GermanTeam 2006
The German National RoboCup Team

Thomas Rofer!, Jorg Brose?, Eike Carls®, Jan Carstens®, Daniel Gohring?,
Matthias Jiingel*, Tim Laue®, Tobias Oberlies?, Sven Oesau®, Max Risler?,
Michael Spranger?, Christian Werner?, and Jérg Zimmer?

! Deutsches Forschungszentrum fiir Kiinstliche Intelligenz, Safe and Secure Cognitive
Systems, Robert-Hooke-Str. 5, 28359 Bremen, Germany

2 Fachgebiet Simulation und Systemoptimierung, Fachbereich Informatik, Technische

Universitat Darmstadt, Hochschulstrale 10, 64289 Darmstadt, Germany
3 Fachbereich 3 - Mathematik / Informatik, Universitdt Bremen, Postfach 330 440,
28334 Bremen, Germany
4 Institut fiir Informatik, LFG Kiinstliche Intelligenz, Humboldt-Universitit zu

Berlin, Rudower Chaussee 25, 12489 Berlin, Germany.

http://www.germanteam.org
germanteam@tzi.de

1 Introduction

The GermanTeam participates as a national team in the RoboCup Four-Legged
League. It currently consists of students and researchers from the following three
universities: the Humboldt-Universitdt zu Berlin, the Universitidt Bremen, and
the Technische Universitdt Darmstadt. The members of the GermanTeam par-
ticipate as individual teams in contests such as the RoboCup Dutch Open, but
jointly line up as a national team for the international RoboCup World Cup.
To support this cooperation and concurrency, the GermanTeam introduced an
architecture that provides mechanisms for parallel development [1]. The entire
information processing and control of the robot is divided into modules (cf. fig. 1)
carrying out specific tasks using well-defined interfaces. For each module, many
different solutions can be developed which can be switched at runtime. This
approach allows for easily comparing and benchmarking the solutions developed
for the various tasks. It is used since the fall of 2001 and has been proven to be
a very useful tool for development. At RoboCup 2006, 10 out of the 28 teams
that will be present base their work on this architecture.

This paper gives an overview on the work done by the three sub-teams of the
GermanTeam (Aibo Team Humboldt, Darmstadt Dribbling Dackels, and Bre-
men Byters) in the past year that is currently combined to form the code of the
GermanTeam 2006. Further information can be found in this year’s contributions
of members of the GermanTeam to the RoboCup book:

— In [2], a Kalman filter-based approach for estimating the positions of other
robots is presented. By combining different simple perceptions, accurate es-
timates of a robot’s local environment can be computed.

SensorDataBuffer

LandmarksPerept BallPercept

Perceptionl CollisionDetector l I SensorDataProcessor

CollisionPercept BodyPercept reept

PlayersPercept

ObstaclesPercept

Ob']eCt, RobotStateDetector ObstaclesLocator SelfLocator ‘ BallLocator PlayersLocator
Modeling \

ObstaclesModel BallPosition PlayerPoseCollection
Behavior BehaviorControl
Control

SoundRequest LEDRequest HeadControlMode

Mibfiton I SoundControl l I LEDControl l I HeadControl ‘ - Head) # MotionControl
Control |

Fig. 1. Information processing in the robots of the GermanTeam. Boxes denote mod-
ules, ellipses denote the representations that are needed to exchange information be-
tween the modules.

— In [3] an approach for using and communicating relations between objects
in robot images is presented that allows allocentrically localizing objects
without the need for self-localization.

— An approach, how information about collisions can be used for an improved
self localization was described in [4].

2 Perception

2.1 Hotspot-based Image Processing

The GT2005 image processing architecture was designed to find necessary in-
formation on a grid of scan lines in a single sweep. The central module calls
so-called specialists to recognize percepts if enough evidence is gathered, e.g.
if some orange pixels were found, this calls for further examination by the ball
specialist. This approach has the benefit of scanning most pixels on scan lines
only once, although specialists may check it again to verify their percept. The
main disadvantage is that this central module grows more and more complicated
while the image processor evolves.

