa
(3,4): (. a

wherea = Int in the first case, ana = Int x Int in the second.

Thus we see that a given constant suc{8a5 can satisfy many different existential types. (Warning: for
didactic purposes we assign here existential types to ordinary value@,#keAlthough this is conceptually
correct, in later sections it will be disallowed for type-checking purposes, and we shall require using particular
constructs to obtain objects of existential type).

Every value has typea. a because for every value there exists a type such that that value has that type.
Thus the typéh. a denotes the set of all values, which we shall sometim& opl(the biggest type):

type Top = (. a -- the type of any value whatsoever
The set of all ordered pairs may be denoted by the following existential type.
(. [(b.axb -- the type of any pair whatsoever

This is the type of any pafir,q because, for some type(take a type op) and some typb (take a type of
d), p,q has typea x b.

The type of any object together with an integer-valued operation that can be applied to it may be denoted
by the following existential type.

(a.ax(a - Int)

The pair(3,succ) has this type, if we taka = Int. Similarly the pai[1;2;3],length) has this type, if we
takea = List[Int].

Because the set of types includes not only simple types but also universal types and fraptype
existentially quantified types have some properties that may at first appear counterintuitive. The &ypex
is not simply the type of pairs of equal type (84), as one might expect. In fact ev@rue has this type. We
know that bott8 andtrue have typelop; hence there is a tyge= Top such thaB,true : a x a. Therefore[h.
a x a is the type of all pairs whatsoever, and is the sani@.asb. a x b. Similarly, any function whatsoever
has typela. a - a, if we takea = Top.

However,[a. a x (a - Int) forces a relation between the type of an object and the type of an associated
integer-valued function. For examp(8,length) does not have this type (if we consi@eas having typdop,
then we would have to show tHahgth has typeTop - Int, but we only know thaength: Oa. List[a] - a
maps integer lists to integers, and we cannot assume that any arbitrary objectTafftyw#l be mapped to
integer).

ch))t all existential types turn out to be useful. For example, if we have an (unknown) object [G.tgpe

we have absolutely no way of manipulating it (except passing it around) because we have no information about
it. If we have an (unknown) object of typ@. a x a, we can assume that it is a pair and ajfgthandsnd to it,
but then we are stuck because we have no information about
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Existentially typed objects can be useful, however, if they are sufficiently structured. For exanifde,
a x (a - Int) provides sufficient structure to allow us to compute with it. We can execute:

(snd(x)) (fst(x))

and obtain an integer.
Hence, there araeseful existential types which hide some of the structure of the objects they represent but
show enough structure to allow manipulations of the objects through operations the objects themselves provide.
These existential types can be used, for example, in forming apparently heterogeneous lists:

[(3,succ); ([1;2;3],length)] : List[[a. a x (a - Int)]

We can later extract an element of this list and manipulate it, although we may not know which particular
element we are using and what its exact type is. Of course, we can also form totally heterogeneous lists of type
List[(&.a], but these are quite unusable.

5.1. Existential Quantification and Information Hiding
The real usefulness of existential types becomes apparent only when we realize ghafa - Int) is a
simple example of aabstract type packaged with its set of operations. The variablethe abstract type itself,
which hides a representation. The representatiorintandList[Int] in the previous examples. Thanx (a -
Int) is the set of operators on that abstract type: a constant o&tgpd an operator of type - Int. These
operators are unnamed, but we can have a named version by using record types instead of Cartesian products:

x: [a. {const: a, op: a - Int}
X.op(x.const)

As we do not know what the representatioreally is (we only know that there is one), we cannot make
assumptions about it, and userxafill be unable to take advantage of any particular implementatian of

As we announced earlier, we have been a bit liberal in applying various operators directly to objects of
existential types (likex.op above). This will be disallowed from now on, for the only purpose of making our
formalism easier to type-check. Instead, we shall have explicit language constructs for creating and
manipulating objects of existential types, just as we had type abstraaii{tinand type applicationsxplt] for
creating and using objects of universal types.

An ordinary objec{(3,succ) may be converted to an abstract object having fypea x (a- Int) by
packaging it so that some of its structure is hidden. The opergiimk below encapsulates the objé8fsucc)
so that the user knows only that an object of the &ypda - Int) exists without knowing the actual object. It is
natural to think of the resulting object as having the existentiallfgpa x (a - Int).

value p = pack [a=Int in a x (a- Int)] (3,succ) :[h.ax(a-Int)

Packaged objects such as p are caghekages. The valug3,succ) is referred to as theontent of the
package. The typa x (a- Int) is theinterface: it determines the structure specification of the contents and
corresponds to the specification part of a data abstraction. The bawdimgs the typerepresentation: it binds
the abstract data type to a particular representhttpand corresponds to the hidden data type associated with a
data abstraction.

The general form of the operatipack is as follows:

pack [a = typerepin interfacé (content$

The operatiompack is the only mechanism for creating objects of an existential type. Thus, if a variable of
an existential type has been declared by a declaration such as:

p:Ch.ax(a - Int)

thenp can take only values created bgack operation.
A package must be opened before it can be used:

open p as x in (snd(x))(fst(x))
Opening a package introduces a natfer the contents of the package which can be used in the scope

following in. When the structure of is specified by labeled components, components of the opened package
may be referred to by name:
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value p = pack [a = Int in {arg:a, op:a- Int}] (3, succ)
open p as X in x.op(x.arg)

We may also need to refer to the (unknown) type hidden by the package. For example, suppose we wanted
to apply the second componentpofo a value of the abstract type supplied as an external argument. In this case
the unknown typé® must be explicitly referred to and the following form can be used:

open p as x [b] in ... fun(y:b) (snd(x))(y) ...

Here the type nanmie is associated with the hidden representation type in the scope followiFige type
of the expression followingn must not contaity, to prevenb from escaping its scope.

The function ofopen is mostly to bind names for representation types and to help the type checker in
verifying type constraints. In many situations we may want to abbremiste p as x in x.a top.a. We are
going to avoid such abbreviations to prevent confusion, but they are perfectly admissible.

Both pack andopen have no run-time effect on data. Given a smart enough type checker, one could omit
these constructs and revert to the notation used in the previous section.

