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Chapter 1

Introduction

1.1 About us

B-Human is a RoboCup team of the Universität Bremen and the DFKI Bremen. The team was
founded in 2006 and it consists of numerous undergraduate students as well as of researchers
of these two institutions. The latter have already been active in a number of RoboCup teams,
such as the GermanTeam and the Bremen Byters (both Four-Legged League), B-Human and
the BreDoBrothers (both Humanoid Kid-Size League), and B-Smart (Small-Size League).

The senior team members have also been part of a number of successes, such as winning the
RoboCup World Championship three times with the GermanTeam (2004, 2005, and 2008),
winning the RoboCup German Open also three times (2007 and 2008 by the GermanTeam,
2008 by B-Smart), and winning the Four-Legged League Technical Challenge twice (2003 and
2007 by the GermanTeam). In 2007, the team was strengthened by further computer science
students, who support the team on the basis of their advanced study project.

In parallel to these activities, B-Human started as a part of the joint team BreDoBrothers, which
has been a cooperation of the Technische Universität Dortmund and the Universität Bremen.
The team participated in the Humanoid League in RoboCup 2006. The software was based
on previous works of the GermanTeam [10]. This team was split into two single Humanoid
teams, because of difficulties in developing and maintaining a robust robot platform across two
locations. The DoH!Bots from Dortmund as well as B-Human from Bremen participated in
RoboCup 2007; B-Human reached the quarter finals and was undefeated during round robin.
In addition to the participation in the Humanoid League at the RoboCup 2008, B-Human
also attended a new cooperation with the Technische Universität Dortmund. Hence, B-Human
took part in the Two-Legged Competition of the Standard Platform League as part of the team
BreDoBrothers, who reached the quarter finals, and were the only team that actually won games
in the preliminaries. The team members from the Technische Universität Dortmund provided
an own team report [4] about their contribution for that competition.

The current team consists of the following persons:

Diploma Students. Oliver Bösche, Armin Burchardt, Erik Damrose, Katharina Gillmann,
Colin Graf, Alexander Härtl, Thijs Jeffry de Haas, Mirko Kloweit, Judith Müller, Thanh
Nguyen Hai, Andrik Rieskamp, André Schreck, Ingo Sieverdingbeck, Karl Trzebiatowski,
Thiemo Wiedemeyer, Jan-Hendrik Worch.

Researcher. Tim Laue.

Senior Researcher and Assistant Professor. Thomas Röfer (team leader).
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B-Human 2008 1.2. ABOUT THE DOCUMENT

1.2 About the Document

In the beginning of the Standard Platform Four-Legged League, it was obligatory to release the
developed source code after a competition. With this document we want to try to revive the
tradition of the annual code release which has been widely neglected in the past few years.

This document gives a survey about our current system. It reflects the transition B-Human is
currently undergoing. The code is basically a system designed for the Humanoid League now
running on the robot Nao of Aldebaran Robotics, i. e., image processing and world modeling
are still configured for the field of the Humanoid Kid-Size League. In addition, the behavior
control implements a rather rudimentary goto-ball-and-kick behavior, but it already listens to
the GameController of the Standard Platform League. As mentioned above, some team members
of B-Human were also part of the team BreDoBrothers in the Standard Platform League. Apart
from some exceptions, our code release only contains software which was originally introduced
to the joint team by members of B-human or it was written after the cooperation was finished.

Chapter 2 starts with a short introduction to the required software, as well as an explanation
of how to run the Nao with our software. Chapter 3 gives an introduction to the software
framework. Chapter 4 deals with the cognition system and will give an overview about our
perception and modeling components. In Chapter 5, we describe our walking approach and
how to create special motion patterns. Chapter 6 gives an overview about the robot behavior
contained in the code release, i. e. the implementation of a simple striker. Finally, Chapter 7
describes the usage of SimRobot, the program that is both used as simulator and as debugging
frontend when controlling real robots.
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Chapter 2

Getting Started

To use our code release, several steps are necessary: Unpacking the source code, compiling the
code using Visual Studio 2008 or Linux, setting up the Nao, copying the files to the robot, and
starting the software.

2.1 Unpacking

Unpack the source code to a location, the path of which must not contain whitespaces. The
code release contains several subdirectories, which are described below.

Backup contains all files needed to set up a new Nao.

Build contains temporary files created during the compilation of the source code.

Config contains configuration files used to configure the Nao and the Simulator. A more thor-
ough description of the individual files can be found below in the next section.

Doc contains a description how to create special motion patterns (cf. Sect. 5.2 as well as the
compiled documentation of the behavior.

Make contains the Visual Studio project files, makefiles, other scripts needed to compile the
code, and the copyfiles tool.

Src contains all the source code of the code release.

Util contains additional tools such as Doxygen [17].

2.2 Components and Configurations

The code release bundle contains a full version of the B-Human software usable on Windows
as well as on Linux. The code release builds a shared library for NaoQi running of the real
robot, as well as the same software running in our simulator SimRobot (without NaoQi). The
B-Human software consists of the following components:

SimRobotCore is a library that contains the simulation engine of SimRobot. It is compilable
with or without debug symbols (configurations Release and Debug).

7



B-Human 2008 2.3. COMPILING USING VISUAL STUDIO 2008

SimRobotGUI is a library that contains the graphical user interface of SimRobot. This GUI
is written in Qt4 and it is also available in the configurations Release and Debug.

Controller is a library that contains Nao-specific extensions of the Simulator, the interface to
the robot code framework, and it is also required for controlling and high level debugging
of code that runs on a Nao. The library is available in the configurations Release and
Debug.

Simulator is the executable simulator (cf. Chapter 7) for running and controlling the B-Human
robot code. The robot code links against the components SimRobotCore, SimRobotGUI,
Controller and some third-party libraries. It is compilable in Optimized, Debug With Re-
lease Libs, and Debug configurations. All these configurations contain debug code but Op-
timized performs some optimizations and strips debug symbols (not on Windows). Debug
With Release Libs produces debuggable robot code while linking against non-debuggable
Release libraries.

Nao compiles the shared library for NaoQi. It is available in Release, Optimized, and Debug
configurations, where Release produces “game code” without any support for debugging.
The configuration Optimized produces optimized code, but still supports all debugging
techniques described in Section 3.5.

URC stands for Universal Resource Compiler and is a small tool for automatic generation of
some .xabsl files (cf. Sect. 6.1) and for compiling special actions (cf. Sect. 5.2).

Behavior compiles the behavior specified in .xabsl files into an internal format (cf. Sect. 6.1).

SpecialActions compiles motion patterns (.mof files) into an internal format (cf. Sect. 5.2).

SimulatorDoc is a tool for creating the documentation of the complete simulator source code.
The results will be located in Doc/Reference/Simulator.

BehaviorDoc is a tool for creating the documentation of the behavior. The results will be
located in Doc/Reference/BH2009BehaviorControl.

VcProjGeneration is a tool (Windows only) for updating project files based on available
source files found in the Src directory. On Linux, all makefiles will be updated automati-
cally on each call to make.

2.3 Compiling using Visual Studio 2008

2.3.1 Required Software

• Visual Studio 2008 SP1

• cygwin – 1.5 with the following additional packages: make, ruby, rsync, openssh, libxml2,
libxslt. Add the ...\cygwin\bin directory to the PATH environment variable.

• gcc, glibc – Linux cross compiler for cygwin, download from
http://sourceforge.net/project/showfiles.php?group id=135860 , in order to keep symbolic
links use a cygwin shell to extract.

• alcommon – copy the contents of extern/c/aldebaran/alcommon from the Nao SDK release
v0.1.xx linux (NaoQi-0.1.xx-Linux.tar.gz) to the directory Util/alcommon of the unpacked
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2.4. COMPILING ON LINUX B-Human 2008

B-Human software. The package is available at the internal RoboCup download area of
Aldebaran Robotics. Please note that this package is only required to compile the code
for the actual Nao robot.

• Bonjour – Apple’s Bonjour is used by the NaoFinder (cf. Sect. 2.7) to detect the IP
addresses of all Naos of B-Human in the network. (www.apple.com)

2.3.2 Compiling

Open the Visual Studio 2008 solution file Make/BHuman.sln, it contains all projects needed to
compile the source code. Select the desired configuration (cf. Sect. 2.2) out of the drop-down
menu in Visual Studio 2008 and select Build/Build Solution to build everything including the
documentation. Otherwise click on the project to be built (usually Simulator or Nao) and
choose Build/Build Project in the menu bar. Select Simulator as start project.

2.4 Compiling on Linux

2.4.1 Required Software

Additional requirements (listed by common package names) for a x686 based Linux distribution
(e. g. Ubuntu Hardy):

• g++, make

• libqt4-dev – 4.3 or above (www.trolltech.com)

• ruby

• doxygen – For compiling the documentation.

• graphviz – For compiling the behavior documentation and for using the module view of
the simulator. (www.graphviz.org)

• xsltproc – For compiling the behavior documentation.

• openssh-client – For deploying compiled code to the Nao.

• rsync – For deploying compiled code to the Nao.

• alcommon – copy the contents of extern/c/aldebaran/alcommon from the Nao SDK release
v0.1.xx linux (NaoQi-0.1.xx-Linux.tar.gz) to the directory Util/alcommon of the unpacked
B-Human software. The package is available at the internal RoboCup download area of
Aldebaran Robotics. Please note that this package is only required to compile the code
for the actual Nao robot.

2.4.2 Compiling

All the components (cf. Sect. 2.2) are also available for Linux. To compile one of them, simply
set Make to the current working directory and type:
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B-Human 2008 2.5. CONFIGURATION FILES

make <component> CONFIG=<configuration>

The major Makefile in the Make directory controls all calls of generated sub-Makefiles for each
component. They are named like <component>.make and are also located in the Make directory.
Dependencies between the components are handled by the major Makefile. It is possible to
compile or cleanup a single component without dependencies by using:

make -f <component>.make [CONFIG=<configuration>] [clean]

To clean up the whole solution use:

make clean

2.5 Configuration Files

In this section the files and subdirectories in the directory Config are explained in greater detail.

odometry.cfg provides information for the selflocator while executing Special Actions. See the
file or section 5.2 for more explanations.

pointsColorChange.cfg contains parameters for the ColorChangePerceptor.

pointsSegments.cfg contains parameters for the SegmentsPerceptor.

settings.cfg contains parameters to control the Nao. The entry model is obsolete and should
be nao. The teamNumber is required to determine which information sent by the Game-
Controller is addressed to the own team. The teamPort is the UDP port used for team
communication (cf. Sect. 3.4.4). The teamColor determines the color of the own goal (blue
or yellow). The playerNumber must be different for each robot of the team. It is used
to identify a robot by the GameController and in the team communication. In addition,
it can be used in behavior control. location determines which directory in the Location
subdirectory is used to retrieve the location-dependent settings.

walking.cfg contains parameters for the WalkingEngine (cf. Sect. 5.1.1).

Keys contains the SSH keys needed by the script copyfiles to connect remotely to the Nao.

Locations contains one directory for each location. These directories control settings that
depend on the environment, i. e. the lighting or the field layout. It can be switched quickly
between different locations by setting the according value in the settings.cfg. Thus different
field definitions, color tables, and behaviors can be prepared and loaded.

Locations/<location>/behavior.cfg determines which agent behavior will be loaded when
running the code.

Locations/<location>/camera.cfg contains parameters to control the camera.

Locations/<location>/coltable.c64 is the color table that is used for this location. There
can also be a unique color table for each robot, in which case this color table is ignored.

Locations/<location>/field.cfg contains coordinates and field sizes.
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2.6. SETTING UP THE NAO B-Human 2008

Locations/<location>/goalLocator.cfg contains configuration parameters for the module
GoalLocatorLight.

Locations/<location>/modules.cfg contains information about which representations are
available and which module provides them while the code is running. Representations
which should be available in both processes need to be given in the section Shared.

Locations/<location>/selfloc.cfg contains parameters for the module SelfLocator.

Robots contains one directory for each robot and the settings of the robot. The configuration
files found here are used for individual calibration settings for each robot. The directory
Nao is used by the simulator. For each robot, a subdirectory with the name of the robot
must exist.

Robots/<robotName>/cameraCalibration.cfg contains correction values for camera roll
and tilt.

Robots/<robotName>/jointCalibration.cfg contains calibration values for each joint. In
this file offset, sign, minimal and maximal joint angles can be set individually.

Robots/<robotName>/robotDimensions.cfg contains values which are used by the in-
verse kinematics.

Robots/<robotName>/sensorCalibration.cfg contains calibration settings for the sensors
of the robot.

Robots/<robotName>/walking.cfg This file is optional. It contains the walking parame-
ters for the robot. If this file exists, it is used instead of the general file in the Config
directory.

Scenes contains different scenes for the simulator.

Sounds contains the sound files which are played by the robot and the simulator.

2.6 Setting up the Nao

Setting up the Nao is only possible from a Linux OS. First of all, get the Nao SDK release v0.1.18
linux for Linux and the USB flash drive image Flashdrive/usb bootable + NaoQi 0.1.18 which
are both available at the internal RoboCup download area of Aldebaran Robotics. We have
not yet tried more recent versions. Furthermore, dosfstools and gpart are needed and usually
included in a Linux distribution. Unpack the SDK and the flashdrive image file.

Open the head of the Nao and remove the USB flash memory. Plug the USB stick into the
computer. If the operating system automatically mounts the USB stick, unmount it to prevent
unintended data corruption. The shell script tools/flashusbnaokey from the SDK has to be
executed with the file of the image (opennao-image-usb-nao-geode-0.1.18.ext3 ) as its parameter.
The executable-bit must be set (chmod +x tools/flashusbnaokey). The script renews the first
partition of the flash drive, but does not touch the userdata partition.

Afterwards, mount the userdata partition (FAT) of the flash drive and copy the directory Backup
from this code release to the stick. After starting the Nao with the USB flash device inserted,
connect to the Nao via SSH and enter the directory /media/userdata/Backup (that was just
copied). Finally, start the install script ./install. Afterwards, the Nao is ready to receive the
compiled B-Human code.
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B-Human 2008 2.7. FINDING THE NETWORK ADDRESS

2.7 Finding the Network Address

The Nao will query a dhcp-Server for a network address. Once a lease is acquired it will speak
its network address. A Multicast-DNS server is used to publish the network address in the LAN.
Linux users can use avahi-browse to find a running Nao in the network.

$ avahi-browse -r _bhuman-robot._tcp
+ eth0 IPv4 Nao52 _bhuman-robot._tcp local
= eth0 IPv4 Nao52 _bhuman-robot._tcp local

hostname = [Nao52.local]
address = [134.102.204.245]
port = [0]
txt = ["url=http://www.b-human.de/"]

Windows users can use the console based NaoFinder.exe in Util/NaoFinder.

