
SimRobot – Development and Applications?

Tim Laue and Thomas Röfer

Deutsches Forschungszentrum für Künstliche Intelligenz GmbH,
Sichere Kognitive Systeme, Enrique-Schmidt-Str. 5, 28359 Bremen, Germany

E-Mail: tim.laue@dfki.de, thomas.roefer@dfki.de

Abstract. This paper describes SimRobot, a robot simulator which is
able to simulate arbitrary user-defined robots in three-dimensional space.
It includes a physical model which is based on rigid body dynamics. To
allow an extensive flexibility in building accurate models, a variety of
different generic bodies, sensors, and actuators has been implemented.
Furthermore, the simulator follows a user-oriented approach by includ-
ing several mechanisms for visualization, direct actuator manipulation,
and interaction with the simulated world. To allow a more detailed sim-
ulation, algorithms for simulating image disturbances as well as for ac-
tuator parameter optimization have been added. During the past years,
SimRobot has been used to simulate several different robots, of which
some are presented in this paper.

1 Introduction

The SimRobot project has already been started in the 1990s [1] as a general,
kinematic, single-user, single-workstation robot simulation (which it still is).
The main application was the simulation of autonomous wheelchairs [2]. Over
the years, SimRobot’s functionality and performance have been extended, e. g.,
by integrating standard components for graphics (OpenGL) and rigid body dy-
namics (ODE) [3]. Up to now, a variety of legged and wheeled robots – especially
in the RoboCup domain – has been successfully simulated by SimRobot. Being
one simulator among many others within the universe of RoboCup simulators,
SimRobot of course has many similarities to other applications as well as some
features not yet implemented by others. These differences will be pointed out
within the following sections.

This paper is organized as follows: Section 2 describes the overall approach
and particular concepts of SimRobot. Recent developments increasing the simu-
lation’s quality are presented in Sect. 3. In Sect. 4, some applications of SimRobot
are shown. The paper concludes with a short description of ongoing and future
works in Sect. 5.

? This work has been partly funded by the Deutsche Forschungsgemeinschaft (DFG) in
context of the priority program RoboCup (SPP 1125) and the EU project SHARE-it
(FP6-045088).



Fig. 1. SimRobot simulating the humanoid robots of team B-Human playing soccer in
one of our labs, displaying the camera image and the world model of one of the robots.

2 Concept of SimRobot

As shown in Figure 2, SimRobot consists of several modules that are linked
to a single application. This approach, which is different from many other
client/server-based simulation concepts, has been chosen as it offers the pos-
sibility of halting or stepwise executing the whole simulation without any con-
currencies. It also allows a more comprehensive debugging of the robot software
executed. The main components of SimRobot are the SimRobot core, the simu-
lation scene, the user interface, and the controller.

The SimRobot core is the most important part of the application. It mod-
els the robots and the environment, simulates sensor readings, and executes
commands given by the controller or the user. Even most parts of the visu-
alization are integrated into the core. The specification of the robots and the
environment, i. e. the simulation scene, is modeled via an external XML file and
loaded at runtime. Together with researchers from the Fraunhofer Institute for
Autonomous Intelligent Systems, the specification language RoSiML (Robot Sim-
ulation Markup Language) [4] has been developed. It is a part of a joint effort
to establish common interfaces for robot simulations. The aim is to exchange
components between different simulators and to allow the migration of robot



SimRobot Executable Scene

SimRobotCore GUI Controller

Loaded

Linked

Simulation

C++ Components

XML Description

Fig. 2. The modules of SimRobot and their dependencies.

models among simulators without any complicated adaptations. The language
by itself has been specified in XML Schema.

The user interface (cf. Fig. 1) of SimRobot has been designed to allow as
much visualization and interaction as possible as well as to be flexible enough
to handle simulations of different kinds of environments. Therefore a tree of
all objects of the scene is the starting point for all user operations. Each node
of that tree may be selected to open a view for that kind of object. In case
of actuators (e. g. a hinge joint), a control for direct manipulation is opened.
For sensors, several different visualization modes are implemented. Through this
concept, it is also possible to open several views of arbitrary subsets of the scene
graph. Furthermore, it is possible to interactively drag and drop and rotate
objects inside the scene or to apply a momentum to an object (e. g. to let a
ball roll). This is quite useful to arrange different settings while testing, e. g., a
robot behavior. To add own views to a scene (e. g. the world model in Fig. 1), an
interface for user-defined views has been implemented that allows the definition
of drawings from inside the controller. Other elements of the user interface are
a text editor for the scene description files and a console for text output from
the controller.