5.2. Packages and Abstract Data Types

In order to illustrate the applicability of our notationral programming languages, we indicate how
records with function components may be used to model Ada packages and how existential quantification may
be used to model data abstraction in Ada [D.O.D. 83]. Consider th@oypil for creating geometric points of
a globally defined typ@oint from pairs of real numbers and for selecting x and y coordinates of points.

type Point = Real x Real
type Pointl =
{makepoint: (Real x Real) - Point,
x_coord: Point - Real,
y_coord: Point - Real

}

Values of the typ&ointl can be created by initializing each of the function names of thePyim1 to
functions of the required type.

value pointl : Pointl =
{makepoint = fun(x:Real,y:Real) (x,y),
x_coord = fun(p:Point) fst(p),
y_coord = fun(p:Point) snd(p)
}

In Ada, a package pointl with makepowtcoord, andy_coord functions may be specified as follows:

package pointl is
function makepoint (x:Real, y:Real) return Point;
function x_coord (P:Point) return Real;
function y_coord (P:Point) return Real;

end point1;

This package specification is not a type specification but part of a value specification. In order to complete
the value specification in Ada, we must supply a package body of the following form:

package body pointl is
function makepoint (x:Real, y:Real) return Point;
-- implementation of makepoint
function x_coord (P:Point) return Real;
-- implementation of x_coord
function y_coord (P:Point) return Real;
-- implementation of y_coord
end point1;

The package body supplies function bodies for function types of the package specification. In contrast to
our notation, which allows different function bodies to be associated with different values of the type, Ada does
not allow packages to have types, and directly defines the function body for each function type in the package
body.
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Packages allow the definition of groups of related functions that share a local hidden data structure. For
example a packadecalpoint with a local data structummint has the following form:

package body localpoint is
point: Point; -- shared global variable of makepoint, x_coord, y_coord
procedure makepoint(x,y: Real); ...
function x_coord return Real; ...
function y_coord return Real; ...
end localpoint;

Hidden local variables can be realized in our notation byetheonstruct:

value localpoint =
let p: Point = ref((0,0))
in {makepoint = fun(x: Real, y: Real) p := (X, y),
x_coord = fun() fst(p),
y_coord = fun() snd(p)
}

Although Ada does not have the concept of a package type it does have the notion of a package template,
which has some, but not all, the properties of a type. Package templates are introduced by thegkagword

generic
package Pointl is
function makepoint (x:Real, y:Real) return Point;
function x_coord (P:Point) return Real;
function y_coord (P:Point) return Real;
end Point1;

Valuespointl andpoint2 of the generic package templ&eintl can be introduced as follows:

package pointl is new Point1;
package point2 is new Point1;

All package values associated with a given generic package template have the same package body. The
specification of an Ada package is statically associated with its body prior to execution, while the typed values
of record types are dynamically associated with function bodies when the value-creation command is executed.

Components of package values created from a generic package can be accessed using the record notation.

type p is Point;
p = pointl.makepoint(3,4);

Thus packages are like record values in allowing their components to be accessed by the same notation as
is used for selection of record components. But packages are not first-class values in Ada. They cannot be
passed as parameters of procedures, cannot be components of arrays or record data structures, and cannot b
assigned as values of package variables. Moreover, generic package templates are not types, although they are
like types in allowing instances to be created. In effect, Ada has two similar but subtly different language
mechanisms for handling record-like structures, one for handling data records with associated record types, and
one for handling packages with associated generic templates. By contrasting the two mechanisms of Ada for
record types and generic packages with the single mechanism of our notation we gain appreciation of and
insight into the advantages of uniformly extending types to records with function components.

Ada packages which simply encapsulate a set of operations on a publicly defined datatype, do not need
fancy type operators. They can be modelled in our notation by the simplextgadclilus without existential
gquantification. It is only when we hide the type representation using private data types that existential
quantification is needed.

The let construct was used in the previous example to realize information hiding. We cfatbtluisder
information hiding because it is achieved by restricting scoping at the value level. This is contrsstenbto
order information hiding that is realized by existential quantifiers, which restrict scoping at the type level.

An Ada point packagpoint2 with a private typd>oint may be defined as follows:

package point2
type Point is private;
function makepoint (x:Real, y:Real) return Point;
function x_coord (P:Point) return Real;



23

function y_coord (P:Point) return Real;
private
-- hidden local definition of the type Point
end point2;

The private typd?oint may be modelled by existential quantification:

type Point2 =
[(Point.
{makepoint: (Real x Real) - Point,
x_coord: Point - Real,
y_coord: Point - Real

}

It is sometimes convenient to view the type specifications of an existentially quantified type as a
parametric function of the hidden type parameter. In the present example we maydefiB&/RT[Point] as
follows:

type Point2WRT[Point] =
{makepoint: (Real x Real) - Point,
X_coord: Point - Real,
y_coord: Point - Real

}

The notatiolWRT in Point2WRT[Point], to be read awith respect to, underlines the fact that this type
specification is relative to a type parameter.
A valuepoint2 of the existential typfoint2 may be created by thgack operation.

value point2 : Point2 = pack [Point = (Real x Real) in Point2WRT[Point]]
pointl

The pack operation hides the representafieal x Real of Point, has the existentially parametrized type
Point2WRT[Point] as its specification part, and provides as its hidden body the previously defined value
pointl that implements operations for the given data representation.

Note thatPoint2WRT[Point] represents a parameterized type expression which, when supplied with an
actual type parameter suchRsal, determines a type (in this case a record type with three components). The
relation between this kind of parameterization and the other kinds of parameterization introduced so far is
illustrated by the following table:

1. Function abstractionfun(x: type) value-expr(x). The parametek is a value and the result of
substituting an actual parameter for the formal parameter determines a value.

2. Quantification:all(a) value-expr(a). The parametea is a type and the result of substituting an actual
type for the formal parameter determines a value.

3. Type AbstractionTypeWRT[T] = type-expr(T). The parametel is a type and the result of
substituting an actual type for the formal parameter is also a type.

Actual type parameters are restricted to be types, while actual value parameters may be arbitrarily complex
values. However, when the class of namable types is enriched to include universally and existentially quantified
types, this also enriches the arguments that may be substituted for formal type parameters.

Existential quantification can be used to model the private types of Ada. However, it is much more general
than the data abstraction facility of Ada, as shown in the following examples.

5.3. Combining Universal and Existential Quantification

In this section we give an example that demonstrates the interaction between universal and existential
quantification. Universal quantification yields generic types while existential quantification yields abstract data
types. When these two notions are combined we obtain parametric data abstractions.

Stacks are an ideal example to illustrate the interaction between generic types and data abstraction. The
simplest form of a stack has both a specific element type suchteger and a specific data structure
implementation such asligt or anarray. Generic stacks parameterize the element type, while abstraction from
the data representation may be accomplished by creating a package that has an existential data type. A stack
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with parameterized element type and a hidden data representation is realized by combining universal
quantification to realize the parameterization with existential quantification to realize the data abstraction.
The following operations on lists and arrays will be used:

nil: Oa. List[a]

cons: Oa. (a x List[a]) — List[a]
hd: Oa. List[a] - a

tl: Oa. List[a] - List[a]
null; Oa. List[a] - Bool

array: [Oa. Int - Array[a]
index: Oa. (Array[a] xInt) - a
update: Oa. (Array[a] x Int x a) - Unit

We start with a concrete tygatListStack with integer elements and a list data representation. This
concrete type can be implemented as a tuple of operations with no quantification.

type IntListStack =
{emptyStack: List[Int],
push: (Int x List[Int]) - List[Int],
pop: List[Int] - List[Int],
top: List[Int] - Int

An instance of this stack type with components initialized to specific function values may be defined as
follows:

value intListStack : IntListStack =
{emptyStack = nil[Int],
push = fun(a:Int,s:List[Int]) cons[Int](a,s),
pop = fun(s:List[Int]) tl[Int](s),
top = fun(s:List[Int]) hd[Int](s)
}