2.8 Copying the Compiled Code

To copy the compiled code and the configuration files onto the Nao, the file copyfiles.cmd for
Windows or copyfiles.sh for Linux has to be executed.

copyfiles requires two obligatory parameters. First, the configuration the code was compiled
with (NaoDebug, NaoOptimized, or NaoRelease), and second, the IP address of the robot. To
adjust the desired settings, it is possible to set the following optional parameters:

Option Description
-l <location> sets the location
-t <color> sets the team color to blue or yellow
-p <number> sets the player number
-s copies the binary with debug symbols
-d deletes the cache directory

A possible call could be:

copyfiles NaoOptimized 10.0.1.103 -t yellow -p 2

The destination directory on the robot is /media/userdata/Config.

2.9 Working with the Nao

After pressing the chest button, it takes about 45 seconds until NaoQi is started. Currently the
B-Human software is compiled as a shared library (libbhuman.so), and it is loaded by NaoQi.

/home/root contains scripts to start and stop NaoQi via SSH:

./stop stops the instance of NaoQi that is automatically started during boot time. This should
be done before copyfiles is used.

./naoqi executes NaoQi in the foreground. Press Ctrl+C to terminate the process. Please
note that the process will automatically be terminated if the SSH connection is closed.

12
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The Nao can but shut down in two different ways:

shutdown -h now will shut down the Nao. But it can be booted again by pressing the chest
button because the chestboard is still energized. If the B-Human software is running, this
can also be done by pressing the chest button longer than three seconds.

harakiri - -deep && shutdown -h now will shut down the Nao. If the Nao runs on battery
it will be completely switched off after a couple of seconds. In this case an external power
supply is needed to start the Nao again. If the B-Human software is running, this can
also be done by pressing the chest button and one of the foot buttons for more than three
seconds.

2.10 Starting SimRobot

On Windows, the simulator can either be started from Microsoft Developer Studio, or by start-
ing a scene description file in Config/Scenes1. In the first two cases, a scene description file
has to be opened manually, whereas it will already be loaded in the latter case. On Linux,
just run Build/Simulator/Linux/<configuration>/Simulator, and load a scene description file
afterwards. When a simulation is started for the first time, the main window only shows the
tree view in the left pane and the console window in the bottom pane. Select Simulation/Start
to run the simulation. The scene tree will appear in the tree view. A scene view showing the
soccer field can be opened by double-clicking scene RoboCup. The view can be adjusted by using
the context menu of the window or the toolbar.

After starting a simulation, a script file may automatically be executed, setting up the robot(s)
as desired. The name of the script file is the same as the name of the scene description file but
with the extension .con. Together with the ability of SimRobot to store the window layout, the
software can be configured to always start with a setup suitable for a certain task.

Although any object in the tree view can be opened, only displaying certain entries in the object
tree makes sense, namely the scene, the objects in the group robots, and all information views.

To connect to a real Nao, enter its IP address in the file Config/Scenes/connect.con on the
PC. Afterwards, start the simulation scene Config/Scenes/RemoteRobot.ros (cf. Sect. 7.6.3). A
remote connection to the Nao is only possible if the code running on the Nao was compiled in
either the Debug or the Optimized configuration.

For more detailed information about SimRobot see Chapter 7.

1This will only work if the simulator was started at least once before.
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Chapter 3

Architecture

The B-Human architecture is based on the framework of the GermanTeam 2007 [15]. Since most
of this framework has not been documented yet, at least not in its present form, this chapter
summarizes the major features of the architecture: processes, modules and representations,
communication, and debugging support.

3.1 Processes

Most robot control programs use concurrent processes. The number of parallel processes is best
dictated by external requirements coming from the robot itself or its operating system. The
Nao provides images at a frequency of 15 Hz or 30 Hz and accepts new joint angles at 50 Hz.
Therefore, it makes sense to have two processes running at these frequencies. In addition, the
TCP communication with a host PC (for the purpose of debugging) may block while sending
data, so it also has to reside in its own process. This results in the three processes Cognition,
Motion, and Debug used in the B-Human system (cf. Fig. 3.1). Cognition receives camera
images from Video for Linux, as well as sensor data from the process Motion. It processes this
data and sends high-level motion commands back to the process Motion. This process actually
executes these commands by generating the target angles for the 21 joints of the Nao. It sends
these target angles to Nao’s Device Communication Manager, and it receives sensor readings
such as the actual joint angles, acceleration and gyro measurements, etc. In addition, Motion
reports about the motion of the robot, e. g., by providing the results of dead reckoning. The
process Debug communicates with the host PC. It distributes the data received from it to the
other two processes, and it collects the data provided by them and forwards it back to the host
machine. It is inactive during actual games.

Processes in the sense of the architecture described can be implemented as actual operating
system processes, or as threads. On the Nao and in the simulator, threads are used. In contrast,
in B-Human’s team in the Humanoid League, framework processes were mapped to actual
processes of the operating system (i. e. Windows CE).

3.2 Modules and Representations

A robot control program usually consists of several modules each of which performs a certain
task, e. g. image processing, self-localization, or walking. Modules require are certain input and
produce a certain output (i. e. so-called representations). Therefore, they have to be executed
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Figure 3.1: The processes used on the Nao

in a specific order to make the whole system work. The module framework introduced in [15]
simplifies the definition of the interfaces of modules, and automatically determines the sequence
in which the modules are executed. It consists of the blackboard, the module definition, and a
visualization component (cf. Sect. 7.3.8).

3.2.1 Blackboard

The blackboard [9] is the central storage for information, i. e. for the representations. Each
process has its own blackboard. Representations are transmitted through inter-process com-
munication if a module in one process requires a representation that is provided by a module
in another process. The blackboard itself only contains references to representations, not the
representations themselves:

class BallPercept;
class FrameInfo;
// ...
class Blackboard
{
protected:
const BallPercept& theBallPercept;
const FrameInfo& theFrameInfo;

// ...
};

Thereby, it is possible that only those representations are constructed, that are actually used by
the current selection of modules in a certain process. For instance, the process Motion does not
process camera images. Therefore, it does require to instantiate an image object (approximately
300 KB in size).

3.2.2 Module Definition

The definition of a module consists of three parts: the module interface, its actual implementa-
tion, and a statement that allows to instantiate the module. Here an example:

MODULE(SimpleBallLocator)
REQUIRES(BallPercept)
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REQUIRES(FrameInfo)
PROVIDES(BallModel)

END_MODULE

class SimpleBallLocator : public SimpleBallLocatorBase
{
void update(BallModel& ballModel)
{
if(theBallPercept.wasSeen)
{
ballModel.position = theBallPercept.position;
ballModel.wasLastSeen = theFrameInfo.frameTime;

}
}

}

MAKE_MODULE(SimpleBallLocator, World Modeling)

The module interface defines the name of the module (e. g. MODULE(SimpleBallLocator)),
the representations that are required to perform its task, and the representations provided by
the module. The interface basically creates a base class for the actual module following the
naming scheme <ModuleName>Base. The actual implementation of the module is a class that
is derived from that base class. It has read-only access to all the required representations in the
blackboard (and only to those), and it must define an update method for each representation
that is provided. As will be described in Section 3.2.3, modules can expect that all their
required representations have been updated before any of their provider methods is called.
Finally, the MAKE MODULE statement allows the module to be instantiated. It has a second
parameter that defines a category that is used for a more structured visualization of the module
configuration (cf. Sect. 7.3.8).

The module definition actually provides a lot of hidden functionality. Each PROVIDES state-
ment makes sure that the representation provided can be constructed and deconstructed (re-
member, the blackboard only contains references), and will be available before it is first used. In
addition, representations provided can be sent to other processes, and representations required
can be received from other processes. The information that a module has certain requirements
and provides certain representations is not only used to generate a base class for that module,
but is also available for sorting the providers, and can be requested by a host PC. There it
can be used to change the configuration, for visualization (cf. Sect. 7.3.8), and to determine
which representations have to be transferred from one process to the other. Please note that
the latter information cannot be derived by the processes themselves, because they only know
about their own modules, not about the modules defined in other processes. Last but not least,
the execution time of each module can be determined (cf. Sect. 3.5.6) and the representations
provided can be sent to a host PC or even altered by it.

The latter functionality is achieved by variants of the macro PROVIDES that add support for
MODIFY (cf. Sect. 3.5.5), support for streaming the representation to be recorded in a log file
(OUTPUT, requires a message id with the same name as the representation, cf. Sect. 3.4), and
drawing based on a parameterless method draw implemented by the representation itself. The
maximum version of the macro is PROVIDES WITH MODIFY AND OUTPUT AND DRAW.
For a reduced functionality, the sections of the name that are not required or not supported can
be left out.

Besides the macro REQUIRES, there also is the macro USES(<representation>). USES simply
gives access to a certain representation, without defining any dependencies. Thereby, a module
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can access a representation that will be updated later, accessing its state from the previous
frame. Hence, USES can be used to model cyclic relations. The module view (cf. Sect. 7.3.8)
does not display USES connections.

3.2.3 Configuring Providers

Since modules can provide more than a single representation, the configuration has to be per-
formed on the level of providers. For each representation it can be selected which module will
provide it or that it will not be provided at all. In addition it has to be specified which repre-
sentations have to be shared between the processes, i. e. which representations will be sent from
one process to the other. The latter can be derived automatically from the providers selected in
each process, but only on a host PC that has the information about all processes. Normally the
configuration is read from the file Config/Location/<location>/modules.cfg during the boot-
time of the robot, but it can also be changed interactively when the robot has a debugging
connecting to a host PC.

The configuration does not specify the sequence in which the providers are executed. This
sequence is automatically determined at runtime based on the rule that all representations
required by a provider must already have been provided by other providers before, i. e. those
providers have to be executed earlier.

In some situations it required that a certain representation is provided by a module before any
other representation is provided by the same module, e. g., when the main task of the module
is performed in the update method of that representation, and the other update methods rely
on results computed in the first one. Such a case can be implemented by both requiring and
providing a representation in the same module.

3.2.4 Pseudo-Module default

During the development of the robot control software it is sometimes desirable to simply deacti-
vate a certain provider or module. As mentioned above, it can always be decided not to provide
a certain representation, i. e. all providers generating the representation are switched off. How-
ever, not providing a certain representation typically makes the set of providers inconsistent,
because other providers rely on that representation, so they would have to be deactivated as
well. This has a cascading effect. In many situations it would be better to be able to deac-
tivate a provider without any effect on the dependencies between the modules. That is what
the module default was designed for. It is an artificial construct – so not a real module – that
can provide all representations that can be provided by any module in the same process. It will
never change any of the representations – so they basically remain in their initial state – but it
will make sure that they exist, and thereby, all dependencies can be resolved. However, in terms
of functionality a configuration using default is never complete and should not be used during
actual games.

3.3 Streams

In most applications, it is necessary that data can be serialized, i. e. transformed into a sequence
of bytes. While this is straightforward for data structures that already consist of a single
block of memory, it is a more complex task for dynamic structures, as e. g. lists, trees, or
graphs. The implementation presented in this document follows the ideas introduced by the
C++ iostreams library, i. e., the operators << and >> are used to implement the process
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of serialization. It is also possible to derive classes from class Streamable and implement the
mandatory method serialize(In*, Out*). In addition, the basic concept of streaming data was
extended by a mechanism to gather information on the structure of the data while serializing it.

There are reasons not to use the C++ iostreams library. The C++ iostreams library does not
guarantee that the data is streamed in a way that it can be read back without any special
handling, especially when streaming into and from text files. Another reason not to use the
C++ iostreams library is that the structure of the streamed data is only explicitly known in the
streaming operators themselves. Hence, exactly those operators have to be used on both sides
of a communication, which results in problems regarding different program versions or even the
use of different programming languages.

Therefore, the Streams library was implemented. As a convention, all classes that write data
into a stream have a name starting with “Out”, while classes that read data from a stream start
with “In”. In fact, all writing classes are derived from class Out, and all reading classes are
derivations of class In.

All streaming classes derived from In and Out are composed of two components: One for
reading/writing the data from/to a physical medium and one for formatting the data from/to
a specific format. Classes writing to physical media derive from PhysicalOutStream, classes
for reading derive from PhysicalInStream. Classes for formatted writing of data derive from
StreamWriter, classes for reading derive from StreamReader. The composition is done by the
OutStream and InStream class templates.

3.3.1 Streams Available

Currently, the following classes are implemented:

PhysicalOutStream. Abstract class

OutFile. Writing into files

OutMemory. Writing into memory

OutSize. Determine memory size for storage

OutMessageQueue. Writing into a MessageQueue

StreamWriter. Abstract class

OutBinary. Formats data binary

OutText. Formats data as text

OutTextRaw. Formats data as raw text (same output as “cout”)

Out. Abstract class

OutStream<PhysicalOutStream,StreamWriter>. Abstract template class

OutBinaryFile. Writing into binary files
OutTextFile. Writing into text files
OutTextRawFile. Writing into raw text files
OutBinaryMemory. Writing binary into memory
OutTextMemory. Writing into memory as text
OutTextRawMemory. Writing into memory as raw text
OutBinarySize. Determine memory size for binary storage
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OutTextSize. Determine memory size for text storage
OutTextRawSize. Determine memory size for raw text storage
OutBinaryMessage. Writing binary into a MessageQueue
OutTextMessage. Writing into a MessageQueue as text
OutTextRawMessage. Writing into a MessageQueue as raw text

PhysicalInStream. Abstract class

InFile. Reading from files

InMemory. Reading from memory

InMessageQueue. Reading from a MessageQueue

StreamReader. Abstract class

InBinary. Binary reading

InText. Reading data as text

InConfig. Reading configuration file data from streams

In. Abstract class

InStream<PhysicalInStream,StreamReader>. Abstract class template

InBinaryFile. Reading from binary files
InTextFile. Reading from text files
InConfigFile. Reading from configuration files
InBinaryMemory. Reading binary data from memory
InTextMemory. Reading text data from memory
InConfigMemory. Reading config-file-style text data from memory
InBinaryMessage. Reading binary data from a MessageQueue
InTextMessage. Reading text data from a MessageQueue
InConfigMessage. Reading config-file-style text data from a MessageQueue

3.3.2 Streaming Data

To write data into a stream, Tools/Streams/OutStreams.h must be included, a stream must be
constructed, and the data must be written into the stream. For example, to write data into a
text file, the following code would be appropriate:

#include "Tools/Streams/OutStreams.h"
// ...
OutTextFile stream("MyFile.txt");
stream << 1 << 3.14 << "Hello Dolly" << endl << 42;

The file will be written into the configuration directory, e. g. Config/MyFile.txt on the PC. It
will look like this:

1 3.14000 "Hello Dolly"
42

As spaces are used to separate entries in text files, the string “Hello Dolly” is enclosed in double
quotes. The data can be read back using the following code:

19



B-Human 2008 3.3. STREAMS

#include "Tools/Streams/InStreams.h"
// ...
InTextFile stream("MyFile.txt");
int a,d;
double b;
std::string c;
stream >> a >> b >> c >> d;

It is not necessary to read the symbol endl here, although it would also work, i. e. it would be
ignored.

