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1 Introduction

B-Human consists of several Computer Science researchers and students from
the Universitiat Bremen and additionally one electrical engineering student from
Universitdt Darmstadt. Due to this distribution of expertise our team is not pri-
marily interested in robot construction, but rather concentrates on the software
components.

Our current robot platform is build from a commercial standard robot con-
struction kit (cf. Sect. 2) carrying a low-level controller board for actuator control
or sensor interpretation and a standard PDA for high-level computations.

The overall approach of the team is to transfer as much code and experiences
from the Four-Legged League to the Humanoid League as possible [1,2]. Thus
the implementation of the general architecture (cf. Sect. 3) and the simulation
environment (cf. Sect. 4) as well as several algorithms (cf. Sect. 6) have been
adopted unmodified for the most parts.

2 The Robots

The commercially available Bioloid robot kit from Robotis is the basis for our
robots (cf. Fig. 1)), since this kit has already been used in RoboCup competitions
by different other teams. We upgraded this platform with an improved version
of our own controller board which has already been a part of our 2006 Kondo
platform. The new version of this controller board is again constructed around
an ATmegal28 micro controller but includes a lot of new sensors and features,
i.e. a 3-axis gyroscope and acceleration sensor, a magnet-compass or pressure
sensors in both feet.

For all high-level on-board computations, we equipped the robots with stan-
dard PDAs from Fujitsu Siemens running Microsoft Windows Mobile. The PDAs
also have an integrated 1.3 mega pixel camera which provides us with about 10
frames per second at a 320x240 resolution. This widespread approach has already
been described comprehensively by [3].



Fig. 1. Mos — one of our robots.

3 Software Framework

The B-Human control software is based on the software framework of the Ger-
manTeam [4]. It is possibly the architecture [5] used most often for controlling
real robots in RoboCup. Currently, more than one third of all teams in the Four-
Legged League base their own code on this framework and its tools. In addition,
the behavior description language XABSL [6] that is part of the framework has
already been used in different leagues such as the Middle-Size League (by the
team COPS Stuttgart) and the Small-Size League (by B-Smart).

The B-Human software runs under Microsoft Windows Mobile 2003 SE.
Thereby this platform is the fifth one supported by the framework besides the
Sony AIBO, Sony’s Open-R Emulator running under Cygwin, Microsoft Win-
dows (under the Simulator SimRobot, cf. Sect. 4), and Linux (on the autonomous
wheelchair Rolland [7] using an embedded PC-104 system). In 2006, the software
used several threads for concurrent execution. However, since Windows Mobile
limits each process to access only 32 MB of RAM, this year, parallel processes
are employed to give access to the full memory size of the PDA.
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Fig. 2. Tasks and representations used for playing robot soccer.

In addition to controlling the robots using on-board PDAs, the framework
running under the desktop version of Windows can also directly control the
robots using a serial cable and is able to record and replay log files.

3.1 Development Support

One of the basic ideas of the architecture is that multiple solutions exist for a sin-
gle task, and that developers can switch between them at runtime. In addition, it
is possible to include additional switches (debug requests) into the code that can
also be triggered at runtime. These switches work similar to C++ preprocessor
directives for conditional compilation, but they can be toggled at runtime. A
special infrastructure called message queues is employed to transmit requests to
all processes on a robot to change this information at runtime, i.e. to activate
and to deactivate debug requests and to switch between different solutions. The
message queues are also used to transmit other kinds of data between the robots
and the graphical front-end on the PC (cf. Sect. 4). For example, motion requests
can directly be sent to the robot, images, text messages, and even drawings (2-D
and 3-D) can be sent to the PC. This allows for visualizing the state of a certain
module, textually and even graphically. These techniques work both on the real
robots and on the simulated ones (cf. Sect. 4).

3.2 Tasks

Figure 2 depicts the tasks and representations enabling the B-Human robots to
play soccer. They can be structured into four levels:



Perception. On this level, the current states of the joints are analyzed to deter-
mine the position of the camera. The camera image is searched for objects that
are known to exist on the field, i.e. landmarks (goals and flags), field lines, and
the ball. The sensor readings that were associated to objects are called percepts.
In addition, further sensors can be employed to determine whether the robot has
been picked up, or whether it fell down.

Object Modeling. Percepts immediately result from the current sensor readings.
However, most objects are not continuously visible, and noise in the sensor read-
ings may even result in a misrecognition of an object. Therefore, the positions
of the dynamic objects on the field have to be modeled, i.e. the location of the
robot itself, and the position of the ball (opponent players are currently ignored).
The result of this level is the estimated world state.

Behavior Control. Based on the world state, the role of the robot, and the
current score, the third level generates the behavior of the robot. This can either
be performed very reactively, or deliberative components may be involved. The
behavior level sends requests to the fourth level to perform the selected motions.

Motion Control. The final level performs the motions requested by the behavior
level, i.e. walking, standing up, or performing so-called special actions (kicks,
cheering moves, demo motions). The motion module also performs dead reckon-
ing and provides this information to other modules.