We could also have a stack of integers implemented via pairs consisting of an array and a top-of-stack
index into the array; this concrete stack may again be implemented as a tuple without any quantification.

type IntArrayStack =
{emptyStack: (Array[Int] x Int),
push: (Int x (Array[Int] x Int)) - (Array[Int] x Int),
pop: (Array[Int] x Int) - (Array[Int] x Int),
top: (Array[Int] x Int) - Int

An instance ointArrayStack is an instance of the above tuple type with operation fields initialized to
operations on the array stack representation.

value intArrayStack : IntArrayStack =
{emptyStack = (Array[Int](100),-1),
push = fun(a:Int,s:(Array[Int] x Int))
update[Int](fst(s),snd(s)+1,a); (fst(s),snd(s)+1),
pop = fun(s:(Array[Int] x Int)) (fst(s),snd(s)-1),
top = fun(s:(Array[Int] x Int)) index[Int](fst(s),snd(s))

The concrete stacks above may be generalized both by making the element type generic and by hiding the
stack data representation. The next example illustrates how a generic element type may be realized by universal
guantification. We first define the tyfigenericListStack as a universally quantified type:

type GenericListStack =
Ultem.

{emptyStack: List[ltem],



25

push: (Item x List[ltem]) - List[Item],
pop: List[ltem] - List[ltem],
top: List[ltem] - Item

An instance of this universal type may be created by universal quantification of a record instance whose
fields are initialized to operations parameterized by the generic universally quantified parameter.

value genericListStack : GenericListStack =
all[ltem]
{emptyStack = nil[ltem],
push = fun(a:ltem,s:List[Item]) cons[ltem](a,s),
pop = fun(s:List[Item]) tl[Item](s),
top = fun(s:List[Item]) hd[Item](s)
}

ThegenericListStack has, as its name implies, a concrete list implementation of the stack data structure.
An alternative typ&enericArrayStack with a concrete array implementation of the stack data structure may
be similarly defined:

type GenericArrayStack = ...
value genericArrayStack : GenericArrayStack = ...

Since the data representation of stacks is irrelevant to the user, we would like to hide it so that the stack
interface is independent of the hidden stack data representation. We would like to have a single type
GenericStack which can be implemented as a generic list stack or a generic array stack. Users of
GenericStack should not have to know which implementatiorGainericStack they are using.

This is where we need existential types. For any item type there should exist an implementation of stack
which provides us with stack operations. This results in a®greericStack defined in terms of a universally
quantified parametdtem and an existentially quantified parame®ack as follows:

type GenericStack =
Oltem. OStack. GenericStackWRT[Item][Stack]

The two-parameter typ8enericStackWRT[Item][Stack] may in turn be defined as a tuple of doubly
parameterized operations:

type GenericStackWRT[ltem][Stack] =
{emptystack: Stack,
push: (Item,Stack) - Stack,
pop: Stack - Stack,
top: Stack - Item

}

Note that there is nothing in this definition to distinguish the réle of the two parartetarandStack.
However, in the definition oGenericStack the parameteitem is universally quantified, indicating that it
represents a generic type, while the paramstack is existentially quantified, indicating that it represents a
hidden abstract data type.

We can now abstract ogenericListStack andgenericArrayStack packages into packages of type
GenericStack:

value listStackPackage : GenericStack =
all[ltem]
pack[Stack = List[Item] in GenericStackWRT[Item][Stack]]
genericListStack[ltem]

value arrayStackPackage : GenericStack =
all[ltem]
pack[Stack = (Array[ltem] x Item) in GenericStackWRT[ltem][Stack]]
genericArrayStack[ltem]

BothlistStackPackage andarrayStackPackage have the same type and differ merely in the form of the
hidden data representation.
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Moreover, functions like the following useStack can work without any knowledge of the implementation:

value useStack =
fun(stackPackage: GenericStack)
open stackPackage[int] as p [stackRep]
in p.top(p.push(3,p.emptystack));

and can be given any implementatiorG#nericStack as a parameter:

useStack(listStackPackage)
useStack(arrayStackPackage)

In the definition ofGenericStack, the typeStack is largely unrelated ttem, while it is our intention
that, whatever the implementation $fack, stacks should be collections of items (actually, there is a weak
dependency oStack uponitem given by the order of the quantifiers). Because of this, it is possible to build
objects of typeGenericStack where stacks have nothing to do with items, and do not obey properties like
pop(push(a,s)) = a. This limitation is corrected in more powerful type systems like [MacQueen 86] and
[Burstall 84], where it is possible to abstract on type operators.{styjinstead of just types (e.hist[Int]), and
one can directly express that representatior&adk must be based dtem (but even in those more expressive
type systems it is possible fake stack packages which do not obey stack properties).

5.4. Quantification and Modules

We are now ready for a major example: geometric points. We introduce an abstract type with operations
mkpoint (make a new point from two real numbesrs}oord andy-coord (extract the x and y coordinates of a
point):

type Point =
[PointRep.
{mkpoint: (Real x Real) - PointRep,
x-coord: PointRep - Real,
y-coord: PointRep - Real

}

Our purpose is to define values of this type that hide both the represer®atiotRep and the
implementation of the operationkpoint, x-coord, andy-coord with respect to this representation. In order to
accomplish this we define the type of these operations as a parametric type with the point representation
PointRep as a parameter. The type naR@ntWRT emphasizes that the operations are defined with respect to
a particular representation and that in contrast the abstract daRatiypés representation-independent.

type PointWRT[PointRep] =
{mkpoint: (Real x Real) - PointRep,
x-coord: PointRep - Real,
y-coord: PointRep - Real

}

The existential typ®@oint may be defined in terms BINtWRT by existential abstraction with respect to
PointRep:

type Point = [PointRep. PointWRT[PointRep]

The relationship between representation-dependent point operations and the associated abstract datatype
becomes even clearer when we illustrate the abstraction process for some specific point representations. Let's
define a Cartesian point package whose point representation is by pairs of reals and whose opkpaiitns
x-coord, y-coord are as follows:

value cartesianPointOps =
{mkpoint = fun (x:Real, y:Real) (Xx,y),
x-coord = fun (p: Real x Real) fst(p),
y-coord = fun (p: Real x Real) snd(p)

}

A package with point representatiBeal x Real and with the above implementations of point operations
as its content can be specified as follows:
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value cartesianPointPackage =
pack [PointRep = Real x Real in PointWRT[PointRep]]
cartesianPointOps

Similarly we can make a polar point package whose point represeriRaadrx Real is the same as that
for the Cartesian point package but whose content is a different (polar-coordinate) implementation of the
operations:

value polarPointPackage =
pack[PointRep = Real x Real in PointWRT[PointRep]]
{mkpoint = fun (x:Real, y:Real) ... ,
x-coord = fun (p: Real x Real) ...,
y-coord = fun (p: Real x Real) ...