The controller implements the sense-think-act cycle. In each simulation step,
it is called by the simulation, reads the available sensors, plans the next action,
and sets the actuators to the desired states. A controller which is suitable for
the current scene loaded has to be provided by the user, i. e. it contains the
control software of the simulated robots which usually is as much as possible
identical to the software running on the real robots. Although the simulator
itself is single-threaded, the programmer is free to implement a controller which
allows a parallelization of the simulated software.

3 Recent Developments for a More Realistic Simulation

One characteristic trait of all simulations is that they can only approximate the
real world, this inherent deficit is called Reality Gap. This affects all aspects
of simulations: the level of detail as well as the characteristics of sensors and



Fig. 3. Comparison of a real image (on the left) and an equivalent simulated image.
The dots and lines represent percepts of the robot’s vision system.

actuators. For many applications, the gap is of minor relevance as long as the
simulated robot system performs in a reasonable way.

3.1 Camera Disturbances

Nevertheless, the characteristics of some sensors matter to an extent that leads
to a significant mismatch between simulation and reality. Such a mismatch is
relevant in two cases: the first and näıve case is that the robot control software
is initially developed only in a simulator, and it does not handle sensor distortions
that are not present in the simulation, but surely will be in reality. In the other
case, software tuned for real sensor readings may perform worse or even fail if
confronted with unrealistically simple sensor readings coming from a simulator.
Hence, it is important that a simulation generates all the sensor distortions that
are actively handled by the robot control software developed.

Figure 3 shows an example of a typical distortion, the image is taken by a
CMOS camera that is part of the head of a humanoid robot. While the blurry
impression is caused by motion blur, the distortion that bends and squeezes the
yellow goal is produced by the so-called rolling shutter. Instead of taking com-
plete images at a certain point in time, a rolling shutter takes an image pixel
by pixel, row by row. Thus the last pixel of an image is taken significantly later
than the first one. If the camera is moved, this results in image distortions. Com-
pensating this effect becomes significantly important when working with robots
which move their cameras fast or operate in a rapidly changing environment. In
the RoboCup domain, this particularly affects robots with pan-tilt heads, e. g.
in the Four-legged and the Humanoid league. To overcome problems which arise
from these disturbances, different compensation methods have been developed,
e. g. by Nicklin et al. [5] or by Röfer [6]. A necessity of simulating these distur-
bances can be derived from this explicit handling by the software of different
teams.

Within the RoboCup community, a variety of robot simulators is currently
used. Among the most advanced and established ones are, for example, Webots
[7], Microsoft Robotics Studio [8], and the USARSim [9]. In general, they are



Fig. 4. Left: an extract from the controlled (solid) and the measured joint angle
(dashed) of an AIBO’s front right knee joint while playing soccer. Right: an extract
from the real (dark) and the simulated joint movement (light) of the same joint after
learning the (preliminary) maximum joint forces.

able to simulate camera images at a high level of detail, e. g., by simulating lights
and shadows. But so far, none of them addresses the problem of image distur-
bances. In [10], an according Simrobot extension for simulating common image
disturbances, i. e. the rolling shutter effect and motion blur, has been presented.
By exploiting the features of modern graphics hardware, these disturbances can
be simulated in real-time.

3.2 Optimizing Joint and Friction Parameters

Within the RoboCup domain, actuator performance is a crucial aspect. Through
applying optimization algorithms, impressive results regarding robot velocities
have been achieved during the last years, e.g. by Röfer [11] and Hebbel et al. [12]
using the AIBO robot, or by Hemker et al. [13] using a humanoid robot. One
common attribute of these algorithms is the strong exploitation of the environ-
ment’s features, i.e. certain characteristics of the motors or the properties of the
ground in this case. This leads to control trajectories that strongly differ from
the resulting trajectories of the real robot joints, as shown on the left side of Fig-
ure 4. For robot simulations, especially when working with legged robots which
have a high number of degrees of freedom, this requires a proper parametriza-
tion, i.e. to simulate actuators that behave close to real ones. Otherwise, the
simulated robot might not only behave unrealistic but could fail completely.

All previously listed simulators [7–9] as well as the RoboCup Simulation
League’s fully dynamic robot simulation SimSpark, which additionally aims to-
wards a closer cooperation with real robots [14], allow a detailed specification
of the environment. But all of them demand the user to do this manually what
might become an exhausting task given the high number of environmental pa-
rameters. Additionally, a once working parameter set is not guaranteed to be
compatible with a different walking gait learned at a later point of time.