To ease the development of new perceptors the central module with its set
of scan lines was discarded and each perceptor got its own specialized set of
scan lines. This approach made it possible to swap, e.g., only the orange ball

Fig. 2. Hotspots found (orange, pink, etc.) on a horizon-aligned grid (grey).

perceptor for a black and white ball perceptor. Its main disadvantage was that
several lines were scanned more than once since the requirements of some of the
perceptors are similar. Having split the image processing into several indepen-
dent modules—the perceptors and a percept filter—improved maintainability
but decreased execution time thereby making it unfeasible for competitive use.

The hotspot approach tries to combine both the versatility and maintainabil-
ity of the split perceptors with the speed of the old architecture by introducing
another layer of abstraction between the actual image and the percepts. This
was accomplished by reintroducing the central instance for checking scan lines,
the hotspot finder. This module finds interesting regions (cf. Fig. 2), so-called
hotspots, on its scan lines and passes them to the perceptors. Interesting is de-
fined for each percept in a function that can be easily modified. The perceptors
use the hotspots as a starting point for finding the percept rather than merely
verifying them as they did in the 2005 version of the image processor . Since each
perceptor can access any kind of information gathered by the hotspot finder, this
approach is rather easy to extend while keeping most functions small and simple.

2.2 Detecting Robots

To determine indications of other robots, vertical scan lines are searched for
tricot colors. In order to avoid wrong scan lines (especially for blue robots), only
those scan lines are used that begin with white color. In addition, all scan lines
that end with green color, and the green appears to be too far away (based on
an intersection with the field plane), are ignored.

After collecting all vertical scans of robot uniforms, these scans are clustered.
If the distance between two neighboring uniform scans is too large, it is tested
whether there is a horizontal white line connecting these scans. If this is not
the case, the scans belong to different robots, otherwise it is assumed that they
belong to the same one.

In order to determine the position of a robot, the contact point between the
robot and the carpet is computed. Therefore, it is searched for the feet of the
robot. This procedure scans the first and the last scan line belonging to the robot

Fig. 3. Detecting Robots. The colored circles represent the positions of the robots. a)
A close robot. b) Two robots further away.

downward using a scan tree along the white color. The lowest white/green edge
found is assumed to be the foot point of the robot, i.e. it is on the height of the
field.

Finally the robot’s position is determined by constructing a point in the
image by intersecting the middle of the vertical scans belonging to robot with a
horizontal line on the height of the foot point. This image point is transformed
to world coordinates by intersecting a ray from the camera origin through this
image point with the field plane.

2.3 Detecting Black and White Balls

Related Work. To recognize a black and white ball, the algorithm to detect
the orange ball is not applicable, because there is no unique color on the black
and white ball such as orange for the original ball. The method developed by
the GermanTeam in 2003 (Rofer et al., 2003, pages 66-67) follows a rather clas-
sical approach to detect the ball. It first detects edges using the Sobel operator
followed by some kind of thresholding, so only edges of significant contrast are
taken into account (cf. Fig. 4a). Then a Hough transformation is performed. The
Hough transformation accumulates evidence for the presence of certain features
at certain positions in the Hough space. In case of the ball detection, the Hough
space consists of the dimensions (z,y,r), in which (z,y) is the location of the
center point of the ball in image-coordinates and r is its radius. For each edge
point with sufficient contrast in the image, the evidence of all entries in Hough
space this point can be part of is increased. Basically, this means that circles
of the different radii are drawn in the Hough space (or circle segments if the
direction of the edge points can be detected and is used to narrow the possible
position of the center point). After all suitable edge points have been inserted
into Hough space, the largest cluster is searched and it is checked whether it
provides enough evidence for being a ball or not, maybe by looking back in the
image at this position and checking whether there is a ball of the assumed radius.

Fig. 4. Searching the image for edges. a) Edges detected. The intensity of the edges in-
creases from green over red to orange. b) Searching for the ball center. Green points are
possible candidates, red points were discarded. The orange circle depicts the resulting
ball percept.

The major drawback of this approach is that it is quite slow. With many
edge points present, many entries in the Hough space have to be modified. In
addition, the number of possible radii has to be significantly limited to have any
chance to run in real time.