3.3 Processes

Dividing the whole problem of playing soccer in smaller tasks and grouping them
together to the levels shown in Fig. 2 does not define which of the modules solv-
ing these tasks are running sequentially and which are running in parallel. A
well-established approach (cf. Fig. 3) is to have one process running at video
frame rate (Cognition) executing all modules of the first three levels, and an-
other one running at the frequency required for sending the motion commands
(Motion) executing the modules of the fourth level. A third process distributes
and collects debugging information and communicates them with an off-board
PC. This process is only used during software development and is inactive during
actual RoboCup games.

Processes communicate through a fixed communication mechanism with each
other (senders/receivers) that does not involve any queuing, because the pro-
cesses should always work on the most actual data packages, skipping older ones.

4 Robot Simulation

When working with robots, the usage of a simulation is often of significant im-
portance. On the one hand, it enables the evaluation of different alternatives
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Fig. 4. The user interface of SimRobot while simulating a robot on a KidSize field.
The internal frames show (from left to right, top to bottom): the robot’s world state
estimate, a tree of all simulated objects, a simulated image of the camera on a pan-tilt
unit, a view of the whole scenario, a plot of the robot’s gait trajectories, and the console
which is used to enter interactive commands.

during the design phase of robot systems and may therefore lead to better de-
cisions and cost savings. On the other hand, it supports the process of software
development by providing an replacement for robots that are currently not on-



Fig. 5. Grid-based approach for robot vision. a) Construction of a horizon-aligned grid
(image taken from [9]). b) An image from the robot’s perspective. Recognized features
on the field are labeled by different dots (edges of significant field lines), a circle (the
ball), and lines (the goal and its free part).

hand (e. g. broken or used by another person) or not able to endure long running
experiments (e. g. learning tasks). Furthermore, the execution of robot programs
inside a simulator offers the possibility of directly debugging and testing them.

We use SimRobot [8], a robot simulator which is able to simulate arbitrary
user-defined robots in three-dimensional space. It includes a physical model
which is based on rigid body dynamics. Thus it is possible to create an accurate
simulation of a humanoid robot which is playing soccer (Fig. 4).

SimRobot is able to simulate an arbitrary number of robots. The complete
source code that was developed for a robot is compiled and linked into this
application. Additionally, SimRobot provides several different visualizations for
data generated by the different modules and allows direct actuator manipulation
as well as the interaction with movable objects in the scene (i.e. the ball and
robots) to create different situations to be tested.

5 Vision

Our Bioloid robots use a directed vision system, which consist of a color camera
which is mounted on a pan-tilt unit. For this application, the approach of [10],
which uses a horizon-aligned grid (see Fig. 5a) for analyzing only parts of an
image, has been well proven. The parameters of the horizon results from the
position and orientation of the camera, which may be computed from the current
states of the robot’s joints on both platforms.

Each grid line is scanned pixel by pixel. During the scan, each pixel is classi-
fied by color. A characteristic series of colors or a pattern of colors is an indication
of an object of interest which has to been analyzed in more detail. Recognition
algorithms for the most important features (e. g. lines, landmarks, and the ball)
are already part of the GermanTeam’s vision system (cf. Fig. 5b) [9] and may
be used—in most cases—without any modifications, despite the adaption to a
different image size and the byte order of pixels, of course.



Fig. 6. Visualization of the internal state of the self localization. The large arrows
denote the potential poses of the robot. The small arrows near the goal denote perceived
goal points. The mismatch between these points and the goal indicates the current
localization error.

The Ball. Since the KidSize class and the Four-Legged League use the same
balls, the ball recognition approach did not need to be changed at all. Currently,
a Levenberg-Marquardt fitting of a circle, given a set of points lying on the edges
of the ball, is applied [11].

Landmarks. The most significant types of landmarks are the the two goals and
the four beacons. While the goals do not differ in color and shape from the ones
in the Four-Legged League, the approach described in [4] works fine, especially
due to the extraordinary size of the goals. However, the recognition of beacons
demands some additional work. While the ambiguousness of the color sequences
does not cause any significant problems (cf. Sect. 6), the lack of pink (which is
always included in the AIBO beacons) and the possibility to take the lower part
of a humanoid beacon for a goal, are problematic issues. These can be solved by
using the standard goal recognition algorithm for detecting these lower parts,
too, and distinguishing between goals and beacon parts by the height of their
upper border.

Field Lines. To improve the position estimate or to bridge phases without any
perceptions of major landmarks (e.g. while tracking a close ball), perceptions
of field lines are quite valuable and easy to compute [12,13]. In the Humanoid
League, it is even easier to detect lines than in the Four-Legged League, since
the lines are twice as wide and are seen from a higher perspective.

6 World Modeling and Behavior Control

For self-localization, B-Human will use a particle filter based on the Monte Carlo
method [14]. This approach has already been proven to provide accurate results
in a similar environment [13,15]. Additionally, it is able to deal with the kid-
napped robot problem, which often occurs in RoboCup scenarios.
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Fig. 7. a) A hierarchy of simple behaviors for playing a ball. b / ¢) Simple decision
trees for determining state transitions inside a behavior.