These examples illustrate how a package realizes data abstraction by hiding both the data representation
and the implementation of its operations. The Cartesian and polar packages have the same existential type
Point, use the same parametric tyPeintWRT[PointRep] to specify the structure of point operations, and
have the same typeeal x Real for data representation. They differ only in the content of the package that
determines the function implementations. In general, a given existential type forces all packages of that type to
have the same structure for operations. But both the type of the internal data representation and the value
(implementation) of the operations may differ for different realizations of an abstract data type.

An abstract data type packaged with its operators,Hikiat, is also a simple example ofnaodule. In
general modules can import other (known) modules, or can be parameterized with respect to other (as yet
unknown) modules.

Parametric modules can be treated as functions over existential types. Here is a way of exteRAding the
package with another operatioadd ). Instead of doing this extension for a particiaint package, we write
a procedure to do the extension for &wojnt package over an unknown representation of point. Recalktisat
the record type concatenation operator:

type ExtendedPointWRT[PointRep] =
PointWRT[PointRep] & {add: (PointRep x PointRep) - PointRep}

type ExtendedPoint = (OPointRep. ExtendedPointWRT[PointRep]

value extendPointPackage =
fun (pointPackage: Point)
open pointPackage as p [PointRep] in
pack[PointRep' = PointRep in ExtendedPointWRT[PointRep']]

&
{add = fun (a:PointRep, b:PointRep)
p.mkpoint(p.x-coord(a)+p.x-coord(b),
p.y-coord(a)+p.x-coord(b))
}

value extendedCartesianPointPackage =
extendPointPackage(cartesianPointPackage)

value extendedPolarPointPackage =
extendPointPackage(polarPointPackage)

We now go back to theoint module and show how other modules can be built on top of it. In particular,
we build moduleircle andRectangle on top ofPoint and then define a moduRicture which uses both
Circle andRectangle. As different instances #foint may be based on different data representations, we have
to make sure that circles and rectangles are based on the same represematitnibfve want to make them
interact.

A circle package provides operations to create a circle out of a point (the center) and a real (the radius),
and operations to extract the center and the radius of a circle. An opdifftiohcircle difference (distance
between the centers of two circles) is also defined. The two parametéfEare circles based on the same
implementation ofPoint. A circle package also provides a point package, to allow one to access point
operations working on the same representation of point used in the circle package.
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type CircleWRT2[CircleRep,PointRep] =
{pointPackage: PointWRT[PointRep],
mkcircle: (PointRep x Real) - CircleRep,
center: CircleRep - PointRep,
radius: CircleRep - Real,
diff: (CircleRep x CircleRep) - Real

}

type CircleWRT1[PointRep] =
[CircleRep. CircleWRT2[CircleRep,PointRep]

type Circle = [PointRep. CircleWRT1[PointRep]

type CircleModule =
OPointRep. PointWRT[PointRep] - CircleWRT1[PointRep]

value circleModule : CircleModule =
all[PointRep]
fun (p: PointWRT[PointRep])
pack[CircleRep = PointRep x Real in CircleWRT2[CircleRep,PointRep]]

{pointPackage = p,

mkcircle = fun (m:PointRep,r:Real) (m,r),

center = fun (c: PointRep x Real) fst(c),

radius = fun (c: PointRep x Real) snd(c),

diff = fun (c1: PointRep x Real, c2: PointRep x Real)
let p1 = fst(cl)
and p2 = fst(c2)
in sgrt((p.x-coord(pl) - p.x-coord(p2))**2+

(p-y-coord(pl) - p.y-coord(p2))**2)
}

We can now build some particular circle packages by appbineteModule to various point packages.
We could also define different versionsadfcleModule based on different representations of circle, and all of
those could be applied to all the different point packages to obtain circle packages. Here wiecigidigdule
to cartesianPointPackage and topolarPointPackage to obtain cartesian and polar circle packages.

value cartesianCirclePackage =
open cartesianPointPackage as p [Rep] in
pack[PointRep = Rep in CircleWRT1[PointRep]]
circleModule[Rep](p)

value polarCirclePackage =
open polarPointPackage as p [Rep] in
pack[PointRep = Rep in CircleWRT1[PointRep]]
circleModule[Rep](p)

To use a circle package we have to open it. We actually have to open it twice (note that @l pas
a double existential quantification) to biRdintRep andCircleRep to the point and circle representations used
in that package. Here we use an abbreviated foropefi which is equivalent to two consecutive opens:

open cartesianCirclePackage as c [PointRep] [CircleRep]
in ... c.mkcircle(c.pointPackage.mkpoint(3,4),5) ...

A rectangle is determined by two points: the upper left and the bottom right corner. The definition of
rectangle module is very similar to that of the circle module. In addition, we have to make sure that the two
points determining a rectangle are based on the same representRiamt.of

type RectWRT2[RectRep,PointRep] =
{pointPackage: PointWRT[PointRep],
mkrect: (PointRep x PointRep) - RectRep,
toplft: RectRep - PointRep,
botrht: RectRep - PointRep

}
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type RectWRT1[PointRep] =
[RectRep. RectWRT2[RectRep,PointRep]

type Rect = [PointRep. RectWRT1[PointRep]

type RectModule =
OPointRep. PointWRT[PointRep] - RectWRT1[PointRep]

value rectModule =
all[PointRep]
fun (p: PointWRT[PointRep])
pack[PointRep = PointRep in RectWRT1[PointRep]]

{pointPackage = p,
mkrect = fun (tl: PointRep, br: PointRep) (tl,br),
toplft = fun (r: PointRep x PointRep) fst(r),
botrht = fun (r: PointRep x PointRep) snd(r)

}

We now put it all together in a module of figures, which uses circles and rectangles (based on the same
implementation of point) and defines an operatimundingRect which returns the smallest rectangle
containing a given circle.

type FiguresWRT3[RectRep,CircleRep,PointRep] =
{circlePackage: CircleWRT][CircleRep,PointRep]
rectPackage: RectWRT[RectRep,PointRep]
boundingRect: CircleRep - RectRep

}

type FiguresWRT1[PointRep] =
[RectRep. [ICircleRep. FigureWRT3[RectRep,CircleRep,PointRep]

type Figures = [PointRep. FigureWRT1[PointRep]

type Figures =
OPointRep. PointWRT[PointRep] - FiguresWRT1[PointRep]

value figuresModule =
all[PointRep]
fun (p: PointWRT[PointRep])
pack[PointRep = PointRep in FiguresWRT1[PointRep]]
open circleModule[PointRep](p) as c [CircleRep]
in open rectModule[PointRep](p) as r [RectRep]
in  {circlePackage = c,
rectPackage =,
boundingRect =
fun(c: CircleRep) ..r.mkrect(..c.center(c)..)..

}

5.5. Modules are First-Class Values

In the previous section we have shown that packages and modules are first-class citizens: they are legal
values which can be passed and returned from functions and stored in data structures. For example, it is possible
to write programs which, depending on conditions, produce one or another package of the same existential type
implementing an interface, and return it to be used in the construction of larger packages.