For writing to text streams without the separation of entries and the addition of double quotes,
OutTextRawFile can be used instead of OutTextFile. It formats the data such as known from
the ANSI C++ cout stream. The example above is formatted as following:

13.14000Hello Dolly
42

To make streaming independent of the kind of the stream used, it could be encapsulated in
functions. In this case, only the abstract base classes In and Out should be used to pass streams
as parameters, because this generates the independence from the type of the streams:

#include "Tools/Streams/InOut.h"

void write(Out& stream)
{
stream << 1 << 3.14 << "Hello Dolly" << endl << 42;

}

void read(In& stream)
{
int a,d;
double b;
std::string c;
stream >> a >> b >> c >> d;

}
// ...
OutTextFile stream("MyFile.txt");
write(stream);
// ...
InTextFile stream("MyFile.txt");
read(stream);

3.3.3 Making Classes Streamable

A class is made streamable by deriving it from the class Streamable and implementing the ab-
stract method serialize(In*, Out*). For data types derived from Streamable streaming operators
are provided, meaning they may be used as any other data type with standard streaming oper-
ators implemented. To realize the modify functionality (cf. Sect. 3.5.5), the streaming method
uses macros to acquire structural information about the data streamed. This includes the data
types of the data streamed as well as that names of attributes. The process of acquiring names
and types of members of data types is automated. The following macros can be used to specify
the data to stream in the method serialize:
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STREAM REGISTER BEGIN() indicates the start of a streaming operation.

STREAM BASE(<class>) streams the base class.

STREAM(<attribute>) streams an attribute, retrieving its name in the process.

STREAM ENUM(<attribute>, <numberOfEnumElements>,
<getNameFunctionPtr>) streams an attribute of an enumeration type, retriev-
ing its name in the process, as well as the names of all possible values.

STREAM ARRAY(<attribute>) streams an array of constant size.

STREAM ENUM ARRAY(<attribute>, <numberOfEnumElements>,
<getNameFunctionPtr>) streams an array of constant size. The elements of
the array have an enumeration type. The macro retrieves the name of the array, as well
as the names of all possible values of its elements.

STREAM DYN ARRAY(<attribute>, <numberOfElements>) streams a dynamic ar-
ray with a certain number of elements. Note that the number of elements will be overridden
when the array is read.

STREAM VECTOR(<attribute>) streams an instance of std::vector.

STREAM REGISTER FINISH() indicates the end of the streaming operation for this data
type.

These macros are intended to be used in the serialize method. For instance, to stream an
attribute test and a vector called testVector:

virtual void serialize(In* in, Out* out)
{
STREAM_REGISTER_BEGIN();
STREAM(test);
STREAM_VECTOR(testVector);
STREAM_REGISTER_FINISH();

}

3.4 Communication

Three kinds of communication are implemented in the B-Human framework, and they are all
based on the same technology: message queues. The three kinds are: inter-process communica-
tion, debug communication, and team communication.

3.4.1 Message Queues

The class MessageQueue allows storing and transmitting a sequence of messages. Each message
has a type (defined in Src/Tools/MessageQueue/MessageIDs.h) and a content. Each queue has
a maximum size which is defined in advance. On the robot, the amount of memory required
is pre-allocated to avoid allocations during runtime. On the PC, the memory is allocated on
demand, because several sets of robot processes can be instantiated at the same time, and the
maximum size of the queues is rarely needed.
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Since almost all data types have streaming operators, it is easy to store them in message queues.
The class MessageQueue provides different write streams for different formats: messages that
are stored through out.bin are formatted binary. The stream out.text formats data as text and
out.textRaw as raw text. After all data of a message was streamed into a queue, the message
must be finished with out.finishMessage(MessageID), giving it a message id, i. e. a type.

MessageQueue m;
m.setSize(1000); // can be omitted on PC
m.out.text << "Hello world!";
m.out.finishMessage(idText);

To declare a new message type, an id for the message must be added to the enumeration
type MessageID in Src/Tools/MessageQueue/MessageIDs.h. The enumeration type has three
sections: the first for representations that should be recorded in log files, the second for team
communication, and the last for infrastructure. These sections should always be extended at
the end to avoid compatibility issues with existing log files or team mates running an older
version of the software. For each new id, a string for the type has to be added to the method
getMessageIDName(MessageID) in the same file.

Messages are read from a queue through a message handler that is passed to the queue’s method
handleAllMessages(MessageHandler&). Such a handler must implement the method handleMes-
sage(InMessage&). That method will be called for each message in the queue. It must be
implemented in a way as the following example shows:

class MyClass : public MessageHandler
{
protected:
bool handleMessage(InMessage& message)
{
switch(message.getMessageID())
{
default:
return false;

case idText:
{
std::string text;
message.text >> text;
return true;

:

The handler has to return whether it handled the message or not. Messages are read from a
MessageQueue via streams. Thereto, message.bin provides a binary stream, message.text a text
stream, and message.config a text stream that skips comments.

3.4.2 Inter-process Communication

The representations sent back and forth between the processes Cognition and Motion are defined
in the section Shared of the file Config/Location/<location>/modules.cfg. The ModuleManager
automatically derives the direction in which they are sent from the information about which
representation is provided in which process.
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3.4.3 Debug Communication

For debugging purposes, there is a communication infrastructure between the processes Cogni-
tion and Motion and the PC. This is accomplished by debug message queues. Each process has
two of them: theDebugSender and theDebugReceiver, often also accessed through the references
debugIn and debugOut. The macro OUTPUT(<id>, <format>, <sequence>) defined in Src/-
Tools/Debugging/Debugging.h simplifies writing data to the outgoing debug message queue. id
is a valid message id, format is text, bin, or textRaw, and sequence is a streamable expression,
i. e. an expression that contains streamable objects, which – if more than one – are separated
by the streaming operator <<.

OUTPUT(idText, text, "Could not load file " << filename << " from " << path);
OUTPUT(idImage, bin, Image());

As most of the debugging infrastructure, the macro OUTPUT is ignored in the configuration
Release. Therefore, it should not produce any side effects required by the surrounding code.

For receiving debugging information from the PC, each process also has a message handler, i. e.
it implements the method handleMessage to distribute the data received.

The process Debug manages the communication of the robot control program with the tools on
the PC. For each of the other processes (Cognition and Motion) it has a sender and a receiver
for their debug message queues (cf. Fig. 3.1). Messages that arrive via WLAN from the PC are
stored in debugIn. The method Debug::handleMessage(InMessage&) distributes all messages in
debugIn to the other processes. The messages received from Cognition and Motion are stored
in debugOut. When a WLAN connection is established, they are sent to the PC via TCP/IP.
To avoid communication jams, it is possible to send a QueueFillRequest to the process Debug.
The command qfr to do so is explained in Section 7.5.3.

3.4.4 Team Communication

The purpose of the team communication is to send messages to the other robots in the team.
These messages are always broadcasted, so all teammates can receive them. The team commu-
nication uses a message queue embedded in a UDP package. The first message in the queue is
always idRobot that contains the number of the robot sending the message. Thereby, the receiv-
ing robots can distinguish between the different packages they receive. The reception of team
communication packages is implemented in the module TeamDataProvider. It also implements
the network time protocol (NTP) and translates time stamps contained in packages it receives
into the local time of the robot.

Similar to debug communication, data can be written to the team communication message
queue using the macro TEAM OUTPUT(<id>, <format>, <sequence>). In contrast to the
debug message queues, the one for team communication is rather small (1396 bytes). So the
amount of data written should be kept to a minimum. In addition, team packages are only
broadcasted approximately every 100 ms. Hence, and due to the use of UDP in general, data
is not guaranteed to reach its intended receivers. The representation TeamMateData contains a
flag that states whether a team communication package will be sent out in the current frame or
not.
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3.5 Debugging Support

Debugging mechanisms are an integral part of the B-Human framework. They are all based on
the debug message queues already described in Section 3.4.3. All debugging mechanisms are
available in all project configurations but Release. In Release, they are completely deactivated
(i. e. not even part of the executable), and the process Debug is not started.

3.5.1 Debug Requests

Debug requests are used to enable and disable parts of the source code. They can be seen as
a runtime switch available only in debugging mode. This can be used to trigger certain debug
messages to be sent, as well as to switch on certain parts of algorithms. Two macros ease the
use of the mechanism as well as hide the implementation details:

DEBUG RESPONSE(<id>, <statements>) executes the statements if the debug request
with the name id is enabled.

DEBUG RESPONSE NOT(<id>, <statements>) executes the statements if the debug
request with the name id is not enabled. The statements are also executed in the release
configuration of the software.

These macros can be used anywhere in the source code, allowing for easy debugging. For
example:

DEBUG_RESPONSE("test", test());

This statement calls the method test() if the debug request with the identifier ”test” is enabled.
Debug requests are commonly used to send messages on request, as the following example shows:

DEBUG_RESPONSE("sayHello", OUTPUT(idText, text, "Hello"); );

This statement sends the text “Hello” if the debug request with the name ”sayHello” is activated.
Please note that only those debug requests are usable that are in the current path of execu-
tion. This means that only debug request in those modules can be activated that are currently
executed. To determine which debug requests are currently available, a method called polling
is employed. It asks all debug responses to report the name of the debug request that would
activate it. This information is collected and sent to the PC (cf. command poll in Sect. 7.5.3).

3.5.2 Debug Images

Debug images are used for low level visualization of image processing debug data. They can
either be displayed as background image of an image view (cf. Sect. 7.3.1) or in a color space view
(cf. Sect. 7.3.2). Each debug image has an associated textual identifier that allows referring to it
during image manipulation, as well as for requesting its creation from the PC. The identifier can
be used in a number of macros that are defined in file Src/Tools/Debugging/DebugImages.h,
and that facilitate the manipulation of the debug image.

DECLARE DEBUG IMAGE(<id>) declares a debug image with the specified identifier.
This statement has to be placed where declarations of variables are allowed, e. g. in a class
declaration.
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INIT DEBUG IMAGE(<id>, image) initializes the debug image with the given identifier
with the contents of an image.

INIT DEBUG IMAGE BLACK(<id>) initializes the debug image as black.

SEND DEBUG IMAGE(<id>) sends the debug image with the given identifier as bitmap
to the PC.

SEND DEBUG IMAGE AS JPEG(<id>) sends the debug image with the given identifier
as JPEG-encoded image to the PC.

DEBUG IMAGE GET PIXEL <channel>(<id>, <x>, <y>) returns the value of a
color channel (Y , U , or V ) of the pixel at (x, y) of the debug image with the given
identifier.

DEBUG IMAGE SET PIXEL YUV(<id>, <xx>, <yy>, <y>, <u>, <v>) sets the
Y , U , and V -channels of the pixel at (xx, yy) of the image with the given identifier.

DEBUG IMAGE SET PIXEL <color>(<id>, <x>, <y>) sets the pixel at (x, y) of the
image with the given identifier to a certain color.

GENERATE DEBUG IMAGE(<id>, <statements>) only executes a sequence of state-
ments if the creation of a certain debug image is requested. This can significantly improve
the performance when a debug image is not requested, because for each image manipula-
tion it has to be tested whether it is currently required or not. By encapsulating them in
this macro (and maybe in addition in a separate method), only a single test is required.

DECLARE DEBUG GRAY SCALE IMAGE(<id>) declares a grayscale debug image.
Grayscale debug images only represent the brightness channel of an image, even reducing
it to only seven bits per pixel. The remaining 128 values of each byte representing a pixel
are used for drawing colored pixels from a palette of predefined colors.

INIT DEBUG GRAY SCALE IMAGE(<id>, image) initializes the grayscale debug
image with the given identifier with the contents of an image.

INIT DEBUG GRAY SCALE IMAGE BLACK(<id>) initializes the grayscale debug
image as black.

SEND DEBUG GRAY SCALE IMAGE(<id>) sends the grayscale debug image with
the given identifier as bitmap to the PC.

SET COLORED PIXEL IN GRAY SCALE IMAGE(<id>, <x>, <y>, <color>)
sets a colored pixel in a grayscale debug image. All available colors are defined in class
ColorIndex (declared in file Src/Tools/ColorIndex.h).

These macros can be used anywhere in the source code, allowing for easy creation of debug
images. For example:

DECLARE_DEBUG_IMAGE("test");
INIT_DEBUG_IMAGE("test", image);
DEBUG_IMAGE_SET_PIXEL_YUV("test", 0, 0, 0, 0, 0);
SEND_DEBUG_IMAGE_AS_JPEG("test");

The example initializes a debug image from another image, sets the pixel (0, 0) to black and
sends it as a JPEG-encoded image to the PC.
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3.5.3 Debug Drawings

Debug drawings provide a virtual 2-D drawing paper and a number of drawing primitives, as
well as mechanisms for requesting, sending, and drawing these primitives to the screen of the
PC. In contrast to debug images, which are raster-based, debug drawings are vector-based, i. e.,
they store drawing instructions instead of a rasterized image. Each drawing has an identifier
and an associated type that enables the application on the PC to render the drawing to the right
kind of drawing paper. In addition, a description can be specified (currently, it is not used).
In the B-Human system, two standard drawing papers are provided, called drawingOnImage
and drawingOnField. This refers to the two standard applications of debug drawings, namely
drawing in the system of coordinates of an image and drawing in the system of coordinates of
the field. Hence, all debug drawings of the type drawingOnImage can be displayed in an image
view (cf. Sect. 7.3.1) and all drawings of type drawingOnField can be rendered into a field view
(cf. Sect. 7.3.3).

The creation of debug drawings is encapsulated in a number of macros in Src/Tools/Debug-
ging/DebugDrawings.h. Most of the drawing macros have parameters such as pen style, fill style,
or color. Available pen styles (ps solid, ps dash, ps dot, and ps null) and fill styles (bs solid and
bs null) are part of the class Drawings. Colors can be specified as ColorRGBA or using the
enumeration type ColorClasses::Color. A few examples for drawing macros are:

DECLARE DEBUG DRAWING(<id>, <type>, <description>) declares a debug
drawing with the specified id, type, and description. In contrast to the declaration of
debug images, this macro has to be placed in a part of the code that is regularly executed.

CIRCLE(<id>, <x>, <y>, <radius>, <penWidth>, <penStyle>, <penColor>,
<fillStyle>, <fillColor>) draws a circle with the specified radius, pen width, pen style,
pen color, fill style, and fill color at the coordinates (x, y) to the virtual drawing paper.

LINE(<id>, <x1>, <y1>, <x2>, <y2>, <penWidth>, <penStyle>, <penColor>)
draws a line with the pen color, width, and style from the point (x1, y1) to the point
(x2, y2) to the virtual drawing paper.