In [15], a general multi-staged process for which minimizes the reality gap
between real and simulated robots regarding the behavior of actuators and their
interaction with the environment has been presented. This optimization has



Fig. 5. Simulation of RoboCup Standard Platform League robots. Left: AIBO with all
rendering features enabled. Right: 3 vs. 3 game in the Nao competition.

been carried out by using an evolutionary algorithm. This approach is general
and transferable to different kinds of legged robots, its application is shown in
SimRobot using a model of an AIBO robot as example. One intermediate result
of the optimization process is depicted on the right side of Figure 4. The final
result of this optimization has been measured to be more precise than the model
delivered with the commercial Webots simulator.

4 Applications

The GermanTeam [16] in the RoboCup Four-Legged League (now called Stan-
dard Platform League) has used the different versions of SimRobot [2, 17, 3, 10]
since its foundation in 2001. The left half of Figure 5 shows the latest version,
in which the 20 DOF model of the AIBO provided by Sony was enriched by
physics, a camera, three infrared sensors, and touch sensors in the feet. As dis-
cussed in the previous section, a rather realistic simulation of the behavior of
the legs during walking was achieved. The team B-Human [18] in the RoboCup
Humanoid League uses a robot model based on the Bioloid kit. It has also been
modeled using SimRobot, again with 20 DOF (cf. Fig. 1) It is equipped with a
camera in the head, and three accelerometers and three gyros in the body. The
real world walking, kicking, and getting-up motions also work in the simulator.
The friction coefficients of the ball are tuned to give rather realistic simulation of
the kicking distances. The new robot used in the RoboCup Standard Platform
League, the Nao from Aldebaran Robotics, was converted from its Webots model
and integrated in SimRobot as part of the software framework used by the team
BreDoBrothers [19] (cf. Fig. 5 right). The simulated robot has 21 DOF, two gy-
ros, three accelerometers, and a camera in the head. However, SimRobot is not
limited to simulate legged robots. It is also able to simulate wheeled systems.
For instance, the robots of the team B-Smart in the RoboCup Small Size League
[20] have been simulated, including the omni-wheels with their passive rolls (cf.
Fig. 6 left). Also, the autonomous wheelchair Rolland has been simulated based
on a 3-D model of a Champ 1.594 provided by its manufacturer Meyra (cf. Fig. 6
right). For that model it was important that the passive castor wheels behave
realistically, because they cause many control problems on the real wheelchair.



Fig. 6. Simulation of wheeled robots. Left: B-Smart robot with omni-wheels in wire-
frame view. Right: autonomous wheelchair Rolland, equipped with two laser scanners.

5 Ongoing and Future Works

Although being enhanced and used for a while, there does not exist any offi-
cial software release of the current version of SimRobot. From its beginning,
the simulator has been free software; on the official web page [21], some out-
dated versions are still available. In parallel to the publication of this paper, the
most recent version of SimRobot becomes published as a part of the software
release of the RoboCup team B-Human [22]. Nevertheless, this version still lacks
a reasonable documentation which is intended to be provided in the future.

During the past years, SimRobot has been needed and developed further
for the Microsoft Windows platform only. The aforementioned software release
includes a new, partially incomplete, platform-independent version of SimRobot,
which is based on the Qt toolkit.

References

1. Siems, U., Herwig, C., Röfer, T.: SimRobot, ein System zur Simulation sen-
sorbestückter Agenten in einer dreidimensionalen Umwelt. Number 1/94 in ZKW
Bericht. Zentrum für Kognitionswissenschaften. Universität Bremen (1994)

2. Röfer, T.: Strategies for Using a Simulation in the Development of the Bremen
Autonomous Wheelchair. In Zobel, R., Moeller, D., eds.: Simulation-Past, Present
and Future, Society for Computer Simulation International (1998) 460–464

3. Laue, T., Spiess, K., Röfer, T.: SimRobot - A General Physical Robot Simulator
and Its Application in RoboCup. In Bredenfeld, A., Jacoff, A., Noda, I., Takahashi,
Y., eds.: RoboCup 2005: Robot Soccer World Cup IX. Number 4020 in Lecture
Notes in Artificial Intelligence, Springer (2006) 173–183

4. Ghazi-Zahedi, K., Laue, T., Röfer, T., Schöll, P., Spiess, K., Twickel,
A., Wischmann, S.: Rosiml - robot simulation markup language (2005)
http://www.tzi.de/spprobocup/RoSiML.html.