Approach. To avoid a three dimensional Hough space, it is required to directly
calculate a single ball center from the edge points found by the Sobel operator.
The real ball radius and the orientation of the camera are known. So if one as-
sumes that the ball is on the ground, it is possible to calculate the ball center
point based on the location of the edge and the gradient. The calculation of the
ball center point is quite expensive, but it allows the use of a two dimensional
Hough space and only needs one entry in the Hough space per edge point. An-
other advantage is that it is able to work with all image space ball radii and not
only with a few ones.

Calculating the Ball Center. The major problem is, given an edge point and
its gradient, to determine where the center of a ball with this point on its edge
would be. The position of the camera is given by a three-dimensional vector and
a 3 X 3 matrix representing its rotation. Using this information and the z/y-
coordinates of the edge points, the view ray from the camera origin through this
particular pixel can be constructed. From this view ray and the gradient of the
edge point a plane can be constructed that touches the ball from the outside. At
the contact point, a vector perpendicular to the plane with a length of the ball
radius directly points to the center of the ball.

The ball is also touched by a second plane, i.e. the field plane. Again, a
vector perpendicular to that plane with a length of the ball radius that is simply
(0,0, 7pa11), also points to the center of the ball. So we can both subtract the

vector perpendicular to the edge point plane and the vector (0,0, 7pqy) from the
position of the camera. Starting from the resulting position, we intersect the
view ray with the plane z = 0. The result is the x/y-offset of the center of the
ball, relative to the origin of the robot. For visualization purposes, it can be
projected back into the image (cf. Fig. 4b).

Optimizations. As the calculation of the ball center is quite expensive, its use-
ful to minimize the number of edge points processed. In all cases when the AIBO
is looking for the ball, the camera is above the ball. This makes it possible to
ignore all edge points above the horizon in the camera image. Another optimiza-
tion technique is to only care about green/white transitions and green/black
transitions, but this only results in a small acceleration, because most edges
found are of these types anyway (field lines/field, AIBO /field).

3 Ball Model

3.1 Motivation

Tracking the ball and to estimating its speed are some of the most important
abilities when playing robot soccer. The motion of the ball can either be linear
(the ball rests or moves steadily) or highly non-linear (the ball has been kicked
by a robot). To be able to track the ball in these different situations, different
motion models are used. The ball state can then be represented by a probability
density in the five dimensional state space—four dimensions for the ball position
and speed plus one dimension for the ball mode.

3.2 Method

To achieve this, we use a Rao-Blackwellised Particle Filter, a method first applied
in the RoboCup domain by Kwok and Fox [5]. Such a filter maintains a set of
particles that represent the posterior over the ball state. Each of them uses a
Kalman filter to model the position and speed conditioned on the discrete motion
mode of that particle. This means that there are different time updates for each
ball mode while the measurement update is the same for all particles. Note that
the two-dimensional position measurement is sufficient for the Kalman filters to
update position and velocity.

3.3 Ball Modes

Currently we use following ball modes to represent the possible situations. Due
to the modular framework of our ball locator, these list can be be easily changed.

None: The ball rests or moves unobstructed. In this state, a Kalman filter can
be used efficiently to track the ball and to compute its velocity.

Fig. 5. A particle set. The ball has just been kicked and is seen at the white dot. The
ellipses represent the position covariance by showing a (magnified) confidence region.
The figure shows two particles in ball mode none (blue) and one in mode manipulated
(orange). The white ellipse represents the uncertainty of the measurement.

Grabbed: The ball is grabbed by the robot, hence the ball movement is coupled
to the movement of the robot.

Kicked: The robot kicks the ball. The direction and velocity of the following
ball movement depends on the kick used.

Stopped: The ball hits an obstacle or stops because of its unbalanced mass or
the friction of the carpet.

Manipulated: The trajectory of the ball changes suddenly, probably because
another robot kicks the ball. In this case, there is very little knowledge about
the ball velocity.

The transition probability between the ball modes is defined by a dynamic
statistical matrix. It contains the probability that the ball behaves according to
a certain mode given the previous mode and the current action of the robot.

3.4 Particle Management

The model update distinguishes two main cases, depending on whether the ball
was seen in the current image or not.