DOT(<id>, <x>, <y>, <penColor>, <fillColor>) draws a dot with the pen color and fill
color at the coordinates (x, y) to the virtual drawing paper. There also exist two macros
MID DOT and LARGE DOT with the same parameters that draw dots of larger size.

DRAWTEXT(<id>, <x>, <y>, <fontSize>, <color>, <text>) writes a text with a
font size in a color to a virtual drawing paper. The upper left corner of the text will
be at coordinates (x, y).

TIP(<id>, <x>, <y>, <radius>, <text>) adds a tool tip to the drawing that will pop up
when the mouse cursor is closer to the coordinates (x, y) than the given radius.

ORIGIN(<id>, <x>, <y>, <angle>) changes the system of coordinates. The new origin
will be at (x, y) and the system of coordinates will be rotated by angle (given in radians).
All further drawing instructions, even in other debug drawings that are rendered afterwards
in the same view, will be relative to the new system of coordinates, until the next origin
is set. The origin itself is always absolute, i. e. a new origin is not relative to the previous
one.

COMPLEX DRAWING(<id>, <statements>) only executes a sequence of statements if
the creation of a certain debug drawing is requested. This can significantly improve the
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performance when a debug drawing is not requested, because for each drawing instruc-
tion it has to be tested whether it is currently required or not. By encapsulating them
in this macro (and maybe in addition in a separate method), only a single test is re-
quired. However, the macro DECLARE DEBUG DRAWING must be placed outside of
COMPLEX DRAWING.

These macros can be used wherever statements are allowed in the source code. For example:

DECLARE_DEBUG_DRAWING("test", "drawingOnField", "draws a test debug drawing");
CIRCLE("test", 0, 0, 1000, 10, Drawings::ps_solid, ColorClasses::blue,

Drawings::bs_solid, ColorRGBA(0, 0, 255, 128));

This example initializes a drawing called test of type drawingOnField that draws a blue circle
with a solid border and a semi-transparent inner area.

3.5.4 Plots

The macro PLOT(<id>, <number>) allows plotting data over time. The plot view (cf.
Sect. 7.3.6) will keep a history of predefined size of the values sent by the macro PLOT and plot
them in different colors. Hence, the previous development of certain values can be observed as
a time series. Each plot has an identifier that is used to separate the different plots from each
other. A plot view can be created with the console commands vp and vpd (cf. Sect. 7.5.3).

For example, the following statement plots the measurements of the gyro for the pitch axis.
Please note that the measurements are converted to degrees, because the current implementation
of the plot view can only display integer numbers. So the range of the values must be scaled up
accordingly.

PLOT("gyroY", toDegrees(theSensorData.data[SensorData::gyroY]));

3.5.5 Modify

The macro MODIFY(<id>, <object>) allows reading and modifying of data on the actual
robot during runtime. Every streamable data type (cf. Sect. 3.3.3) can be manipulated and read,
because its inner structure is gathered while it is streamed. This allows generic manipulation
of runtime data using the console commands get and set (cf. Sect. 7.5.3). The first parameter
of MODIFY specifies the identifier that is used to refer to the object from the PC, the second
parameter is the object to be manipulated itself. When an object is modified using the console
command set, it will be overridden each time the MODIFY macro is executed.

int i = 3;
MODIFY("i", i);
WalkingEngineParameters p;
MODIFY("parameters:WalkingEngine", p);

The macro PROVIDES of the module framework (cf. Sect. 3.2) also is available in
versions that include the MODIFY macro for the representation provided (e. g. PRO-
VIDES WITH MODIFY ). In these cases the representation, e. g., Foo is modifiable under the
name representation:Foo.
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3.5.6 Stopwatches

Stopwatches allow the measurement of the execution time of parts of the code. The
statements the runtime of which should be measured have to be placed into the macro
STOP TIME ON REQUEST(<id>, <statements>) (declared in Src/Tools/Debugging/Stop-
watch.h) as second parameter. The first parameter is a string used to identify the time mea-
surement. To activate a certain time measurement, e. g., Foo, a debug request stopwatch:Foo
has to be sent. The measured time can be seen in the timing view (cf. Sect. 7.3.7). By default,
a stopwatch is already defined for each representation that is currently provided. In the release
configuration of the code, all stopwatches in process Cognition can be activated by sending the
release option stopwatches (cf. command ro in Sect. 7.5.3).

An example to measure the runtime of a method called myCode:

STOP_TIME_ON_REQUEST("myCode", myCode(); );
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Chapter 4

Cognition

In the B-Human system, the process Cognition (cf. Sect. 3.1) can be structured into the three
functional units perception, modeling, and behavior control. The major task of the perception
modules is to detect landmarks such as goals, beacons, and field lines, as well as obstacles and
the ball in the image provided by the camera. The modeling modules work on these percepts and
determine the robot’s position on the field, the relative position of the goals, and the position
and speed of the ball. Only these modules are able to provide useful information for the behavior
control which is described separately (cf. Chapter 6). Figure 4.1 shows all modules running in
the process Cognition and the representations they provide.

4.1 Perception

4.1.1 Basics

B-Human uses a grid-based perception system. The YUV422 images provided by the Nao
camera have a resolution of 640 × 480 pixels. They are interpreted as YUV444 images with a
resolution of 320× 240 pixels by ignoring the second Y channel of each YUV422 pixel pair and
also ignoring every second row. The images are scanned on vertical and horizontal scan lines
(cf. Fig. 4.4). Thereby, the actual amount of scanned pixels is much smaller than the image size
because the grid has fewer pixels. The output generated by the perception modules is mainly a
collection of base points of the landmarks on the field and of points that lie on field lines. Each
of these percepts is stored in the PointsPercept and contains information about the point in the
image, the point’s coordinates on the field relative to the robot’s camera and about the point
type (field line, base point of the blue/yellow goal, base point of a beacon). Another important
issue handled by the perception modules is providing the relative position of the ball on the
field, the BallPercept.

As mentioned before, the idea behind the perception modules is not to perceive goals, beacons,
or field lines directly, but to provide a set of base points for each landmark. All these percepts
are used by the modeling modules, e. g. for self-localization and ball tracking.

4.1.2 Definition of Coordinate Systems

The global coordinate system (cf. Fig. 4.2) is described by its origin lying at the center of the
field, the x-axis pointing toward the opponent goal, the y-axis pointing to the left, and the z-axis
pointing upward. Rotations are specified counter-clockwise with the x-axis pointing toward 0◦,
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Figure 4.1: All modules and representations in the process Cognition

and the y-axis pointing toward 90◦.

In the egocentric system of coordinates (cf. Fig. 4.3) the axes are defined as followed: the x-axis
points forward, the y-axis points to the left, and the z-axis points upward.

4.1.3 Image Processing

The image processing is split into several different steps which are described in the following.

4.1.4 Color Segmentation

The SegmentsPerceptor works on the camera image and fills a data structure called SegmentsPer-
cept. Its main task is to color-classify the image and to group neighboring pixels of similar colors
into color regions. The idea behind this is to reduce noise and to simplify further image pro-
cessing.

In a first step, the SegmentsPerceptor calculates the position of the horizon in the image by a
3-D camera equation using the current joint positions and camera attributes. After this, two
scans are performed on every image: a horizontal one and a vertical one. The configuration file
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Figure 4.2: Visualization of the global coordinate
system

Figure 4.3: Visualization of the robot
relative coordinate system

pointsSegments.cfg allows configuring some properties of this scan grid. To ensure not to ignore
important information in the image, such as far balls, the grid is narrower near the horizon. On
each scan line, the SegmentsPerceptor tries to determine segments of the same color with the
largest possible length. To achieve this, every pixel in the image is classified by color using a
manually configured color table. Only small gaps are allowed in single color sequences for being
accepted as a continuous segment. For each scan, there is a list of the segments found. Each
segment contains information about its color, its x or y-position in the image (depends on the
orientation of the scan line) and its length.

Another task of the SegmentsPerceptor is to calculate a convex hull of the field outlines so that
everything in the image that is not inside these field borders (audience, advertising boards, and
so on) can be ignored.

4.1.5 Detecting Landmarks and Field Lines

The ColorChangePerceptor module uses the segments provided by the SegmentsPerceptor and tries
to detect significant changes of color between two neighboring segments. Only those segments
that lie within the field borders calculated by the SegmentsPerceptor are examined. For instance

Figure 4.4: A completely segmented image and an image with its corresponding scan grid. The red lines
denote the computed border of the field.
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Figure 4.5: Simulator screenshot that shows the representation of landmarks and field lines as a set of
2-D points

a changeover from green to yellow on a vertical scan line could mean the existence of a goal
base point at this position in the image. There are some more conditions which have to be
fulfilled by neighboring segments in order to be accepted in the PointsPercept. Some examples
for conditions that are checked are a maximum distance between the segments, minimal and
maximal length, or more complex segment sequences (e. g. green-white-green for a field line or
blue-yellow-blue for a beacon). If all these conditions are fulfilled for a special color change,
a projection for this image point to field coordinates is done and a new entry is stored in the
PointsPercept.

Special cases are base points of landmarks that lie somewhere below the bottom of a vertical scan
line and are not visible. This might happen when the robot looks too high and only the upper
part of a goal is visible in the image. In this case, an entry in the PointsPercept is nevertheless
created for the pixel at the bottom of the scan line and the flag isCloser is set to indicate that
the point might be closer to the robot than the coordinates calculated indicate.

The ColorChangePerceptor distinguishes the following point types:

• goals (yellow and blue)

• beacons (blue-yellow-blue and yellow-blue-yellow)

• black obstacles (obstacle challenge poles)

• white field lines

Currently, the B-Human cognition system does not support the detection of opponent robots.

4.1.6 Detecting the Ball

The BallPerceptor requires the representation BallSpot, which is provided by the module Seg-
mentsPerceptor. The BallSpot is the center of the biggest orange segment in the image.

To find out if the orange cluster is actually the ball, the image is scanned in eight different
directions (horizontal, vertical, and both diagonal directions) starting at the BallSpot. If the
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border of the image is reached or the last eight points viewed are not orange, the search is
stopped and the last orange point is saved. If the ball points found are considered as valid, it is
tried to find the center and the radius of the ball using the Levenberg-Marquardt method [1].
First, only hard edge points, that means points with a high contrast that are next to a green
point are passed to the method. If there are not enough of those points or if the method fails,
all hard edge points are taken into account. If that does not work either, all points that are not
at the image border are used. If that still does not work out, the last attempt is to use all ball
points.

If the center of the ball is below the horizon, the offset to the ball is calculated based on its size in
the image (for far balls) or its bearing (for close balls). The result is stored in the representation
BallPercept, The BallPercept is used by the ParticleFilterBallLocator to provide the BallModel.
For more information see 4.2.2.

4.2 Modeling

4.2.1 Self-Localization

For self-localization, B-Human uses a particle filter based on the Monte Carlo method [5] as it
is a proven approach to provide accurate results in such an environment [16]. Additionally, it is
able to deal with the kidnapped robot problem, which often occurs in RoboCup scenarios. For
a faster reestablishment of a reasonable position estimate after a kidnapping, the Augmented
MCL approach by [8] has been implemented. Figure 4.6 shows an example of a probability
distribution. A comprehensive description of our state estimation implementation is given in
[11].

The module providing the RobotPose, which is a simple pose in 2-D, is the SelfLocator. It has
already shown a reasonable performance during the last two competitions in the Humanoid
League. However, the implementation within the software release has been optimized for a
Humanoid League field and shows only a poor performance on SPL fields. This results from
its approach to take only points on the field (as described in 4.1.1) instead of more complex
perceptions into account. By using a different goal design, the SPL field provides much less
points which significantly contribute to a global localization. Therefore, for RoboCup 2008, the
BreDoBrothers used a modified version of this module, which made use of the more complex
perceptions available within the BreDoBrothers software.

4.2.2 Ball-Modeling

Estimating the ball’s velocity as well as filtering its position is also realized via a particle filter
similar to the one used for self-localization. A detailed description is also given in [11]. A
probability distribution of a ball in motion is shown in Fig. 4.6. By using the perception
described in Sect. 4.1.6, the module ParticleFilterBallLocator computes the BallModel.

This module has been used by the BreDoBrothers during RoboCup 2008.

4.2.3 Tracking the Opponent’s Goal

Playing soccer is about scoring goals. Since the B-Human software does not include any recog-
nition of other robots and we refuse to completely rely on self-localization when kicking, a model
of an appropriate kicking corridor towards the opponent goal is needed. This model is named
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Figure 4.6: Illustration of particle-based representation of the robot pose and the ball position and
velocity. Each gray box denotes one possible pose of the robot; light boxes are more likely than dark
boxes. The black box shows the resulting robot pose from the filter. The dots with arrows describe the
ball samples (describing position and velocity of a ball). The orange one is the resulting ball estimate.

GoalModel and is currently provided by the GoalLocatorLight. By clustering perceived segments
of the goal over some seconds, the two largest free parts of the goal are estimated.

Please note that this module has been developed for the goals used in the Humanoid League –
which are solid and completely colored inside – and will not provide any reasonable results for
the current SPL goals.

4.2.4 Detecting a Fall

To start an appropriate get-up motion after a fall, the orientation of the robot’s body needs
to be computed from the measurements of the accelerometers. This task is realized by the
FallDownStateDetector which provides the FallDownState. By averaging the noisy sensor data,
the module robustly detects whether the robot is in an upright position, lying on its front, its
back, its left, or its right side. The last two cases appear to be highly unlikely but have already
happened to our humanoid robots during an official match.

4.2.5 Obstacle detection

In order to complete the Humaoind Kid-Size League’s obstacle avoidance challenge, it is nec-
essary to recognize black obstacles and to evade them. A representation called FreeSpaceModel
splits up the environment in front of the robot into a fixed amount of segments. Each of these
segments can either be free or blocked by an obstacle. If it is blocked, the segment contains
information about the distance of the obstacle in this segment. The FreeSpaceModelProvider
works on the percepts provided by the perception modules and generates this model. Further-
more, it calculates the best angle which the robot should walk to in order to avoid obstacles and
approach the goal.
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Chapter 5

Motion

The B-Human motion system generates all kinds of motions needed to play soccer with a robot.
These are walking, kicking, standing up from the front and the back, looking in front of the
feet, and standing. The walk and stand motions are generated dynamically by the Walkin-
gEngine (cf. Sect. 5.1). All other motions are static motions, provided by the SpecialActions
module (cf. Sect. 5.2). Both modules generate joint angles. The WalkingEngine provides the
WalkingEngineOutput and the WalkingEngineStandOutput. The SpecialActions module provides
the SpecialActionsOutput. According to the MotionRequest the MotionSelector (cf. Sect. 5.3)
calculates which motions to execute and how to interpolate between different motions while
switching from one to another. This information is provided in the MotionSelection. If neces-
sary, both modules calculate their joint data and the MotionCombinator (cf. Sect. 5.3) combines
these according to the MotionSeletion. The MotionCombinator provides the JointRequest, Odom-
etryData, and MotionInfo. Figure 5.1 shows all modules running in the process Motion and the
representations they provide.