The process of linking modules can also be expressed: we have done this in the previous example, e.g.,
when we producedartesianCirclePackage by linking cartesianPointPackage andcircleModule. Hence,
the process of building systems out of modules can be expressed in the same language used to program
modules, and the full power of the language can be applied during the linking phase.

Although we have shown that we can express parametric modules and linking mechanisms, we do not
claim that this is the most convenient notation to work with. Our purpose is to show that all these concepts can
be captured in a relatively simple framework. There is more to be done, however, to prevent the notation from



30

getting out of hand. The major problem here is that one must be aware of the dependency graph of modules
when creating new module instances, and the linking must be lyonand for every new instance. These
problems are particularly addressed in the Standard ML module mechanism [MacQueen 84b].

6. Bounded Quantification

6.1. Type Inclusion, Subranges, and Inheritance

We say that a typA isincluded in, oris a subtype of another typ® when all the values of typkare also
values of typeB, i.e. exactly wherA, considered as a set of values, is a subsBt dhis general notion of
inclusion specializes to different inclusion rules for different type constructors. In this section we discuss
inclusions of subranges, records, variants and function types. Inclusions of universally and existentially
quantified types are discussed in later sections.

As an introduction to inclusions on record types, we first present a simple theory of inclusions on integer
subrange types. Let..m denote the subtype of the typ® associated with the subrangeo m, extremes
included, wheren andm are known integers. The following type inclusion relations hold for integer subrange
types:

n.ms<n'..m' iff n'sn and msm
where the< on the left is type inclusion and those on the righteasor equal to.

Subrange types may occur as type specificationseixpressions:

value f=fun (x: 2.5) x + 1
f:2.5 - 3..6

f(3)

The constan8 has the typ8..3 and also has the type of any supertype, including the2typef x above.
It is therefore a legal argumentfoSimilarly the following should be legal:

value g = fun (y: 3..4) f(y)

as the type of is a subtype of the domain HfAn actual parameter of an application can have any subtype of
the corresponding formal parameter.

Consider a function of typ&..7 - 7..9. This can also be considered a function of #pé - 6..10, as it
maps integers betwe@nand7 (and hence betweehand6) to integers betweenhand9 (and hence betwedhn
and 10). Note that the domain shrinks while the codomain expands. In general we can formulate the inclusion
rules for functions as follows:

s-t < s ot iff s'ss and t<t'

note the (rather accidental) similarity of this rule and the rule for subranges, and how the inclusion on the
domain is swapped.

The interesting point of these inclusion rules is that they also work for higher functional types. For
example:

value h =fun (f: 3.4 - 2..7) f(3)
can be applied tbabove:

h(f)

because of the inclusion rules for subranges, arrows and application.
The same line of reasoning applies to record types. Suppose we have types:
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type Car = {age:Int, speed:Int, fuel:String}
type Vehicle = {age:Int, speed:Int}

We would like to claim that all cars are vehicles, i.e. @at is a subtype o¥ehicle. To achieve this we need
the following inclusion rule for record types:

{arity, . .apty, . apty Y {aqiuq, - apup }
iff t<u; for i01.n.

i.e., a record typd is a subtype of another record typef A has all the attributes (fields) 8f and possibly
more, and the types of the common attributes are respectively in the subtype relation.

The meaning of the typéehicle is the set of all records that have at least an integerdgddand an
integer fieldspeed, and possibly more. Hence any car is in this set, and the set of all cars is a subset of the set
of all vehicles. Again, subtypes are subsets.

Subtyping on record types corresponds to the concept of inheritance (subclasses) in languages, especially
if records are allowed to have functional components. A class instance is a record with functions and local
variables, and a subclass instance is a record with at least those functions and variables, and possibly more.

In fact we can also express multiple inheritance. If we add the type definitions:

type Object = {age:Int}
type Machine = {age:Int, fuel:String}

then we have that car is a subtype (inherits properties from) both vehicle and machine, and those are both
subtypes of object. Inheritance on records also extends to higher functional types, as in the case of subranges,
and the inclusion rule for function spaces is also maintained.

In the case of variant types, we have the following inclusion rule:

[a:ty, .. ,anty] <[ajg:uq, .. ,anUp, . ,8mUm]
iff t<u; for i01.n.

For example, every bright color is a color:

type brightColor = [red:Unit, green:Unit, blue:Unit]
type color = [red:Unit, green:Unit, blue:Unit, gray:Unit, brown:Unit]

and any function working on colors will be able to accept a bright color.
More detailed examples of this kind of inheritance can be found in the first half of [Cardelli 84b].

6.2. Bounded Universal Quantification and Subtyping

We now come to the problem of how to mix subtyping and parametric polymorphism. We have seen the
usefulness of those two concepts in separate applications; and we shall now show that it is useful, and
sometimes necessary, to merge them.

Let us take a simple function on records of one component:

value fy = fun(x: {one: Int}) x.one
which can be applied to records lfane = 3, two = true}. This can be made polymorphic by:
value f = all[a] fun(x: {one: a}) x.one;
We can usd{t] on records of the forfone = y} for anyy of typet, and on records lik@ne =y, two = true}.

The notatiorall[a]e allows us to express the notion that a type variable ranges over all types but does not
allow us to designate type variables that range over a subset of the set of types. A general facility for specifying
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variables that range over arbitrary subsets of types could be realized by quantification over type sets defined by
specified predicates. However we do not need this generality and can be satisfied with specifying just a
particular class of subsets — namely the set of all subtypes of a given type. This may be accomplished by
bounded quantification.

A type variable ranging over the set of all subtypes of a type T may be specified by bounded quantification
as follows:

allasT]e -- a ranges over all subtypesBfin the scope

Here is a function which accepts any record having integer compomnemnd extracts its contents:

value gg = all[a < {one: Int}] fun(x: a) x.one
9o [{one: Int, two: Bool}]({one=3, two=true})

Note that there is little difference betwegg andfy; all we have done is to move the constraint that the

argument must be a subtype{ofe :Int} from thefun parameter to thell parameter. We now have two ways
of expressing inclusion constraints: implicitly by function parameters and explicitly by bounded quantifiers.
Now that we have bounded quantifiers we could remove the other mechanism, requiring exact matching of

types on parameter passing, but we shall leave it for convenience.
To express the type gf, we need to introduce bounded quantification in type expressions:

0p - Ha < {one: Int}. a - Int

Now we have a way of expressing both inheritance and parametric polymorphism. Here is a new version
of gg in which we abstradnt to any type:

value g = all[b] all[a < {one: b}] fun(x: a) x.one
g[Int][{one: Int, two: Bool}]({one=3, two=true})

whereall[b] e is now an abbreviation fall[b < Top] e. The new functiorg could not be expressed by
parametric polymorphism or by inheritance separately. Only their combination, achieved by bounded

quantifiers, allows us to write it.
So far, bounded quantifiers have not shown any extra power, because we can gphshgandg asf,

given that we allow type inclusion on parameter passing. But bounded quantifiers are indeed more expressive,
as is shown in the next example.