5. Nicklin, S.P., Fisher, R.D., Middleton, R.H.: Rolling shutter image compensation.
In Lakemeyer, G., Sklar, E., Sorrenti, D., Takahashi, T., eds.: RoboCup 2006:
Robot Soccer World Cup X. Lecture Notes in Artificial Intelligence, Springer (2007)

6. Röfer, T.: Region-based segmentation with ambiguous color classes and 2-D motion
compensation. In Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F., eds.: RoboCup
2007: Robot Soccer World Cup XI. Lecture Notes in Artificial Intelligence, Springer



7. Michel, O.: Cyberbotics Ltd. - WebotsTM: Professional Mobile Robot Simulation.
International Journal of Advanced Robotic Systems 1(1) (2004) 39–42

8. Jackson, J.: Microsoft robotics studio: A technical introduction. Robotics and
Automation Magazine 14(4) (2007) 82–87

9. Wang, J., Lewis, M., Gennari, J.: USAR: A game based simulation for teleop-
eration. In: Proceedings of the 47th Annual Meeting of the Human Factors and
Ergonomics Society. (2003)

10. Pachur, D., Laue, T., Röfer, T.: Real-time Simulation of Motion-based Cam-
era Disturbances. In Iocchi, L., Matsubara, H., Weitzenfeld, A., Zhou, C., eds.:
RoboCup 2008: Robot Soccer World Cup XII. Lecture Notes in Artificial Intelli-
gence, Springer

11. Röfer, T.: Evolutionary Gait-Optimization Using a Fitness Function Based on
Proprioception. In: RoboCup 2004: Robot Soccer World Cup VIII. Number 3276
in Lecture Notes in Artificial Intelligence, Springer (2005) 310–322

12. Hebbel, M., Nistico, W., Fisseler, D.: Learning in a high dimensional space: Fast
omnidirectional quadrupedal locomotion. In: RoboCup 2006: Robot Soccer World
Cup X. Lecture Notes in Artificial Intelligence, Springer (2006)

13. Hemker, T., Sakamoto, H., Stelzer, M., von Stryk, O.: Hardware-in-the-loop opti-
mization of the walking speed of a humanoid robot. In: CLAWAR 2006: 9th Inter-
national Conference on Climbing and Walking Robots, Brussels, Belgium (Septem-
ber 11-14 2006) 614–623

14. Mayer, N.M., Boedecker, J., da Silva Guerra, R., Obst, O., Asada, M.: 3D2Real:
Simulation League Finals in Real Robots. In: RoboCup 2006: Robot Soccer World
Cup X. Lecture Notes in Artificial Intelligence, Springer-Verlag (2007)

15. Laue, T., Hebbel, M.: Automatic Parameter Optimization for a Dynamic Robot
Simulation. In Iocchi, L., Matsubara, H., Weitzenfeld, A., Zhou, C., eds.: RoboCup
2008: Robot Soccer World Cup XII. Lecture Notes in Artificial Intelligence,
Springer

16. Becker, D., Brose, J., Göhring, D., Jüngel, M., Risler, M., Röfer, T.: German-
Team 2008 - The German National RoboCup Team. In Iocchi, L., Matsubara,
H., Weitzenfeld, A., Zhou, C., eds.: RoboCup 2008: Robot Soccer World Cup XII
Preproceedings, RoboCup Federation (2008)

17. Röfer, T., Brunn, R., Dahm, I., Hebbel, M., Hoffmann, J., Jüngel, M., Laue, T.,
Lötzsch, M., Nistico, W., Spranger, M.: Germanteam 2004. In: RoboCup 2004:
Robot World Cup VIII Preproceedings, RoboCup Federation (2004)

18. Röfer, T., Laue, T., Burchardt, A., Damrose, E., Müller, M.F.J., Rieskamp, A.:
B-Human - Team Description for RoboCup 2008. In Iocchi, L., Matsubara, H.,
Weitzenfeld, A., Zhou, C., eds.: RoboCup 2008: Robot Soccer World Cup XII
Preproceedings, RoboCup Federation (2008)

19. Czarnetzki, S., Hebbel, M., Kerner, S., Laue, T., Nistico, W., Röfer, T.: BreDo-
Brothers - Team Description for RoboCup 2008. In Iocchi, L., Matsubara, H.,
Weitzenfeld, A., Zhou, C., eds.: RoboCup 2008: Robot Soccer World Cup XII Pre-
proceedings, RoboCup Federation (2008)

20. Kurlbaum, J., Laue, T., Penquitt, F., Weirich, M.: Bremen Small Multi Agent
Robot Team (B-Smart) - Team Description for RoboCup 2005. In Bredenfeld, A.,
Jacoff, A., Noda, I., Takahashi, Y., eds.: RoboCup 2005: Robot Soccer World Cup
IX Preproceedings, RoboCup Federation (2005)

21. Röfer, T.: SimRobot Website (2005) http://www.informatik.uni-
bremen.de/simrobot/.

22. B-Human: Team Website (2008) http://www.b-human.de.