5.1 Walking

The WalkingEngine is a module that creates walking motions based on a set of parameters, which
are described in more detail later. In principle the resulting gait is based on fixed trajectories,
which describe the foot position in dependency of the walking phase. The joint angles are
calculated by an inverse kinematic model of the robot based on the desired foot positions.

The WalkingEngine requires the representation MotionRequest as input, which includes the
WalkRequest. It consists of the desired speed in x- and y-direction as well as the rotation
speed. Thus the WalkingEngine does not generate a static motion. Instead, it is able to produce
walking motions for every incoming WalkRequest.

First of all the module checks whether the WalkingParameters have changed since the last ex-
ecuted frame; if this is the case the former and the new parameters are interpolated linearly.
This is a nice feature when creating or optimizing a set of WalkingParameters manually, because
otherwise the executed motion would change abruptly, which could overload the joints of the
robot.

When the resulting WalkingParameters have been determined, the current WalkRequest is fo-
cused. Also in order not to produce abrupt changes of the motion, the resulting WalkRequest
is calculated from the former and the current WalkRequest, where the maximal speed change
for each direction (x, y, and rotation) is parameterized. Beforehand the walk speed is clipped
to keep the generated trajectories within reasonable limits. The clipping is performed in a way
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Figure 5.1: All modules and representations in the process Motion

that the ratio of x-, y- and rotation-speed is kept. From the resulting walk speeds the size of
the trajectory is calculated (it only depends on the desired speed and the phase length).

The joints of the left and right arm are determined from the walking parameters and the arm
trajectory (for the arms no inverse kinematic is used, the joints are set directly).

The body tilt and body shift are primarily determined from the according parameter. Ad-
ditionally these temporary values are corrected using sensor data. The desired body shift is
watched over three frames to determine the acceleration of the hip respectively the torso. If the
measured sideways acceleration differs from the desired one, the body shift is corrected (if the
corresponding parameters are not set to 0). From the foot trajectories and the other parameters
and trajectories (body shift, foot rotation, etc.) the resulting foot position is computed. The
inverse kinematic then calculates the joint angles of the legs and the feet. Furthermore it is
possible to control the foot position or the resulting joint angles using sensor data.

5.1.1 Description of the WalkingParameters

stepDuration. The length of one step (consisting of two half steps of each leg) in milliseconds

maxSpeedChange. The largest possible speed change, parameterizable for each direction (x,
y, and rotation), in mm

s2 resp. radian
s2 .

odometryScale. A factor the calculated translational odometry is multiplied by. This param-
eter differs from 1 for the case that a specific walk request differs from the actual distance
covered.

odometryRotationScale[C]CW. A factor the calculated rotational odometry is multiplied
by. There are separate parameters for the clockwise and the counterclockwise direction,
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because it is often the case that the robot is able to rotate faster in one of the directions.

max{Forward|Backward|Sideways|Rotation}Speed. The maximum speeds of the robots
in different directions in mm

s resp. radian
s (higher values in a WalkRequest will be clipped

maintaining the ratio)

elbowAngle. The fixed angle of the joints armLeft1, armRight1, armLeft3 and armRight3 in
radian

armDeactivationRatio. The percentage of the deactivation of the arm (if a random number
in [0..1] is below this value, the torque of the arm is set to zero)

bodyTiltOrigin. The fixed value for the body tilt (that means a rotation of the torso of the
robot around the y-axis through the hip)

bodyTiltStandOrigin. The value for the body tilt while the robot is standing

bodyTiltSpeedFactor. The body tilt is multiplied by the current speed in x-direction and
this factor; the robot leans forward the faster it is ”running”

bodyTiltCorrection. The integrative part of a PID-controller for the body tilt (the average
offset of the measured body tilt within the last 50 frames is multiplied by this factor and
added to the body tilt)

bodyShiftCorrection. The factor for a P controller that controls sideways motion of the body
to prevent the body from start rocking more and more violently

bodyShiftToAccel. The factor to transform the sideways body motion from the theoretical
accelerations based on the commanded trajectory to the actual sideways acceleration

footPanCorrection. A value that is added constantly to the rotation trajectory in radian

footRollCorrection. The roll angle of the feet (rotation around the x-axis of the feet)

stepShape. The shape of the foot trajectories (for possible values and further description see
Src/Tools/Math/Trajectories.cpp)

stepOrigin. Three-dimensional coordinates that represent the center of the foot trajectory (in
millimeters) of the left foot (for the right foot the y-coordinate is negated)

stepTilt{Forward|Backward|Sideways}. To be ignored1

stepHeight. The height in millimeters each foot is lifted from the ground

stepPhases. The length of the ground phase, the lifting phase and the air phase of the 3-D
foot-trajectory (the lowering phase is one minus the three other phases). This parameter
is not needed by all trajectory shapes, see Section 5.1.2.2.

bodyShiftShape. The shape of the 1-D trajectory of the body shift. The so-called body shift
is a value that is added to the y-position of both feet (hence the body is shifted relative
to the feet)

bodyShiftOrigin. The origin of the body shift (if this parameter does not equal zero the robot
walks and stands asymmetrically)

1These parameters are a relic from the walking engine for the AIBO.
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bodyShiftScaleMode. The way the amplitude of the trajectory is scaled by the size (should
always be linear as the size is hard-coded 1.0)

bodyShiftScale. The amplitude of the body shift in millimeters

bodyShiftPhaseShift. This value is added to the phase as input of the body shift trajectory
relative to the foot trajectory

bodyShiftPhases. The length of the phases ”going to the left”, ”staying left”, ”going to the
right” of the 1-D body-shift-trajectory (the phase ”staying right” results of the three other
phases). This parameter is not needed by all trajectory shapes, see Section 5.1.2.1.

bodyShiftSidewaysOriginFactor{Left|Right}. The current y-speed is multiplied by this
parameter and added to the body shift origin. This parameter causes that the robot leans
to the side if he walks to the side.

rotationShape. The shape of the foot rotation trajectory

rotationOrigin. The origin of the foot rotation (if this parameter does not equal zero the feet
are not oriented straight forward)

rotationScaleMode. The way the amplitude of the rotation trajectory is scaled by the rotation
speed (should be linear, otherwise the rotation is not scaled correctly and does not react
correctly on the rotation request)

rotationScale. The factor the rotation speed is multiplied by to get the amplitude of the
rotation trajectory (this parameter should be near 1.0, otherwise the odometry probably
would not fit to the resulting gait and has to be adapted)

rotationPhaseShift. The phase of the rotation trajectory is shifted by this value relative to
the foot trajectory

rotationPhases. The length of the phases ”rotating left”, ”staying left”, ”rotating right” of
the 1-D rotation-trajectory (the phase ”staying right” results of the three other phases).
This parameter is not needed by all trajectory shapes, see Section 5.1.2.1.

armShape. The shape of the trajectory for the joints armLeft0 and armRight0

armOrigin. The origin of the arm trajectory

armScaleMode. The way the amplitude of the arm trajectory is scaled by. This can be useful
to let the arm swing to one direction only.

armScale. The factor the amplitude of the arm trajectory is multiplied by (in radian)

armPhaseShift. The phase of the arm trajectory is shifted by this value relative to the foot
trajectory

armPhases. The length of the phases ”swing forward”, ”staying forward”, ”swing backward”
of the 1-D rotation-trajectory (the phase ”stay backward” results of the three other phases)
This parameter is not needed by all trajectory shapes, see Section 5.1.2.1.
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5.1.2 Trajectories

5.1.2.1 1-D Trajectories

The 1-D trajectories are used in different parts (bodyShift, rotation, etc.) of the walking engine.
All of them are strictly periodical, which means amplitude(0) = amplitude(1.0). Additionally
the function is differentiable at ϕ = 0 and ϕ = 1 (with exception of halfSine). Most of the
trajectories are not parameterizable, those trajectories which are parameterizable are marked
with vertical lines showing the variable sections of the trajectory. In the trajectories rectangle,
sineRectangle, and airSine the section is linearly stretched. The trajectory constAccel computes
the shape of the parabolas and the linear part between them, keeping the gradient at the
transition constant. Hence the function within the variable ranges is not just stretched.

It is recommended to use the trajectories constAccel and sineRectangle for two reasons: they
can be parameterized very exactly in contrast to most other shapes and the absolute value of
the second derivation (acceleration) of them is quite small to reduce mechanical stress.
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Figure 5.2: 1-D trajectory constant
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Figure 5.3: 1-D trajectory rectangle
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Figure 5.4: 1-D trajectory sineRectangle
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Figure 5.5: 1-D trajectory sine

5.1.2.2 3-D Trajectories

All 3-D trajectories produce a Vector3 as output representing three-dimensional coordinates.
The x- and y-coordinates depend on each other, that means internally only two amplitudes are
computed from the phase, one of them is used for the x- and y-coordinates (determined from
xSize and ySize) and the other is only used for the z-coordinate. Therefore the shape of the
different trajectories is visualized by a 2-D plot, where the x-axis shows the amplitude used for
the x- and y-coordinates and the y-axis shows the amplitude used for the z-coordinate.
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Figure 5.6: 1-D trajectory constAccel
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Figure 5.7: 1-D trajectory sineSqrt
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Figure 5.8: 1-D trajectory doubleSine
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Figure 5.9: 1-D trajectory doubleSinePositive
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Figure 5.10: 1-D trajectory halfSine
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Figure 5.11: 1-D trajectory flatSine
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Figure 5.12: 1-D trajectory airSine
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As already stated above not all trajectory shapes use the parameter phases, respectively not
all of them. The trajectory ellipse (cf. Fig. 5.16) does not use any of the phase lengths, it just
produces a harmonical ellipse. Another characteristic of the ellipse is that the minimum of the
amplitude is not 0 but −1 and that there is no real ground phase. The trajectories halfEllipse
(cf. Fig. 5.17) and inverseHalfEllipse (cf. Fig. 5.18) only take into account the length of the
ground phase, the arc in case of halfEllipse and the straight line in case of the inverseHalfEllipse
are computed as the difference between 1 and the ground phase. The other three shapes take
all phase lengths into account. The fourth phase is computed as difference between the sum
of the three given phases and 1. For the shape rectangle (cf. Fig. 5.13) the phase lengths just
parameterize the time needed for each of the edges of the rectangle. The trajectory trapezoid
(cf. Fig. 5.14) takes the first phase length for the ground time, the times for rising, and holding
up (the remainder is for lowering). By setting the third phase to zero also a triangle can be
formed. The trajectory constAccel (cf. Fig. 5.15) is just a combination of two 1-D trajectories:
constAccel for the x- and y-coordinates and sineRectangle for the z-coordinate. The trajectory
sineRectangle is phase-shifted, so that the center of the ground phase is reached at ϕ = 0. In
contrast to the other trajectories the absolute value of the x/y-amplitude of constAccel exceeds
1.0, only the ground phase is guaranteed to be in the range [−1.0 . . . 1.0].

The point at ϕ = 0 of each trajectory shape is the lowest point with x-coordinate = 0.
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Figure 5.13: 3-D trajectory rectangle
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Figure 5.14: 3-D trajectory trapezoid
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Figure 5.15: 3-D trajectory constAccel
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Figure 5.16: 3-D trajectory ellipse

5.2 Special Actions

Special actions are hardcoded motions that are provided by the module SpecialActions. By
executing a special action, different target joint values are sent consecutively, allowing the robot

41



B-Human 2008 5.2. SPECIAL ACTIONS

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1 -0.5  0  0.5  1

Figure 5.17: 3-D trajectory halfEllipse
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Figure 5.18: 3-D trajectory inverseHalfEllipse

to perform actions such as kicking, standing up, or searching for the ball near its feet. Those
motions are defined in .mof files that are located in the folder Src/Modules/MotionControl/mof.
A .mof file starts with the unique name of the special action, followed by the label start. Then,
each line represents a set of joint angles, separated by a whitespace. The order of the joints is
as follows: head (pan, tilt), left arm (shoulder pitch/roll, elbow yaw/roll), right arm (shoulder
pitch/roll, elbow yaw/roll), left leg (hip yaw-pitch/roll/pitch, knee pitch, ankle pitch/roll), and
right leg (hip yaw-pitch2/roll/pitch, knee pitch, ankle pitch/roll). A * does not change the angle
of the joint (keeping, e. g., the joint angles set by the head motion control), a – deactivates the
joint. Each line ends with two more values. The first decides if the target angles will be set
immediately (the value is 0), forcing the robot to move its joints as fast as possible, or if the
angles will be reached by interpolating between the current and target angles (the value is 1).
The time this interpolation takes is read from the last value in the line, it is given in milliseconds.
If the values are not interpolated, the robot will set and hold the values for that amount of time
instead.

Transitions are conditional statements. If the currently selected special action is equal to the
first parameter, the special action given in the second parameter will be executed next, starting
at the position of the label specified as last parameter. Note that the currently selected special
action may differ from the currently executed one, because the execution costs time. Transitions
allow defining constraints such as to switch from A to B, C has to be executed first. There is a
wildcard condition allMotions that is true for all currently selected special actions. There also
is a special action called extern that allows leaving the module SpecialActions, e. g., to continue
with walking. extern.mof is also the entry point to the special action module. Therefore, all
special actions have to have an entry in that file to be executable. A special action is executed
line by line, until a transition is found the condition of which is fulfilled. Hence, the last line of
each .mof file contains an unconditional transition to extern.
An example of a special action:

motion_id = stand

label start

"HP HT AL0 AL1 AL2 AL3 AR0 AR1 AR2 AR3 LL0 LL1 LL2 LL3 LL4 LL5 LR0 LR1 LR2 LR3 LR4 LR5 Int Dur

* * 0 -50 -2 -40 0 -50 -2 -40 -6 -1 -43 92 -48 0 -6 -1 -43 92 -48 -1 1 100

transition allMotions extern start

To receive proper odometry data for special actions, they have to be manually set in the file
Config/odometry.cfg. It can be specified whether the robot moves at all during the execution of
the special action, and if yes, how it has moved after completing the special action, or whether

2Ignored
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it moves continuously in a certain direction while executing the special action. It can also
be specified whether the motion is stable, i. e., whether the camera position can be calculated
correctly during the execution of the special action. Several modules in the process Cognition
will ignore new data while an unstable motion is executed to protect the world model from being
impaired by unrealistic measurements.

5.3 Motion Combination

While playing soccer with a robot it is necessary to execute different motions. To have smooth
transitions between these motions, they are interpolated while switching from one to another.