The need for bounded quantification arises very frequently in object-oriented programming. Suppose we
have the following types and functions:

type Point = {x: Int, y: Int}

value moveXg = fun(p:Point, dx:Int) p.x := p.x + dx; p
value moveX = all[P < Point] fun(p:P, dx:Int) p.x := p.x + dX; p

It is typical in (type-free) object-oriented programming to reuse functionsridkee X on objects whose
type was not known whamoveX was defined. If we now define:

type Tile = {x: Int, y:Int, hor: Int, ver:Int}

we may want to usmoveX to move tiles, not just points. However, if we use the simmptmareX function, it

is only sound to assume that the result will be a point, even if the parameter was a tile and we allow inclusion on
function arguments. Hence, we lose type information by passing a tile througitowe function and, for

example, we cannot further extract tter component from the result.
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Bounded quantification allows us to better express input/output dependencies: the resultritgpeXf
will be the same as its argument type, whatever subtyg®obft that happens to be. Hence we can apply
moveX to a tile and get a tile back without losing type information:

moveX([Tile]({x=0,y=0,hor=1,ver=1},1).hor

This shows that bounded quantification is useful even in the absence of proper parametric polymorphism to
express adequately subtyping relations.

Earlier we saw that parametric polymorphism can be either explicit (by Usipmntifiers) or implicit (by
having free type variables, implicitly quantified). We have a similar situation here, where inheritance can be
either explicit, by using bounded quantifiers, or left implicit in the inclusion rules for parameter passing. In
object-oriented languages, subtype parameters are generally implicit. We may consider such languages as
abbreviated version of languages using bounded quantification. Thus, bounded quantification is useful not only
to increase expressive power, but also to make explicit the parameter mechanisms through which inheritance is
achieved.

6.3. Comparison with Other Subtyping Mechanisms

How does the above inheritance mechanisms compare with those in Simula, Smalltalk and Lisp Flavors?
For many uses of inheritance the correspondence is not exact, although it can be obtained by paraphrases. Othel
uses of inheritance cannot be simulated, especially those which make essential use of dynamic typing. On the
other hand, there are some things that can be done with bounded quantification, which are impossible in some
object-oriented languages.

Record types are used to model classes and subclasses. Record types are matched by structure, and th
(multiple) inheritance relations are implicit in the names and types of record components. In Simula and
Smalltalk classes are matched by name, and the inheritance relations are explicit; only single inheritance is
allowed. Lisp Flavors allow a form of multiple inheritance. Smalltatiésaclasses cannot be emulated in the
present framework.

Records are used to model class instances. Records have to be constructed explicitly (theeats no
new instance of class X primitive), by specifying at construction time the values of the components. Hence,
different records of the same record type can have different components; this gives a degree of flexibility which
is not shared by Simula and Smalltalk. Simula distinguishes between functional components (operations), which
must be shared by all the instances of a class, and non-functional components (variables) which belong to
instances. Simula'drtual procedures are a way of introducing functional components that may change in
different instances of a class, but must still be uniform within subclasses of that class. Smalltalk also
distinguishes betweemethods, shared by all instances of a class, amthnce variables, local to instances.

Unlike Simula's variables declared in classes, Smalltalk instance variablasvate and cannot be directly
accessed. This behavior can be easily obtained in our framework by limiting visibility of local variables via
static scoping techniques.

Functional record components are used to modtiods. As remarked in the previous paragraph, record
components are conceptually bound to individual records, not to record types (although implementations can
optimize this). In Simula and Smalltalk it is possible for a subclass automatically to inherit the methods of its
superclass, or to redefine them. When considering multiple inheritance, this automatic way of inheriting
methods creates problems in case more than one superclass defines the same method: which one should be
inherited? We avoid this problem by having to create records explicitly. At record creation time one must
choose explicitly which field values a particular record should have; whether it shbeti& them by using
some predefined function (or value) used in the allocation of other recondsiefine them, by using a new
function (or value). Everything is allowed as long as the type constraints are respected.

Record field selection is used to modeéssage passing. A message sent to an object with some
parameters translates to the selection of a functional component of a record and its application to the parameters.
This is very similar to what Simula does, while Smalltalk goes through a complex name-binding procedure to
associate message names with actual methods. Simula can compute statically the precise location of a variable
or operation in an instance. Smalltalk has to do a dynamic search, which can be optimized by caching recently
used methods. Our field selections have intermediate complexity: because of multiple inheritance it is not
possible to determine statically the precise location of a field in a record, but caching can achieve an almost
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constant-time access to fields, on the average, and achieves exactly constant time in programs which only use
single inheritance.

Smalltalk's concept ddelf, corresponding to Simulathis (a class instance referring to its own methods
and variables), can also be simulated without introducing any special construct. This can be done by defining a
record recursively, so that an ordinary variable caifl(though we could use a different name) refers to the
record itself, recursively. Smalltalk's concepsaber (a class instance referring to the methods of its immediate
superclass) and similar constructs in Simwaaj and Flavors cannot be simulated because they imply an
explicit class hierarchy.

Simula has a special construct, calledpect, which is essentially a case statement on the class of an
object. We have no way of emulating this directly; it turns out, howeverjrifact is often used because
Simula does not have variant types. Variant types in Simula are obtained by declaring all the variant cases as
subclasses of an (often) dummy class and then dointg@ett on objects of that class. As we have variants, we
just have to rephrase the relevant Simula classes and subclasses as variants and then use aasefdinary
discrimination.

Smalltalk and Lisp Flavors have some idioms which cannot be reproduced because they are essentially
impossible to type-check statically. For example, in Flavors one can ask whether an object supports a message
(although it may be possible to paraphrase some of these situations by variant types). Generally, the freedom of
type-free languages is hard to match, but we have shown in previous sections that polymorphism can go a long
way in achieving flexibility, and bounded quantification can extend that flexibility to inheritance situations.

6.4. Bounded Existential Quantification and Partial Abstraction

As we have done for universal quantifiers, we can modify our existential type quantifiers, restricting an
existential variable to be a subtype of some type:

hst. t

We retain the notatioha. t as an abbreviation faml < Top. t.

Bounded existentials allow us to expresstially abstract types: althougla is abstract, we know it is a
subtype oft, so it is no more abstract thais. If t is itself an abstract type, we know that those two abstract
types are in a subtype relation.