In the case of a ball percept a set of new particles is generated from each exist-
ing particle. Each of them is labeled with the a-priori probability of a transition
from the previous ball mode to the new one. The position and speed, initially a
copy from the predecessor particle, is updated with the respective time update
and the measurement update. The latter also computes the likelihood of that
particle which forms the particle weight together with the a-priori label. Finally
resampling is used to reduce the particles to a feasible number.

If the ball was not seen, only a reduced model is maintained. In the case
of a non-linear ball movement, it is hardly possible to predict the position and
speed of the ball. Therefore only the particles with the linear ball mode none

are updated and all other particles are discarded. However the probability of
those discarded particles is accumulated to keep track of the probability actually
represented by the current model. If the ball is rediscovered, a new particle is
inserted at the seen position with unknown speed, and it is given the probability
not covered by the current model.

Figure 5 shows an example of a set of particles.

4 Behavior Control

4.1 XABSL — Language Extensions

The behavior architecture of the GermanTeam is based on the Fxtensible Agent
Behavior Specification Language(XABSL) [6]. XABSL is a formalism for the
pragmatic design of agent behavior through hierarchies of finite state machines.
It has been developed in the GermanTeam and is successfully applied by many
RoboCup teams. In 2005 a new description language has been developed that
uses a C-like syntax in order to specify XABSL state machines in a compact
manner. Currently, the XABSL architecture and description language is being
refined further. New features include typed and parameterized input functions
and variable data types for output symbols and option parameters. Figure 6
shows an example of one of the state machines of the GermanTeam behavior
specified in the new description language.

4.2 XABSL-Editor

One of the strengths of XABSL is its ability to generate a graphical documen-
tation of the behaviors specified. However, so far this was only possible in a
batch-like style, so there was no direct connection between the source file cur-
rently edited and the documentation. The XabslEditor (cf. Fig. 6) fills this gap.
It allows navigating through the options! of the behavior easily. The source code
can be manipulated and the resulting graph is visualized right away. This im-
proves understanding the options and it helps to determine the context of several
options. Functionality for source code editing such as syntax highlighting and
code completion is also included.

4.3 Passing Behavior

The main problem when playing a pass is detecting the receiving robot. Trusting
only in the positions communicated between both robots involved in a pass is
not a successful approach. The inaccuracies in self-localization accumulate, so
passes are never really precise.

To solve this task, players perceived visually are used to detect the receiving
teammate, and the passing robot turns to the robot seen. Before the receiving
robot is seen, the position communicated is used as a clue where to look for

! XABSL devides the behavior into separate state machines called options.

the receiving robot. The best results were achieved recognizing a robot when its
waist jersey can be seen i.e. when the jersey area seen is as big as possible. So
the pass-receiver turns to an angle of 80° to the sender to show its flank. Before
the pass is executed, it turns back to receive the ball. If the pass-receiver cannot
be seen, no pass is played.

4.4 Passing Challenge

If the robot playing the pass is not at its home position the pass is played
anyway—even if it will not be counted. After the pass the robot walks back to
its home position. It is the responsibility of the receiver of the pass to always be
at its home position. So if that pass was successfully played, both robots should
be back on their respective positions and at least the next pass will be counted
as a correct one. Only if the ball rolls very far away from the home position it is
grabbed and carried there safely. It is not advisable to play far passes because
far robots can not be detected well and the risk of playing a bad pass is too high.

While the ball is carried by a robot, it is hard to detect the objects on the
field. This deteriorates the self-localization. To avoid being punished for ball
holding and to collect information for localization, the robot stops every three
seconds during the passing challenge and lifts its head.