First the MotionSelector determines which motion to execute, taking into account not to interrupt
a motion in an unstable situation. To achieve this the WalkingEngine and SpecialActions modules
both provide information about when it is possible to leave the motion currently executed and
switch to another. In addition, some motions have a higher priority than others, e. g. stand-up
motions. These are executed intermediately and it is not possible to leave the motion before it
finished.

If the MotionRequest requires switching from one motion to another, the MotionSelector calcu-
lates influence ratios for the motion currently executed and the target motion. These ratios are
required by the MotionCombinator to merge the joint angles generated by the WalkingEngine and
the SpecialActions module together. The ratios are interpolated linearly. The interpolation time
between different motions depends on the requested target motion.

The MotionCombinator merges the joint angles together to the final target joint angles. If there
is no need to interpolate between different motions, the MotionCombinator simply copies the
target joint angles from the active motion source into the final joint request. Additionally it
fills the representations MotionInfo and OdometryData, which contain data such as the current
position in the walk cycle, whether the motion is stable, and the odometry position.
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Chapter 6

Behavior Control

The part of the B-Human system that makes the decisions is called Behavior Control. The
behavior was modeled using the Extensible Agent Behavior Specification Language (XABSL)
[14]. The module provides the representations MotionRequest, HeadMotionRequest, LEDRequest
and SoundRequest.

This chapter gives a short overview of XABSL and how it is used in a simple way. Afterwards,
it is shown how to set up a new behavior. Both issues will be clarified by an example. Finally,
the behavior of our striker is explained in detail.

6.1 XABSL

XABSL is a programming language that is designed to model an agent behavior. To work with
it, it is important to know its general structure. In XABSL following base elements are used:
options, states, decisions, input symbols, and output symbols. A behavior consists of options that
are arranged in an option graph (cf. Fig. 6.1 and Fig. 6.2). There is a single option to start
the whole behavior from which all other options are called; this is the root of the option graph.
Each option describes a specific part of the behavior such as a skill or a head motion of the
robot, or it combines such basic features. For this description each option consists of several
states. Each option starts with its initial state. Inside a state, an action can be executed and
optionally a decision can be made. An action can consist either of the modification of output
symbols (for example head motion requests or walk requests), or a call of another option. A
decision comprises conditions and transitions the latter of which are changes of the current state
within the same option.

This structure is clarified with an example:

option example_option
{
initial state first_state
{
decision
{
if(boolean_expression)
goto second_state;

else if(boolean_expression)
goto third_state;

else
stay;
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}
action
{
output_symbol = input_symbol * 3

}
}

state second_state
{
action
{
secondOption();

}
}

state third_state
{
decision
{
if(boolean_expression)
goto first_state;

else
stay;

}
action
{

output_symbol = input_symbol < 0 ? 10 : 50;
}

}
}

A special element within an option is the common decision. It consists of conditions which
are checked all the time, independently of the current state, and it is always positioned at the
beginning of an option. Decisions within states are only “else-branches” of the common decision,
because they are only evaluated if no common decision is satisfied.

option example_common_decision
{
common decision
{
if(boolean_expression)
goto first_state;

else if(boolean_expression)
goto second_state;

}
initial state first_state
{
decision
{
else if(boolean_expression)
goto second_state;

else
stay;

}
action
{
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output_symbol = input_symbol * 3
}

}

state second_state
{
decision
{
else if(boolean_expression)
goto first_state;

else
stay;

}
action
{

output_symbol = input_symbol < 0 ? 10 : 50;
}

}
}

Options can have parameters. The parameters have to be defined in a sub-option. Then these
symbols can be passed from a superior option to the sub-option. Within the sub-option they
can be used similar to input symbols by using an @ in front of the parameter name:

option example_superior_option
{
initial state first_state
{
action
{
example_suboption(first_parameter = first_input_symbol, second_parameter = 140);

}
}

}

option example_suboption
{

float @first_parameter [-3000..3000] "mm";
float @second_parameter [-2000..2000] "mm";

initial state first_state
{
action
{
output_symbol = @first_parameter - @second_parameter;

}
}

}

It is possible to define a target state within an option. When the option arrives at this target
state the superior option has the possibility to query this status and to react on it. It is queried
by the special symbol action done:

option example_superior_option
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{
initial state first_state
{
decision
{
if(action_done)
goto second_state;

}
action
{

example_suboption();
}

}
state second_state
{
action
{
output_symbol = input_symbol’’;

}
}

}

option example_suboption
{

initial state first_state
{
decision
{
if(boolean_expression)
goto second_state;

else
stay;

}
action
{

output_symbol = @first_parameter - @second_parameter;
}

}

target state second_state
{
action
{
}

}
}

Input and output symbols are needed to create actions and decisions within a state. Input
symbols are used for the decisions and output symbols are used for the actions. Actions may
only consist of symbols and simple arithmetic operations. Other expressions cannot be used in
XABSL. All symbols are implemented in the actual robot code and range from math symbols
to specific robot symbols.
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6.2 Setting up a new Behavior

To set up a new behavior it is necessary to create a new folder in Src/Modules/BehaviorControl.
This folder will contain the new behavior. To structure the behavior it is advisable to create sum
subfolder, such as folders for Options and Symbols (this is not mandatory). The option folder
can be divided into subfolders such as skills, head motions, or roles. Inside the folder Symbols,
all symbols shall be placed. To create symbols, a header file, a source file, and a Xabsl file are
necessary. The files shall be used for groups of symbols such as head symbols, ball symbols, and
so on. In this way it is easier to locate symbols later.

After creating all symbols needed it is necessary to create a file called agents.xabsl in the
behavior folder, where all options needed are listed. This file is also important to get the
behavior started later. Next to the agents.xabsl the following files have to be available in the
newly created behavior folder: <name>BehaviorControl.cpp, <name>BehaviorControl.h, and
<name>BehaviorControlBase.h. To understand how these files work, look at the comments
in the corresponding files available in the BH2009BehaviorControl folder. It is important to
include all symbols needed within the <name>BehaviorControl.cpp. After these files were
created correctly, the <name>BehaviorControl.h has to be added to the CognitionModules.h
that can be found in Src/Modules.

After this preparation, it is possible to write new options by creating the corresponding .xabsl
files in the Options folder (or subfolders). An option consists of a name and all states needed
that call each other or another option. Each new option has to be added to the file agents.xabsl,
otherwise it cannot be used. When all options are implemented, one or more agents have
to be created at the end of agents.xabsl that consists of a name and the option the agent
shall start with. In the file Locations/<location>/behavior.cfg it will be selected, which agent
will be started. At last it is necessary to modify the file Cognition.cpp that can be found in
Src/Processes/CMD. In the method handleMessage the own behavior has to be added with a
logical OR operator.

6.3 Playing Soccer

The root option of the soccer behavior is start soccer. In there the options head control and
body control are invoked. head control is responsible for the head motion of the robot. Depend-
ing on the chosen head motion by the role, the corresponding option is executed. The task of
the option body control is to start the whole behavior. Within this option, the following states
are available, following the rules of the Standard Platform League 2008 [3]:

• state initial

• state ready

• state set

• state playing

• state penalized

• state finished

These states can be set either by the GameController or by pressing the chest button1. At the
beginning the initial state is executed. Within this state the robot executes the special action

1Currently the penalty state can only be set by the game controller and not by pressing the chest button.
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Figure 6.1: The option search for ball

stand and looks straight forward. By switching to the ready state the robot begins walking to
a its kick-off position. This point diversifies according to the roles of the robots and whether
the own team has kickoff or not. During walking to the kick-off position the robot looks around
to ensure a good localization. After it has reached its goal position the state is changed to the
set state. Within this state the robot executes the special action stand again and searches for
the ball, and if it has found it, it will continuously look at it.

After switching to the playing state, the robot starts playing according to its defined role. It is
possible to stop the game by switching to the state finished. Within this state the robot stands
looking straight ahead.

It is also possible to stop a certain robot by sending it to the penalized state in which the robot
stands and looks down. The only role that is already implemented for the Nao is the striker.
The task of the striker is to find the ball, approach it, aim at the opponent goal, and kick.
Corresponding to this situation also the body control is only implemented for the striker role.

6.3.1 Searching for the Ball

If the robot has not seen the ball for more than two seconds, it starts searching for the ball.
This is done by the option search for ball (cf. Fig. 6.1). At first, the robot decides whether to
search on its right or left side, depending on the last known ball position. If the robot was close
to the ball when it was seen the last time, it first looks down to check if the ball is in front of
its feet. If the ball is not there the robot starts rotating to the side where the ball was seen last.
Every 7500 ms the robot checks, whether the ball is in front of its feet and, if that was not the
case, goes on with the search.

6.3.2 Approaching the Ball

As soon as the ball is seen, the option go to ball is executed (cf. Fig. 6.2). At first is decided
whether the robot can approach the ball from behind or needs to go around the ball to aim at
the opponent goal. In the first case the robot directly starts approaching the ball. In the second
case the robot determines on which side to pass the ball, depending on its angle to the ball and
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Figure 6.2: The option go to ball

on the angle to the goal. The last step is turning around after the ball was passed and getting
into a good position to kick.

6.3.3 Kicking

After the robot reached a good position, meaning the ball is close enough to kick it and the
robot is aiming at the opponent goal, the option kick is executed (cf. Fig. 6.3). In this option it
is checked whether to kick with the right or with the left foot, depending on the position of the
ball. If necessary the robot carries out some corrections on its position. As soon as it is ready
to kick the special action kick left nao is executed. To find out more about special actions see
Section 5.2.

6.4 Humanoid League’s Obstacle Challenge

The obstacle avoidance behavior is based on a very simple idea: It just realizes a walk into the
walking direction given by the FreeSpaceModelProvider and executes a head motion that tries to
look at the base points of obstacles in front. Some special handling is only required when the
direction to the goal is lost (e. g. when the view at the goal is completely blocked by obstacles),
or when the robot stands directly in front of an obstacle. In the first case the robot will try to
use self-localization to turn to the goal, in the other case it will explicitly turn away from the
obstacle.
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Figure 6.3: The option kick
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Chapter 7

SimRobot

7.1 Introduction

The B-Human software package uses the physical robotics simulator SimRobot [13, 12] as front
end for software development. The simulator is not only used for working with simulated robots,
but it also functions as graphical user interface for replaying log files and connecting to actual
robots via LAN or WLAN.

7.2 Scene View

The scene view (cf. Fig. 7.1 right) appears if the scene is opened from the tree view. The view
can be rotated around two axes, and it supports several mouse operations:

• Left-clicking an object allows dragging it to another position. Robots and the ball can be
moved in that way.

• Left-clicking while pressing the Shift key allows rotating objects around their body centers.

• Select an active robot by double-clicking it. Robots are active if they are defined in the
compound robots in the scene description file (cf. Sect. 7.4).

Robot console commands are sent to the selected robot only (see also the command robot).

7.3 Information Views

In the simulator, information views are used to display debugging output such as debug drawings.
Such output is generated by the robot control program, and it is sent to the simulator via
message queues. The views are interactively created using the console window, or they are
defined in a script file. Since SimRobot is able to simulate more than a single robot, the views
are instantiated separately for each robot. There are eight kinds of views related to information
received from robots: image views, color space views, field views, the Xabsl view, the sensor
data view, plot views, the timing view, and module views. Field, image, and plot views display
debug drawings or plots received from the robot, whereas the other views visualize certain color
channels, the current color table, specific information about the current state of the robot’s
behavior, its sensor readings, the timing of the modules it executes, or the module configuration
itself. All information views can be selected from the tree view (cf. Fig. 7.1 left).
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Figure 7.1: SimRobot with the tree view on the left and two scene views on the right. The console
window is shown at the bottom.

7.3.1 Image Views

An image view (cf. left of Fig. 7.2) displays information in the system of coordinates of the
camera image. It is defined by giving it a name and a background image using the console
command vi and by adding debug drawings to the view using the command vid (cf. Sect. 7.5.3).

For instance, the view raw is defined as:

vi image raw
vid raw representation:PointsPercept:Image
vid raw representation:BallPercept:Image

If color table editing is activated, image views will react to the following mouse commands (cf.
commands ct on and ct off in Sect. 7.5.3):

Left mouse button. The color of the pixel or region selected is added to the currently selected
color class. Depending on the current configuration, the neighboring pixels may also be
taken into account and a larger cube may be changed in the color table (cf. commands ct
imageRadius and ct colorSpaceRadius in Sect. 7.5.3). However if a region is selected, the
imageRadius is ignored.

Left mouse button + Shift. If only a single pixel is selected, the color class of that pixel is
chosen as the current color class. It is a shortcut for ct <color> (cf. Sect. 7.5.3). If a
region is selected, all colors of pixels in that region that are not already assigned to a color
class are assigned to the selected color class. Thus all colors in a certain region can be
assigned to a color class without destroying any previous assignments.

Left mouse button + Ctrl. Undoes the previous action. Currently, up to ten steps can be
undone. All commands that modify the color table can be undone, including, e. g., ct clear
and ct load (cf. Sect. 7.5.3).
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Figure 7.2: Image view and field view with several debug drawings

Left mouse button + Shift + Ctrl. The color of the pixel selected is deleted from its color
class. Depending on the current configuration, the neighboring pixels may also be taken
into account and a larger cube is changed in the color table (cf. commands ct imageRadius
and ct colorSpaceRadius in Sect. 7.5.3). However if a region is selected, the imageRadius
is ignored.

7.3.2 Color Space Views

Color space views visualize image information in 3-D (cf. Fig. 7.3). They can be rotated by
clicking into them with the left mouse button and dragging the mouse afterwards. There are
three kinds of color space views:

Color Table. This view displays the current color table in YCbCr space. Each entry that is
assigned to a certain color class is displayed in a prototypical color. The view is useful
while editing color tables (cf. Fig. 7.3 down right).

Image Color Space. This view displays the distribution of all pixels of an image in a certain
color space (HSI, RGB, TSL, or YCbCr). It can be displayed by selecting the entry all
for a certain color space in the tree view (cf. Fig. 7.3 top right).

Image Color Channel. This view displays an image while using a certain color channel as
height information (cf. Fig. 7.3 left).

While the color table view is automatically instantiated for each robot, the other two views have
to be added manually for the camera image or any debug image. For instance, to add a set of
views for the camera image under the name raw, the following command has to be executed:

v3 image raw

7.3.3 Field Views

A field view (cf. right of Fig. 7.2) displays information in the system of coordinates of the soccer
field. It is defined similar to image views. For instance, the view worldState is defined as:
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Figure 7.3: Color channel views, image color space view, and color table view

vf worldState
vfd worldState fieldPolygons
vfd worldState fieldLines
vfd worldState module:ParticleFilterSelfLocator:samples
vfd worldState representation:RobotPose

# ground truth view layers
vfd worldState representation:GroundTruthRobotPose
# from now, relative to ground truth robot pose
vfd worldState origin:GroundTruthRobotPose
vfd worldState representation:GroundTruthBallModel

# views relative to robot
# from now, relative to estimated robot pose
vfd worldState origin:RobotPose
vfd worldState representation:BallModel
vfd worldState representation:BallPercept:Field
vfd worldState representation:PointsPercept:Field
vfd worldState representation:GoalModel:largestFreePart
vfd worldState representation:MotionRequest

# back to global coordinates
vfd worldState origin:Reset

Please note that some drawings are relative to the robot rather than relative to the field. There-
fore, special drawings exist (starting with origin: by convention) that change the system of
coordinates for all drawings added afterwards, until the system of coordinates is changed again.