We can see this in the following example, in which we use a version patikeconstruct modified for
bounded existentials:

pack[ast=tint"]e

Suppose we have two abstract tygeaint andTile, and we want to use them and make them interact with
each other. Suppose also that we waile to be a subtype dPoint, but we do not want to knowhy the
inclusion holds, because we want to use them abstractly. We can satisfy these requirements by the following
definition:

type Tile = OP. [T < P. TileWRT2[P,T]

Hence, there is a tyge (point) such that there is a type(tile) subtype ofP which supports tile operations.
More precisely:

type TileWRT2[P,T] =
{mktile: (Int x Int x Int xInt) - T,
origin' T - P,
hor: T - Int,
ver: T - Int

}
type TileWRT[P] = 0T < P. TileWRT2[P,T]
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type Tile = CP. TileWRT[P]

A tile package can be created as follows, where the concrete representations of points and tiles are as in the
previous sections:

type PointRep = {x:Int,y:Int}
type TileRep = {x:Int,y:Int,hor:Int,ver:Int}

pack [P = PointRep in TileWRT[P]]
pack [T < PointRep = TileRep in TileWRT2[P,T]]
{mktile = fun(x:Int,y:Int,hor:Int,ver:Int) <x=x,y=y,hor=hor,ver=ver>,
origin = fun(t:TileRep) t,
hor = fun(t:TileRep) t.hor,
ver = fun(t:TileRep) t.ver

}

Note thatorigin returns arileRep (aPointRep is expected), but tiles can be considered as points.
A function using abstract tiles can treat them as points, although how tiles and points are represented, and
why tiles are subtypes of points, are unknown:

fun(tilePack:Tile)
open tilePack as t [pointRep] [tileRep]
let f = fun(p:pointRep) ...
in f(t.tile(0,0,1,1))

In languages with both type inheritance and abstract types, it is natural to be able to extend inheritance to
abstract types without having to reveal the representation of types. As we have just seen, bounded existential
quantifiers can explain these situations and achieve a full integration of inheritance and abstraction.

7. Type Checking and Type Inference

In conventional typed languages, the compiler assigns a type to every expression and subexpression.
However, the programmer does not have to specify the type of every subexpression of every expression: type
information need only be placed at critical points in a program, and the rest is deduced from the context. This
deduction process is calldgpe inference. Typically, type information is given for local variables and for
function arguments and results. The type of expressions and statements can then be inferred, given that the type
of variables and basic constants is known.

Type inference is usually done bottom-up on expression trees. Given the type of the leaves (variables and
constants) and type rules for the ways of combining expressions into bigger expressions, it is possible to deduce
the type of whole expressions. For this to work it is sufficient to declare the type of newly introduced variables.
Note that it may not be necessary to declare the return type of a function or the type of initialized variables.

fun (x:Int) x+1
letx =0in x+1

The ML language introduced a more sophisticated way of doing type inference. In ML it is not even necessary
to specify the type of newly introduced variables, so that one can simply write:

fun (x) x+1

The type inference algorithm still works bottom-up. The type of a variable is initially taken to be
unknown. Inx+1 above x would initially have typea, wherea is a newtype variable (a new type variable is
introduced for every program variable). Then lthteoperator would retroactively for@eto be equivalent tnt.

This instantiation of type variables is done by Robinson's unification algorithm [Robinson 65], which also takes
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care of propagating information across all the instances of the same variable, so that incompatible uses of the
same variable are detected. An introductory exposition of polymorphic type inference can be found in [Cardelli
84al].

This inference algorithm is not limited to polymorphic languages. It could be added to any monomorphic
typed language, with the restriction that at the end of type checking all the type variables should disappear.
Expressions likdun (x) x would be ambiguous, and one would have to wtite(x:Int) x, for example, to
disambiguate them.

The best type inference algorithm known is the one used in ML and similar languages. This amounts to
saying that the best we know how to do is type inference for type systems with little existential quantification,
no subtyping, and with a limited (but quite powerful) form of universal quantification. Moreover, in many
extensions of the ML type system the type-checking problem has been shown to be undecidable.

Type inference reduces to type checking when there is so much type information in a program that the
type inference task becomes trivial. More precisely we can talk of type checking when all the type expressions
involved in checking a program are already explicitly contained in the program text, i.e., when there is no need
to generate new type expressions during compilation and all one has to do is match existing type expressions.

We probably cannot hope to find fully automatic type-inference algorithms for the type system we have
presented in this paper. However, the type-checking problem for this system turns out to be quite easy, given the
amount of type information which has to be supplied with every program. This is probably the single most
important property of this type system: it is very expressive without posing any major type-checking problem.

There is actually one problem, which is however shared by all polymorphic languages, and this has to do
with type checking side-effects. Some restrictions have to be imposed to prevent violating the type system by
storing and fetching polymorphic objects in memory locations. Examples can be found in [Gordon 79] and
[Albano 83]. There are several known practical solutions to this problem [Damas 84] [Milner 84] which trade
off flexibility with complexity of the type checker.

8. Hierarchical Classification of Type Systems

Type systems can be classified in terms of the type operators they admit. Figure 2 is a (partial) diagram of
type systems ordered Ilggnerality. Each box in the diagram denotes a particularly clearcut type system; other
type systems may fall in between. At the bottom of each box, we enumerate the type operators present in the
type system (going from the bottom up, we only showntlve operators). At the top of each box is a name for
that type system and in the middle is the set of features it can model (again, going from the bottom up, we only
list the new features). The diagram could be made more symmetrical, but it would then reflect the structure of
existing classes of languages less precisely.

This is a classification of type systems, not of languages. A particular language may not fall on any
particular point of this diagram, as it can have features which position it, to different degrees, at different points
of the diagram. Also, existing language type systems will seldom fall exactly on one of the points we have
highlighted; more often they will have a combination of features which positions them somewhere between two
or more highlighted points.

At the bottom we have simple first-order type systems, with Cartesian products, disjoint sums and first-
order function spaces, which can be used to model records, variants and first-order procedures, respéctively. A
sign indicates an incomplete use of a more general type operator.

First-order type systems have evolved into higher-order type systems (on the left) and inheritance-based
type systems (on the right). On the left side we could find Algol 68, a higher-order monomorphic language. On
the right side we could find Simula 67, a single-inheritance language, and multiple-inheritance languages higher
up (again, these allocations are not so clear-diig¢se two classes of type systems are dominated by higher-
order inheritance systems, as in Amber [Cardelli 85].
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Higher-order languages have developed into parametric polymorphic languages. These can have restricted
top-level universal quantification (this is Milner's type system [Milner 78], with roots in Curry [Curry 58] and
Hindley [Hindley 69]) or general universal quantification (this is the Girard-Reynolds type system [Girard 71]

[Reynolds 74]).

Up on the right we have type systems with type abstraction, characterized by existential quantification.
Joining universal and existential quantifiers we obtain SOL's [Mitchell 85] type system, which can be used to
explain basic module features.
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Figure 2: Classification of typ systems.
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The remaining points at the top have to do with inclusion. We have shown that the bounded universal
quantifiers are needed to model object-oriented programming, and bounded existential quantifiers are needed to
mix inheritance with data abstraction.

Three powerful concepts (inclusion, universal and existential quantification) are sufficient to explain most
programming features. When used in full generality, they go much further than most existing languages. We
have been careful to maintain the ability to type-check these features easily. However, this is not the whole
picture. Many interesting type systems lie well above our diagram [Reynolds 85]. These include the Coquand
and Huet theory of constructions [Coquand 85], Martin-L6f's dependent types [Martin-L6f 80], Burstall and
Lampson's language Pebble [Burstall 84], and MacQueen's language DL [MacQueen 84b].