1 xabslEditor - GT2005: BallHandling'grab-ball-with-head.yabs| —1=]=|
File Edit View Help
UNESHEHE9 ™A BallHandiing|grab-ball-with-head. yabsl ~

grab-bal\-wnh-headyabs\‘ play-socceryabs! ‘ finishedyabsl | dokickyabsl | playing defensive-supporter yabs! | < v [option | agent | compiler output ‘

1/7% Grabs the ball with the head &/ L -
2 option grab_ball_with head { —
3 common decision { / -—
4 /%% ball distance greater than 200 mm 7/ -\
5 if (ball.time_since_last_seen consecutively < 200 && [approach- | \
6 { ! ball.consecutively_seen time > 100 & \ ball |)
7 ball.seen.distance > 200 s& /
8 ! | pall.seen.distance < 8500) S
B 1 f s
10 ! goto approach_ball: / S A
11 } | A
12 | - EN
13 initial state approach ball { / \T\
13 decision ¢ | oesmb o approach-ball
15 /*% state running less chan 300 ws +/ L ‘ N A
16 else if [state_time < 300] ¢ TN
17 stay; [.
18) | . J \\
18 /** grah pessible */ | -
20 else if (ball.time_since_last_seen_consecutively < 300 &¢ | \
21 ; .consecutively seen time > 100 5o [N \
2z .seen.distance < (ball.play_ball_precisely 2 90 : 180] && | : Sontinue : | \
23 .seen.angle < iball.play ball precisely 7 15 @ 20) og | grab i \
24 .seen.angle > iball.play_ball_precisely 2 -15 : -20}) | \ // i
25 1 \ -
26 goto grab: \\ . /— N '
27 3 ™~ |
28 else | \ _ J N\ /
29 stay; - I
® ! / \ \ |
a1 y [f) Wy
32 action | W arabbed o \
33 ! head_control wods = search_for ball: \ / /
34 i approach ball (look at_ball distance - 500, A
35 i H H H =slow_down_distance = (ball.play ball precisely 7 a l — |

380 - 3800, . I
is PPl il slow speed = (ball.play ball precisely 7 100 @ 170 3 . -

n 8 ; s
a7 » >

Cilpri o artroliGT: artroliOptions\BalHanding\grab-ball-with-head. yabs!

Fig. 6. Example XABSL source code for the option ”grab-ball-with-head”
opened with the XabslEditor.

5 Conclusion and Future Work

One of the main objectives of the GermanTeam is to define the state of the art in
the Four-Legged League, and to catch up in areas, in which others have defined
it. Playing soccer with a black and white ball is an example for the former,
the Rao-Blackwellized ball model an example for the latter. Improvements in
robot recognition and robot modeling allow for new styles of game play such as
dodging and passing.

Another major objective of the team is the continuous improvement of the
GermanTeam framework. This year, the image processing was reorganized, the
behavior modeling language improved, and a graphical editor for this language
was developed.

References

1. T. Rofer, “An architecture for a national robocup team,” in RoboCup 2002 Robot
Soccer World Cup VI, Gal A. Kaminka, Pedro U. Lima, Raul Rojas (Eds.), no. 2752
in Lecture Notes in Artificial Intelligence, pp. 417425, Springer, 2003.

2. T. Laue and T. Rofer, “Integrating Simple Unreliable Perceptions for Accurate
Robot Modeling in the Four-Legged League,” in RoboCup 2006: Robot Soccer World
Cup X, Lecture Notes in Artificial Intelligence, Springer, 2007. to appear.

3. D. Gohring and J. Hoffmann, “Sensor Modeling Using Visual-Object Relation in
Multi Robot Object Tracking,” in RoboCup 2006: Robot Soccer World Cup X, Lec-
ture Notes in Artificial Intelligence, Springer, 2007. to appear.

4. J. Hoffmann, “Proprioceptive Motion Modeling for Monte Carlo Localization,” in
RoboCup 2006: Robot Soccer World Cup X, Lecture Notes in Artificial Intelligence,
Springer, 2007. to appear.

5. C. Kwok and D. Fox, “Map-based multiple model tracking of a moving object,” in
RoboCup 2004: Robot World Cup VIII (D. Nardi, M. Riedmiller, C. Sammut, and
J. Santos-Victor, eds.), no. 3276 in Lecture Notes in Artificial Intelligence, pp. 18-33,
Springer, 2005.

6. M. Lotzsch, J. Bach, H.-D. Burkhard, and M. Jiingel, “Designing agent behavior
with the extensible agent behavior specification language XABSL,” in RoboCup
2003: Robot Soccer World Cup VII (D. Polani, B. Browning, A. Bonarini, and
K. Yoshida, eds.), vol. 3020, Springer, 2004.