55



B-Human 2008 7.3. INFORMATION VIEWS

Figure 7.4: Xabsl view and sensor data view

7.3.4 Xabsl View

The Xabsl view is part of the set of views of each robot. It displays information about the robot
behavior currently executed. In addition, two debug requests have to be sent (cf. Sect. 7.5.3):

# request the behavior symbols once
dr automatedRequests:xabsl:debugSymbols once

# request continuous updates on the current state of the behavior
dr automatedRequests:xabsl:debugMessages

The view can also display the current values of input symbols and output symbols. The symbols
to display are selected using the console commands xis and xos (cf. Sect. 7.5.3).

7.3.5 Sensor Data View

The sensor data view displays all the sensor data taken by the robot, e. g. all joint angles, accel-
erations, gyro measurements, pressure readings, and sonar readings (cf. right view in Fig. 7.4).
To display this information, the following debug requests must be sent:

dr representation:JointData
dr representation:SensorData

7.3.6 Plot Views

Plot views allow plotting data sent from the robot control program through the macro PLOT
(cf. Fig. 7.5 left). They keep a history of the values sent of a defined size. Several plots can be
displayed in the same plot view in different colors. Please note that currently plot views can
only display integer values. Although the macro PLOT also accepts floating point values, they
will always be rounded to the nearest integer. Hence, small floating values (e. g. radians) have
to be scaled to a bigger range of values (e. g. degrees) to be plotted. A plot view is defined
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Figure 7.5: The plot view and the timing view

by giving it a name using the console command vp and by adding plots to the view using the
command vpd (cf. Sect. 7.5.3).

For instance, the view on the left side of Figure 7.5 was defined as:

vp acc 100 -2 10
vpd acc accX blue

7.3.7 Timing View

The timing view displays statistics about the speed of certain modules (cf. Fig. 7.5 right). It
shows the minimum, maximum, and average runtime of the execution of a module in milliseconds.
In addition, the frequency is displayed with which the module was executed. All statistics sum
up the last 100 invocations of the module. The timing view only displays information on modules
the debug request for sending profiling information of which was sent, i. e., to display information
about the speed of the module that generates the representation Foo, the console command dr
stopwatch:Foo must have been executed. Please note that time measurements are limited to full
milliseconds, so the maximum and minimum execution durations will always be given in this
precision. However, the average can be more precise.

7.3.8 Module Views

Since all the information about the current module configuration can be requested from the robot
control program, it is possible to automatically generate a visual representation. The graphs
such as the one that is shown in Figure 7.6 are generated by the program dot from the Graphviz
package [6] in the background. Modules are displayed as yellow rectangles and representations
are shown as blue ellipses. Representations that are received from another process are displayed
in orange and have a dashed border. If they are missing completely due to a wrong module
configuration, both label and border are displayed in red. The modules can either be displayed
ungrouped or grouped by the categories that were specified as the second parameter of the macro
MAKE MODULE when they were defined. There is a module view for the process Cognition
and one for the process Motion, both grouped and ungrouped.
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Figure 7.6: The module view showing part of the modules in the process Motion

7.4 Scene Description Files

The language of scene description files is RoSiML [7]. In the main .ros files, such as BH2009.ros,
three compounds can be edited:

<Compound name=”robots”>. This compound contains all active robots, i. e. robots for
which processes will be created. So, all robots in this compound will move on their own.
However, each of them will require a lot of computation time.

<Compound name=”extras”>. Below the compound robots, there is the compound extras.
It contains passive robots, i. e. robots that just stand around, but that are not controlled
by a program. Passive robots can be activated by moving their definition to the compound
robots.

<Compound name=”balls”>. Below that, there is the compound balls. It contains the
balls, i. e. normally a single ball, but it can also contain more of them if necessary, e. g.,
for a technical challenge that involves more than one ball.

A lot of scene description files can be found in Config/Scenes. Please note that there are two
types of scene description files: the ones required to simulate one or more robots (about 3 KB
in size, but they include larger files), and the ones that are sufficient to connect to a real robot
or to replay a log file (about 1 KB in size).

7.5 Console Commands

Console commands can either be directly typed into the console window or they can be executed
from a script file. There are three different kinds of commands. The first kind will typically be
used in a script file that is executed when the simulation is started. The second kind are global
commands that change the state of the whole simulation. The third type is robot commands
that affect currently selected robots only (see command robot to find out how to select robots).
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7.5.1 Initialization Commands

gt <name> <id>. Starts the ground truth module. The module uses a ceiling camera con-
nected via FireWire (IEEE 1394) together with special markers mounted on top of the
robots to determine the global position of the robots and the ball. It is based on the vision
software of the B-Smart Small Size League team [2]. This information is distributed in
the UDP team communication, so each robot knows its global position and the position of
the ball. This information can be used for development and documentation. The param-
eter name defines the name used to identify the module in the section views of the tree
view and in the command robot (see below). The id specifies the number of the FireWire
camera used. An arbitrary number of cameras can be attached by instantiating a ground
truth module for each camera. It is required that the command tc (see below) is executed
before this one.

sc <name> <a.b.c.d>. Starts a wireless connection to a real robot. The first parameter
defines the name that will be used for the robot. The second parameter specifies the ip
address of the robot. The command will add a new robot to the list of available robots
using name, and it adds a set of views to the tree view. When the simulation is reset or
the simulator is exited, the connection will be terminated.

sl <name> <file>. Replays a log file. The command will instantiate a complete set of pro-
cesses and views. The processes will be fed with the contents of the log file. The first
parameter of the command defines the name of the virtual robot. The name can be used
in the robot command (see below), and all views of this particular virtual robot will be
identified by this name in the tree view. The second parameter specifies the name and
path of the log file. If no path is given, Config/Logs is used as a default. Otherwise, the
full path is used. .log is the default extension of log files. It will be automatically added
if no extension is given.

When replaying a log file, the replay can be controlled by the command log (see below).
It is even possible to load a different log file during the replay.

su <name> <number>. Starts a UDP team connection to a remote robot with a certain
player number. Such a connection is used to filter all data from the team communication
regarding a certain robot. For instance it is possible to create a field view for the robot
displaying the world model it is sending to its teammates. The first parameter of the
command defines the name of the robot. It can be used in the robot command (see
below), and all views of this particular robot will be identified by this name in the tree
view. The second parameter defines the number of the robot to listen to. It is required
that the command tc (see below) is executed before this one.

tc <port> <subnet>. Listens to the team communication on the given UDP port and broad-
casts messages to a certain subnet. This command is the prerequisite for executing the
commands gt and su.

7.5.2 Global Commands

call <file>. Executes a script file. A script file contains commands as specified here, one com-
mand per line. The default location for scripts is the directory from which the simulation
scene was started, their default extension is .con.

cls. Clears the console window.
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dt off | on. Switches simulation dragging to real-time on or off. Normally, the simulation tries
not to run faster than real-time. Thereby, it also reduces the general computational load
of the computer. However, in some situations it is desirable to execute the simulation as
fast as possible. By default, this option is activated.

echo <text>. Print text into the console window. The command is useful in script files to
print commands that can later be activated manually by pressing the Enter key in the
printed line.

help [<pattern>], ? [<pattern>]. Displays a help text. If a pattern is specified, only those
lines are printed that contain the pattern.

ro ( stopwatches | sensorData | robotHealth | motionRequest ) ( off | on ). Set a re-
lease option sent by team communication. The release options allow sending commands
to a robot running the actual game code. They are used to toggle switches that decide
which additional information is broadcasted by the robot in the team communication.
stopwatches activates all time measurements in the process Cognition. If sensorData is
active, the robot broadcasts the representation of the same name, containing the charge
level of the battery and the temperature of all joints. However, this package is rather huge.
robotHealth activates sending the RobotHealth package that contains compact informa-
tion about the battery, process execution frame rates, and the highest temperature of all
joints. motionRequest sends the motion request currently executed by the robot. It can
be visualized in the field view.

robot ? | all | <name> {<name>}. Selects a robot or a group of robots. The console com-
mands described in the next section are only sent to selected robots. By default, only
the robot that was created or connected last is selected. Using the robot command, this
selection can be changed. Type robot ? to display a list of the names of available robots.
A single simulated robot can also be selected by double-clicking it in the scene view. To
select all robots, type robot all.

st off | on. Switches the simulation of time on or off. Without the simulation of time, all calls
to SystemCall::getCurrentSystemTime() will return the real time of the PC. However if the
simulator runs slower than real-time, the simulated robots will receive less sensor readings
than the real ones. If the simulation of time is switched on, each step of the simulator
will advance the time by 20 ms. Thus, the simulator simulates real-time, but it is running
slower. By default this option is switched off.

# <text>. Comment. Useful in script files.

7.5.3 Robot Commands

bc <red%> <green%> <blue%>. Defines the background color for 3-D views. The color
is specified in percentages of red, green, and blue intensities.

ci off | on. Switches the calculation of images on or off. The simulation of the robot’s camera
image costs a lot of time, especially if several robots are simulated. In some development
situations, it is better to switch off all low level processing of the robots and to work with
ground truth world states, i. e., world states that are directly delivered by the simulator.
In such cases there is no need to waste processing power by calculating camera images.
Therefore, it can be switched off. However, by default this option is switched on. Note
that this command only has an effect on simulated robots.
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ct off | on | undo | <color> | load <file> | save <file> | send [<ms> | off ] | send-
AndWrite | clear [<color>] | shrink [<color>] | grow [<color>] | imageRadius
<number> | colorSpaceRadius <number> | smart [off]. This command controls
editing the current color table. The parameters have the following meaning:

on | off. Activates or deactivates mouse handling in image views. If activated, clicking
into an image view modifies the color table (cf. Sect. 7.3.1). Otherwise, mouse clicks
are ignored.

undo. Undoes the previous change to the color table. Up to ten steps can be undone. All
commands that modify the color table can be undone, including, e. g., ct clear and
ct load.

<color>. Selects the given color as current color class.

( load | save ) <file>. Loads or saves the color table. The default directory is the cur-
rent location. The default extension is .c64.

( clear | shrink | grow ) [<color>]. Clears, grows, or shrinks a certain color class or
all color classes.

send [<ms> | off ] | sendAndWrite. Either sends the current color table to the robot,
or defines the interval in milliseconds after which the color table is sent to the robot
automatically (if it has changed). off deactivates the automatic sending of the color
table. sendAndWrite send the color table to the robot, which then will write it
permanently on its memory stick.

imageRadius <number>. Defines the size of the region surrounding a pixel that is
clicked on that will be entered into the color table. 0 results in a 1× 1 region, 1 in a
3× 3 region, etc. The default is 0.

colorSpaceRadius <number>. Defines the size of the cube that is set to the current
color class in the color table for each pixel inserted. 0 results in a 1 × 1 × 1 cube, 1
in a 3× 3× 3 cube, etc. The default is 2.

smart [off]. Activates the smart color selection mechanism or deactivates it. The smart
mode only affects the behavior when selecting a region of the image by mouse. If it
is activated, the simulator adds only colors to the color table within a range around
the average color of the selected region. The range can be changed by using the ct
colorSpaceRadius command. The smart mode is on by default.

dr ? [<pattern>] | off | <key> ( off | on | once ). Send a debug request. B-Human uses
debug requests to switch debug responses on or off at runtime. Type dr ? to get a list
of all available debug requests. The resulting list can be shortened by specifying a search
pattern after the question mark. Debug responses can be activated permanently or only
once. They are deactivated by default. Several other commands also send debug requests,
e. g., to activate the transmission of debug drawings.

get ? [<pattern>] | <key> [?]. Show debug data or show its specification. This command
allows displaying any information that is provided in the robot code via the MODIFY
macro. If one of the strings that are used as first parameter of the MODIFY macro is
used as parameter of this command (the modify key), the related data will be requested
from the robot code and displayed. The output of the command is a valid set command
(see below) that can be changed to modify data on the robot. A question mark directly
after the command (with an optional filter pattern) will list all the modify keys that are
available. A question mark after a modify key will display the type of the associated data
structure rather than the data itself.
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jc hide | show | ( motion | <button> ) <command>. Sets a joystick command. If the
first parameter is a number, it is interpreted as the number of a joystick button. Legal
numbers are between 1 and 32. Any text after this first parameter is part of the second
parameter. The second parameter can contain any legal script command. The command
will be executed when the corresponding button is pressed. The commands associated with
the 26 first buttons can also be executed by pressing Ctrl+Shift+A. . . Ctrl+Shift+Z on
the keyboard. If the first parameter is motion, the remaining text defines a command that
is executed whenever the readings of the analog joystick change. Within this command,
$1. . . $6 can be used as placeholders for up to six joystick axes. The scaling of the values
of these axes is defined by the command js (see below). If the first parameter is show,
any command executed will also be printed in the console window. hide will switch this
feature off again, and hide is also the default.

js <axis> <speed> <threshold>. Set axis maximum speed and ignore threshold for com-
mand jc motion. axis is the number of the joystick axis to configure (1. . . 6). speed
defines the maximum value for that axis, i. e., the resulting range of values will be
[−speed . . . speed]. The threshold defines a joystick measuring range around zero, in
which the joystick will still be recognized as centered, i. e., the output value will be 0.
The threshold can be set between 0 and 1.

log ? | start | stop | pause | forward | backward | repeat | goto <number> | clear |
( keep | remove ) <message> {<message>} | ( load | save | saveImages [raw])
<file> | cycle | once. The command supports both recording and replaying log files.
The latter is only possible if the current set of robot processes was created using the
initialization command sl (cf. Sect. 7.5.1). The different parameters have the following
meaning:

?. Prints statistics on the messages contained in the current log file.

start | stop. If replaying a log file, starts and stops the replay. Otherwise, the commands
will start and stop the recording.

pause | forward | backward | repeat | goto <number>. The commands are only
accepted while replaying a log file. pause stops the replay without rewinding to
the beginning, forward and backward advance a single step in the respective direc-
tion, and repeat just resends the current message. goto allows jumping to a certain
position in the log file.

clear | ( keep | remove ) <message>. clear removes all messages from the log file,
while keep and remove only delete a selected subset based on the set of message ids
specified.