There are benefits in going even higher up: Pebble and DL have a more general treatment of parametric
modules; dependent types have an almost unlimited expressive power. But there are also extra complications,
which unfortunately reflect pragmatically on the complexity of type checking. The topmost point of our diagram
is thus a reasonable place to stop for a while, to gain some experience, and to consider whether we are willing to
accept extra complications in order to achieve extra power.

9. Conclusions

The augmented\-calculus supports type systems with a very rich type structure in a functional
framework. It can model type systems as rich, or richer, than those in real programming languages. It is
sufficiently expressive to model the data abstractions of Ada and the classes of object-oriented languages. Its
ability to express computations on types is strictly weaker than its ability to express computations on values.

By modeling type and module structures of real programming languages in the augkreaitadus, we
gain an understanding of their abstract properties independent of the idiosyncrasies of programming languages
in which they may be embedded. Conversely, we may view type and module structures of real programming
languages as syntactically sugared versions of our augmegtddulus.

We started from the typedcalculus and augmented it with primitive types sucimgBool, andString
and with type constructors for pairs, records, and variants.

Universal quantification was introduced to model parametric polymorphism, and existential
quantification was introduced to model data abstraction. The practical application of existential quantification
was demonstrated by modeling Ada packages with private data types. The usefulness of combining universal
with existential abstraction was demonstrated by a generic stack example, using universal quantification to
model the generic type parameter and existential quantification to model the hidden data structure.

Both universal and existential quantification become more interesting when we can restrict the domain of
variation of the quantified variable. Bounded universal quantification allows more sensitive parameterization by
restricting parameters to the set of all subtypes of a type. Bounded existential quantification allows more
sensitive data abstraction by allowing the specification of subtyping relations between abstract types.

The insight that both subrange types of integers and subtypes defined by type inheritance are type
inclusion polymorphisms extends the applicability of bounded quantification to both these cases. The case of
record subtypes such & T1} < {a:T1, b:T2} is particularly interesting in this connection. It allows us to assert
that a record type obtained by adding fields to a given record type is a subtype of that record type.

Types such a€ars may be modeled by record types whose fields are the set of data attributes applicable
to cars. Subtypes such &gyotas may be modeled by record types that include all fields of car records plus
additional fields for operations applicable onlyTmyotas. Multiple inheritance may generally be modeled by
record subtypes.

Records with functional components are a very powerful mechanism for module definitions, especially
when combined with mechanismd for information hiding, which are here realized by existential types. Type
inclusion of records provides a paradigm for type inheritance and may be used as a basis for the design of
strongly typed object-oriented languages with multiple inheritance.  Although we have used a
unified language KFun) throughout the paper, we have not presented a language design for a practical
programming language. In language design there are many important issues to be solved concerning readability,
easy of use, etc. which we have not directly attacked.

Fun provides a framework to classify and compare existing languages and to design new languages. We
do not propose it as a programming language, as it may be clumsy in many areas, but it could be the basis of
one.



39

Appendix: Type Inference Rules

The type system discussed in this paper can be formalized as a set of type inference rules which prescribes
how to establish the type of an expression from the type of its subexpressions. These rules can be intended as
the specification of a typechecking algorithm. An acceptable algorithm is one which partially agrees with these
rules, in the sense that If it computes a type, that type must be derivable from the rules.

The inference rules are given in two groups: the first group is for deducing that two types are in the
inclusion relation, and the second group is for deducing that an expression has a type (maybe using the first
group in the process).

Type expressions are denoted fyt andu, type variables by andb, type constants (e.gnt) by k,
expressions bg andf, variables by, and labels by. We identify all the type expressions which differ only
because of the names of bound type variables.

Here are the rules of type inclusibg s. C is a set ofnclusion constraints for type variablesC. a<t is
the selC extended with the constraint that the type varialifea subtype of the tyge

C |0 t<sis anassertion meaning that fron€ we can infett < s. A horizontal bar is &ogic implication:
if we can infer what is above it, then we can infer what is below it.

Note: this set of rules is not complete with respect to some semantic models; some valid rules have been
omitted to make typechecking easier.

{TOP} ClOt<sTop
{VAR} C.ast|O0 ac<t
{BAS1} Cl0 a<a
{BAS2} Clo k<k

Clos'ss C|Otst
{ARROW} oooooooog
ClO sotss' >t

Clo sy sty..CJO sy,
{RECD} 000000000000000000000
CIO {l1:s1, v InSp oo ImiSm Y {liit, - It 3

Closgsty..CJO sy,
{VART} 000o000ob0O00o0o0000oo0oooooon
CIO [l3:sq, v lnsspl < Mitqs - Ity oo 0 It

C.ass|O0tst
{FORALL} [OO0OO0OOODOOOODO anotfreeinC
C|O (Dass.t)<(Dass.t)

C.ass|O0tst
{EXISTS} OO00oO0ooboOooogd anotfreeinC
C|O (Ca<st) <(a<ss.t)

ClOs<t ClOtsu
{TRANS} ooooooooon
Cl|O s<u
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Here are the typing rules for expressiend\ is a set of type assumptions for free program variaBles.
x:t is the sefA extended with the assumption that variableas type. C,A |0 e: t means that from the set of
constraintsC and the set of assumptioAsve can infer tha¢ has typd .

[TOP] CA|O e:Top

[VAR] C,AXxt|Ox:t
CAXxs|O e:t

[ABS] Oo0oooooooao

CA |0 (fun(x:s)e): st

CA|O e:s—-t CAI|O e"s
[APPL] gooooooooobooo
CA|O (ee"): t

CAI|0 eqty .. CAIO epity
[RECD] ooo0oOoboOooo0ooooooon
CA|O {ly=eq, .. .lh=en } {1ty .. Inity }

CA|DO e:{lyity, .. Ipty }

[SEL] gboooboobobo i021.n
CAlO el
C,A|O e
[VART] goopobooboooogan id21.n

CA|O [li=e]: [I1:tg, - ity ]

CAIO e:[lgty, . Ipty] CAD fiity -t .. CAID ity -t
[CASE] booobodobooobogobdooogobdoboooogodaonod
CA|O (caseeofl{ O fq, .., 1,0 fy):t

C.ac<sA|0 e:t
[GEN] 00000000000 anotfreeinC,A
CA|O allassle:Oas<s.t

CA|U e:dasst C|O s'<ss
[SPEC] ogoodooooooooon
C,A|O e[sT: t{s'/a}

CA|O e:s{tta} C|Ot<u
[PACK] goodoooooobooobooood
CA|O pack[asu=tins]e:[a<u.s

CA|O e:bsus C.asu, Axss{a/b}|O et
[OPEN] 0J0000o0O00000DbbOO0o0OoOooO  anotfree int,C A
C/A|O openeasx[a]ine':t

C,A|O e: t{s/b}
[DEFN] OO0DOD0O0 if alb]=t is atype definition
CA|O e: a[s]
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CA|O e:t ClO t<u
[TRANS] gooooooobooo
CA|O e:u
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