The estimation of the ball’s position and velocity as well as the relative
positions of static objects (i.e. the opponent goal and the last seen beacon) is
also realized via particle filters.

The robot’s behavior is currently programmed using the XABSL engine [6]
in combination with YABSL [9], a C-like behavior specification language. The
overall robot behavior is split up into a set of simple behaviors which are inter-
dependently arranged as nodes in an acyclic, directed graph. Single nodes of the
graph are modeled by using state machines whose transitions are controlled by
decision trees.

Continuous robot motion planning is realized via the integration of the po-
tential field implementation of [18].

7 Robot Motion

Motion is the part of robot control in which humanoid robots differ the most
from their four-legged counterparts. Standing and walking on four feet is much
more stable than walking on two, i. e. while quadruped motion on a plane surface
can be performed without any feedback at all, bipedal motion typically requires
to keep the balance. However, since the feet of the robots in the humanoid
league are still allowed to be quite large, at least parts of the motions can be
performed without sensory feedback. In case of the B-Human, motions such as
kicking and standing up (cf. Fig. 8) are represented by so called special actions.
They consist of a sequence of sets of joint angles that are executed in a specified
interval, performing the desired action. Each set gets executed for a number of
milliseconds as defined by the special action. During this time the joint angles
are either interpolated to allow fluid movements or they are simply set, ignoring



Fig. 8. A robot standing up.

the previous values of the servos. A transition network defines the prerequisites
for each motion, e.g. that the robot has to stand before it performs a certain
kick.

While special actions are static in nature, walking is not. In the soccer sce-
nario, it is desirable to be able to move in any combination of forward, sideward,
and rotational motion, i.e. omni-directional. The maximum speeds that can be
reached are limited by the lengths of the robot’s legs (more precisely: the dis-
tance between hip and ankle) and the step frequency. In general, the gait of the
B-Human is similar to the one used by the GermanTeam for the AIBO. As the
AIBO, the Bioloid has two joints for each leg in the hip (roll, pitch), and one
in the knee. In contrast to the AIBO, two further joints per leg allow control-
ling pitch and roll of the feet, i.e. they function as the ankles, and each leg has
an additional joint in the hip that allows for rotating the whole leg around the
vertical axis, enabling the robot to turn.
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Fig. 9. The dashed line shows the current step of the motion cycle. The right leg uses
an offset so that one foot is on the ground at all time. The arrows display the moving
direction of the foot during the individual phases.

Walking means that the feet move along certain trajectories relative to the
center of the body. In the walking engine used by the B-Human, these trajecto-
ries are calculated in Cartesian space, and then they are transformed into joint
angles by inverse kinematics. The approach for controlling the upper three joints
per leg is very similar to the one used by the GermanTeam for the AIBO, and
is described in detail for the AIBO in [19]. The feet, controlled by the remaining
two joints in each leg, typically stay parallel to the ground, i.e. the angles of
the two ankle joints just compensate for the pitches and rolls resulting from the
states of the other three joints of each leg. The trajectories can have different
shapes that are controlled by a vast number of parameters, such as foot origin in
(x,y, 2), step height, step shape (e. g. rectangle, ellipse, half-ellipse, etc.), maxi-
mum forward/sideward step size, etc. Depending on the shape of the trajectory
of a step, the walk cycle runs through different phases, e.g. for a rectangular
shape: ground phase, lifting phase, swinging phase, and lowering phase (cf. Fig.
9). The phases of the two legs are shifted by half a phase. In addition to moving
the legs, the robot also has to shift its weight to avoid falling down when one
leg is lifted. Effectively this is done by continuously moving the feet’s origins
from left to right and back according to the walking phase. In addition, it is also
possible to tilt the body, swing the arms, and tilt and roll the feet (in addition
to their keeping parallel to the ground) based on the current walking phase.
However, the best results were achieved when these additional motions were not
used.

Although gaits using this approach can be quite stable, sensor-based balanc-
ing increases that stability a lot. Using the measurements of the three accel-
eration sensors (accy,accy,acc,) of the robot, the body tilt and amplitude of
the body’s sideward swinging is controlled. The body tilt is simply derived from
the measured body pitch (atan2(acc,, ace,)), while the sideward swinging am-
plitude is determined from the averaged difference between the measurements of
the sideward acceleration acc, and the second derivative of the originally desired
sideward motion that is defined as a parameter of the gait.

For the control of the pan-tilt unit, the XABSL engine has been used, too.
It allows an easy specification of different state-based tracking and searching



behaviors for the robot’s head. In general, the implementation does not differ
from the one for the AIBO ERS-7. In detail, this model has an additional second
tilt joint. That joint only used for some special motions (e.g. catching the ball)
which are of no use for a humanoid robot.

8 Conclusion and Future Plans

The upcoming German Open 2007 will be an important event to test our new
hardware platform under real tournament conditions. There are several further
improvements that shall be finished until the beginning of this event, e. g. a new
fully customized torso segment to hold and protect the PDAs and batteries. The
gait parameters will be optimized using Particle Swarm Optimization (PSO)
[21], based on our experiences made with the Kondo KHR-1.
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