( load | save | saveImages [raw]) <file>. These commands load and save the log file
stored in memory. If the filename contains no path, Config/Logs is used as default.
Otherwise, the full path is used. .log is the default extension of log files. It will
be automatically added if no extension is given. The option saveImages saves only
the images from the log file stored in memory to the disk. The default directory is
Config/Images. They will be stored as BMP files containing either RGB or YCbCr
images. The latter is the case if the option raw is specified.

cycle | once. The two commands decide whether the log file is only replayed once or
continuously repeated.

mof. Recompiles all special actions and if successful, the result is sent to the robot.
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mr ? [<pattern>] | modules [<pattern>] | save | <representation> ( ? [<pattern>] |
<module> | default | off ). Sends a module request. This command allows selecting the
module that provides a certain representation. If a representation should not be provided
anymore, it can be switched off. Deactivating the provision of a representation is usually
only possible if no other module requires that representation. Otherwise, an error message
is printed and the robot is still using its previous module configuration. Sometimes, it is
desirable to be able to deactivate the provision of a representation without the requirement
to deactivate the provision of all other representations that depend on it. In that case,
the provider of the representation can be set to default. Thus no module updates the
representation and it simply keeps its previous state.

A question mark after the command lists all representations. A question mark after a
representation lists all modules that provide this representation. The parameter modules
lists all modules with their requirements and provisions. All three listings can be filtered
by an optional pattern. save saves the current module configuration to the file modules.cfg
which it was originally loaded from. Note that this usually has not the desired effect,
because the module configuration has already been changed by the start script to be
compatible with the simulator. Therefore, it will not work anymore on a real robot. The
only configuration in which the command makes sense is when communicating with a
remote robot.

msg off | on | log <file>. Switches the output of text messages on or off, or redirects them
to a text file. All processes can send text messages via their message queues to the
console window. As this can disturb entering text into the console window, printing can
be switched off. However, by default text messages are printed. In addition, text messages
can be stored in a log file, even if their output is switched off. The file name has to
be specified after msg log. If the file already exists, it will be replaced. If no path is
given, Config/Logs is used as default. Otherwise, the full path is used. .txt is the default
extension of text log files. It will be automatically added if no extension is given.

mv <x> <y> <z> [<rotx> <roty> <rotz>]. Move the selected simulated robot to the
given metric position. x, y, and z have to be specified in mm, the rotations have to
be specified in degrees. Note that the origin of the Nao is about 330 mm above the
ground, so z should be 330.

poll. Poll for all available debug requests and debug drawings. Debug requests and debug
drawings are dynamically defined in the robot control program. Before console commands
that use them can be executed, the simulator must first determine which identifiers exist
in the code that currently runs. Although the acquiring of this information is usually
done automatically, e. g., after the module configuration was changed, there are some
situations in which a manual execution of the command poll is required. For instance if
debug responses or debug drawings are defined inside another debug response, executing
poll is necessary to recognize the new identifiers after the outer debug response has been
activated.

qfr queue | replace | reject | collect <seconds> | save <seconds>. Send queue fill re-
quest. This request defines the mode how the message queue from the debug process
to the PC is handled.

replace is the default mode. If the mode is set to replace, only the newest message of
each type is preserved in the queue (with a few exceptions). On the one hand, the
queue cannot overflow, on the other hand, messages are lost, e. g. it is not possible to
receive 30 images per second from the robot.
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queue will insert all messages received by the debug process from other processes into
the queue, and send it as soon as possible to the PC. If more messages are received
than can be sent to the PC, the queue will overflow and some messages will be lost.

reject will not enter any messages into the queue to the PC. Therefore, the PC will not
receive any messages.

collect <seconds>. This mode collects messages for the specified number of seconds.
After that period of time, the collected messages will be sent to the PC. Since the
TCP stack requires a certain amount of execution time, it may impede the real-time
behavior of the robot control program. Using this command, no TCP packages are
sent during the recording period, guaranteeing real-time behavior. However, since the
message queue of the process Debug has a limited size, it cannot store an arbitrary
number of messages. Hence the bigger the messages, the shorter they can be collected.
After the collected messages were sent, no further messages will be sent to the PC
until another queue fill request is sent.

save <seconds>. This mode collects messages for the specified number of seconds, and
it will afterwards store them on the memory stick as a log file under /media/user-
data/Config/logfile.log. No messages will be sent to the PC until another queue fill
request is sent.

set ? [<pattern>] | <key> ( ? | unchanged | <data> ). Change debug data or show its
specification. This command allows changing any information that is provided in the robot
code via the MODIFY macro. If one of the strings that are used as first parameter of the
MODIFY macro is used as parameter of this command (the modify key), the related data
in the robot code will be replaced by the data structure specified as second parameter.
Since the parser for these data structures is rather simple, it is best to first create a valid
set command using the get command (see above). Afterwards that command can be
changed before it is executed. If the second parameter is the key word unchanged, the
related MODIFY statement in the code does not overwrite the data anymore, i. e., it is
deactivated again. A question mark directly after the command (with an optional filter
pattern) will list all the modify keys that are available. A question mark after a modify
key will display the type of the associated data structure rather than the data itself.

v3 ? [<pattern>] | <image> [jpeg] [<name>]. Add a set of 3-D color space views for a
certain image (cf. Sect. 7.3.2). The image can either be the camera image (simply specify
image) or a debug image. It will be JPEG compressed if the option jpeg is specified. The
last parameter is the name that will be given to the set of views. If the name is not given,
it will be the same as the name of the image. A question mark followed by an optional
filter pattern will list all available images.

vf <name>. Add field view (cf. Sect. 7.3.3). A field view is the means for displaying debug
drawings in field coordinates. The parameter defines the name of the view.

vfd ? [<pattern>] | <name> ( ? [<pattern>] | <drawing> ( on | off ) ). (De)activate
debug drawing in a field view. The first parameter is the name of a field view that has
been created using the command vf (see above). The second parameter is the name of a
drawing that is defined in the robot control program. Such a drawing is activated when
the third parameter is on or is missing. It is deactivated when the third parameter is
off . The drawings will be drawn in the sequence they are added, from back to front.
Adding a drawing a second time will move it to the front. A question mark directly after
the command will list all field views that are available. A question after a valid field view
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will list all available field drawings. Both question marks have an optional filter pattern
that reduces the number of answers.

vi ? [<pattern>] | <image> [jpeg] [segmented] [<name>]. Add an image view (cf.
Sect. 7.3.1). An image view is the means for displaying debug drawings in image co-
ordinates. The image can either be the camera image (simply specify image), a debug
image, or no image at all (none). It will be JPEG-compressed if the option jpeg is spec-
ified. If segmented is given, the image will be segmented using the current color table.
The last parameter is the name that will be given to the set of views. If the name is not
given, it will be the same as the name of the image plus the word Segmented if it should
be segmented. A question mark followed by an optional filter pattern will list all available
images.

vid ? [<pattern>] | <name> ( ? [<pattern>] | <drawing> ( on | off ) ). (De)activate
debug drawing in image view. The first parameter is the name of an image view that
has been created using the command vi (see above). The second parameter is the name
of a drawing that is defined in the robot control program. Such a drawing is activated
when the third parameter is on or is missing. It is deactivated when the third parameter
is off . The drawings will be drawn in the sequence they are added, from back to front.
Adding a drawing a second time will move it to the front. A question mark directly after
the command will list all image views that are available. A question after a valid image
view will list all available image drawings. Both question marks have an optional filter
pattern that reduces the number of answers.

vp <name> <numOfValues> <minValue> <maxValue>. Add a plot view (cf.
Sect. 7.3.6). A plot view is the means for plotting data that was defined by the
macro PLOT in the robot control program. The first parameter defines the name of the
view. The second parameter is the number of entries in the plot, i. e. the size of the x
axis. The plot view stores the last numOfV alues data points sent for each plot and
displays them. minV alue and maxV alue define the range of the y axis.

vpd ? [<pattern>] | <name> ( ? [<pattern>] | <drawing> ( ? [<pattern>] | <color>
| off ) ). Plot data in a certain color in a plot view. The first parameter is the name of a
plot view that has been created using the command vp (see above). The second parameter
is the name of plot data that is defined in the robot control program. The third parameter
defines the color for the plot. The plot is deactivated when the third parameter is off .
The plots will be drawn in the sequence they were added, from back to front. Adding a
plot a second time will move it to the front. A question mark directly after the command
will list all plot views that are available. A question after a valid plot view will list all
available plot data. Both question marks have an optional filter pattern that reduces the
number of answers.

xbb ? [<pattern>] | unchanged | <behavior> {<num>}. Selects a Xabsl basic behavior.
The command suppresses the basic behavior currently selected by the Xabsl engine and
replaces it with the behavior specified by this command. Type xbb ? to list all available
Xabsl basic behaviors. The resulting list can be shortened by specifying a search pattern
after the question mark. Basic behaviors can be parameterized by a list of decimal num-
bers. Use xbb unchanged to switch back to the basic behavior currently selected by the
Xabsl engine. The command xbb only works if the Xabsl symbols have been requested
from the robot (cf. Sect. 7.3.4). Note that basic behaviors are not used anymore in the
B-Human code.
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xis ? [<pattern>] | <inputSymbol> ( on | off ). Switches the visualization of a Xabsl in-
put symbol in the Xabsl view on or off. Type xis ? to list all available Xabsl input symbols.
The resulting list can be shortened by specifying a search pattern after the question mark.
The command xis only works if the Xabsl symbols have been requested from the robot
(cf. Sect. 7.3.4).

xo ? [<pattern>] | unchanged | <option> {<num>}. Selects a Xabsl option. The com-
mand suppresses the option currently selected by the Xabsl engine and replaces it with
the option specified by this command. Options can be parameterized by a list of decimal
numbers. Type xo ? to list all available Xabsl options. The resulting list can be shortened
by specifying a search pattern after the question mark. Use xo unchanged to switch back
to the option currently selected by the Xabsl engine. The command xo only works if the
Xabsl symbols have been requested from the robot (cf. Sect. 7.3.4).

xos ? [<pattern>] | <outputSymbol> ( on | off | ? [<pattern>] | unchanged | <value>
). Show or set a Xabsl output symbol. The command can either switch the visualization
of a Xabsl output symbol in the Xabsl view on or off, or it can suppress the state of an
output symbol currently set by the Xabsl engine and replace it with the value specified
by this command. Type xos ? to list all available Xabsl output symbols. To get the
available states for a certain output symbol, type xos <outputSymbol> ?. In both cases,
the resulting list can be shortened by specifying a search pattern after the question mark.
Use xos <outputSymbol> unchanged to switch back to the state currently set by the Xabsl
engine. The command xos only works if the Xabsl symbols have been requested from the
robot (cf. Sect. 7.3.4).

xsb. Sends the compiled version of the current Xabsl behavior to the robot.

7.6 Examples

This section presents some examples of script files to automate various tasks:

7.6.1 Recording a Log File

To record a log file, the robot shall send images, joint data, sensor data, key states, and odometry
data. The script connects to a robot and configures it to do so. In addition, it prints several
useful commands into the console window, so they can be executed by simply setting the caret
in the corresponding line and pressing the Enter key. As these lines will be printed before the
messages coming from the robot, one has to scroll to the beginning of the console window to
use them. Note that the file name behind the line log save is missing. Therefore, a name has to
be provided to successfully execute this command.

# connect to a robot
sc Remote 10.1.0.101

# request everything that should be recorded
dr representation:JPEGImage
dr representation:JointData
dr representation:SensorData
dr representation:KeyStates
dr representation:OdometryData
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# print some useful commands
echo qfr queue
echo log start
echo log stop
echo log save
echo log clear

7.6.2 Replaying a Log File

The example script replays a log file. It instantiates a robot named LOG that is fed by the data
stored in the log file Config/Logs/logFile.log. It also defines some keyboard shortcuts to allow
navigating in the log file.

# replay a log file.
# you have to adjust the name of the log file.
sl LOG logfile

# select modules for log file replay
mr Image CognitionLogDataProvider
mr CameraInfo CognitionLogDataProvider
mr FrameInfo CognitionLogDataProvider
mr JointData MotionLogDataProvider
mr SafeJointData MotionLogDataProvider
mr SensorData MotionLogDataProvider
mr SafeSensorData MotionLogDataProvider
mr KeyStates MotionLogDataProvider
mr FrameInfo MotionLogDataProvider
mr OdometryData MotionLogDataProvider

# simulation time on, otherwise log data may be skipped
st on

# all views are defined in another script
call Views

# navigate in log file using shortcuts
jc 1 log pause # Shift+Crtl+A
jc 17 log goto 1 # Shift+Crtl+Q
jc 19 log start # Shift+Crtl+S
jc 23 log repeat # Shift+Crtl+W
jc 24 log forward # Shift+Crtl+X
jc 25 log backward # Shift+Crtl+Y

7.6.3 Remote Control

This script demonstrates joystick remote control of the robot. The last command has to be
entered in a single line.

# connect to a robot
sc Remote 10.1.0.101

# all views are defined in another script
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call ViewsJpeg

# request joint data and sensor data
dr representation:SensorData
dr representation:JointData

# joystick: motion request
js 2 100 0.01 # x axis
js 1 0.5 0.01 # rotation axis
jc motion set representation:MotionRequest { motion = specialAction;

specialActionRequest = { specialAction = stand; mirror = false; };
walkRequest = { speed = { rotation = $1; translation = { x = $2; y = 0; };
}; }; kickRequest = { kickType = forward; }; }
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CMU 1394 Digital Camera Driver. Firewire driver and the API for the cameras used in
the ground truth environment.

AT&T graphviz. For compiling the behavior documentation and for the module view of the
simulator.

DotML 1.1. For generating option graphs for the behavior documentation
(http://www.martin-loetzsch.de/DOTML).

doxygen. For generating the Simulator documentation (http://www.stack.nl/˜dimitri/doxygen).

flite. For speaking the IP address of the Nao without NaoQi
(http://www.speech.cs.cmu.edu/flite/).

RoboCup GameController. For remotely sending game state information to the robot
(http://www.tzi.de/spl).

libjpeg. Used to compress and decompress images from the robot’s camera
(http://www.ijg.org).

OpenCV. Used in the simulator’s ground truth environment
(http://sourceforge.net/projects/opencvlibrary).

XABSL. For implementing the robot’s behavior (http://www.informatik.hu-
berlin.de/ki/XABSL).

OpenGL Extension Wrangler Library. For determining which OpenGL extensions are sup-
ported by the platform (http://glew.sourceforge.net).

GNU Scientific Library. Used by the simulator. (http://david.geldreich.free.fr/dev.html).
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libxml2. For reading simulator’s scene description files (http://xmlsoft.org).

ODE. For providing physics in the simulator (http://www.ode.org).

QHull. Calculates the convex hull of simulated objects (http://www.qhull.org).

QT. The GUI framework of the simulator (http://trolltech.com/products).

zbuildgen. Creates and updates the makefiles and Visual Studio project files.
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