
SSL-Vision: The Shared Vision System for the
RoboCup Small Size League

Stefan Zickler1, Tim Laue2, Oliver Birbach2, Mahisorn Wongphati3, and
Manuela Veloso1

1 Carnegie Mellon University, Computer Science Department,
5000 Forbes Ave., Pittsburgh, PA, 15213, USA

E-Mail: {szickler, veloso}@cs.cmu.edu
2 Deutsches Forschungszentrum für Künstliche Intelligenz GmbH,

Safe and Secure Cognitive Systems, Enrique-Schmidt-Str. 5, 28359 Bremen, Germany
E-Mail: {Tim.Laue, Oliver.Birbach}@dfki.de

3 Chulalongkorn University,
254 Phyathai Road, Patumwan, Bangkok, 10330, Thailand

E-Mail: mahisorn.w@gmail.com

Abstract. The current RoboCup Small Size League rules allow every
team to set up their own global vision system as a primary sensor. This
option, which is used by all participating teams, bears several organiza-
tional limitations and thus impairs the league’s progress. Additionally,
most teams have converged on very similar solutions, and have produced
only few significant research results to this global vision problem over
the last years. Hence the responsible committees decided to migrate to a
shared vision system (including also sharing the vision hardware) for all
teams by 2010. This system – named SSL-Vision – is currently developed
by volunteers from participating teams. In this paper, we describe the
current state of SSL-Vision, i. e. its software architecture as well as the
approaches used for image processing and camera calibration, together
with the intended process for its introduction and its use beyond the
scope of the Small Size League.

1 Introduction

Given the current rules of the RoboCup Small Size League (SSL) [1], every team
is allowed to mount cameras above or next to the field. There has also been
an option of using local instead of global vision, but this turned out to be not
competitive. For adequately covering the current field, most teams prefer to use
two cameras, one above each half. This configuration bears one major problem
(implicating a set of sub-problems): The need for long setup times before as well
as during the competition. Having five teams playing on a field, ten cameras
need to be mounted and calibrated. During these preparations, a field cannot
be used for any matches or other preparations. Due to this situation, teams are
always bound to their field (during one phase of the tournament) and unable to
play any testing matches against teams from other fields. Hence the Small Size

League needs as many fields as it has round robin groups. Flexible schedules as
in the Humanoid or the Standard Platform League – which have more teams
but need less fields – are currently impossible.

In the future, these problems might become even worse since the current
camera equipment already reached its limits. Having a larger field – which is a
probable change for 2010, given the common field with the Humanoid and the
Standard Platform League –, every team will be forced to set up four cameras
above the field. This would significantly increase preparation times during a
competition and decrease time and flexibility for scheduling matches.

To overcome this situation, the SSL committees decided to migrate to a
shared vision system, i. e. to a single set of cameras per field which are con-
nected to an image processing server which broadcasts the vision output to the
participating teams. The software for this server needs to be flexible, i. e. scalable
for future changes and open to new approaches, as well as competitive, i. e. per-
formant and precise, to not constrain the current performance of the top teams.
This system, named SSL-Vision, is now developed by a group of volunteers from
the SSL. This paper describes the current state and the future of this project.

The paper is organized as follows: Section 2 describes the overall architecture
of the system. The current approaches for image processing and camera calibra-
tion are presented in Section 3. The paper concludes with a description of the
system’s introduction and the resulting implications in Section 4.

2 Framework

SSL-Vision is intended to be used by all Small Size League teams, with a variety
of camera configurations and processing hardware. As such, configurability and
robustness are key design goals for its framework architecture. Additionally, the
project’s collaborative openness and its emphasis on research all need to be
reflected in its framework architecture through an extendable, manageable, and
scalable design.

One major design goal for the framework is to support concurrent image
processing of multiple cameras in a single seamless application. Furthermore,
the application should integrate all necessary vision functionality, such as con-
figuration, visualization, and actual processing. To achieve better scalability
on modern multi-core and hyper-threaded architectures, the application uses
a multi-threaded approach. The application’s main thread is responsible for the
Graphical User Interface (GUI), including all visualizations, and configuration
dialogs. Additionally, each individual camera’s vision processing is implemented
in a separate thread, thus allowing truly parallel multi-camera capture and pro-
cessing. The application is implemented in C++ and makes heavy use of the Qt
toolkit [2], to allow for efficient, platform-independent development.

Fig. 1 shows an overview of the framework architecture. The entire system’s
desired processing flow is encoded in a multi-camera stack which fully defines how
many cameras are used for capturing, and what particular processing should be
performed. The system has been designed so that developers can create different

Fig. 1. The extendible, multi-threaded processing architecture of SSL-Vision.

stacks for different robotics application scenarios. By default, the system will
load a particular multi-camera stack, labeled the “RoboCup Small Size Dual
Camera Stack” which we will elaborate on in the following section. However, the
key point is that the SSL-Vision framework provides support for choosing any
arbitrarily complex, user-defined stack at start-up, and as such becomes very
extendible and even attractive for applications that go beyond robot soccer.

Internally, a multi-camera stack consists of several threads, each representing
the processing flow of a corresponding capture device. Each thread’s capturing
and processing flow is modeled as a single-camera stack, consisting of multiple
plugins which are executed in order. The first plugin in any single-camera stack
implements the image capturing task. All capture plugins implement the same
C++ capture interface, thus allowing true interchangeability and extendibility
of capture methods. The framework furthermore supports unique, independent
configuration of each single-camera stack, therefore enabling capture in hetero-
geneous multi-camera setups. Currently, the system features a capture plugin
supporting IEEE 1394 / DCAM cameras, including higher bandwidth Firewire
800 / 1394B ones. Configuration and visualization of all standard DCAM pa-
rameters (such as white balance, exposure, or shutter speed) is provided through
the GUI at run-time, thus eliminating the need for third-party DCAM parame-
ter configuration tools. The system furthermore features another capture plugin
supporting capturing from still image and video files, allowing development on
machines which do not have actual capture hardware. Additional capture plugins
for Gigabit Ethernet (GigE) Vision as well as Video4Linux are under construc-
tion as well.

2.1 The Capture Loop

A capture plugin produces an output image at some resolution, in some color-
space. For further processing, this image data is stored in a ring-buffer which
is internally organized as a cyclical linked-list where each item represents a bin,
as is depicted in Fig. 1. On each capture iteration, the single-camera stack is
assigned a bin where it will store the captured image and any additional data
resulting from processing this image. As the stack is being executed, each of its
plugins is sequentially called, and each of them is able to have full read and write
access to the data available in the current bin. Each bin contains a data map,
which is a hash-map that is able to store arbitrary data under a meaningful
label. This data map allows a plugin to “publish” its processing results, thus
making them available to be read by any of the succeeding plugins in the stack.

The purpose of the ring-buffer is to allow the application’s visualization
thread to access the finished processing results while the capture thread is al-
lowed to already move on to the next bin, in order to work on the latest video
frame. This architecture has the great advantage of not artificially delaying
any image processing for the purpose of visualization. Furthermore, this ring-
buffered, multi-threaded approach makes it possible to prioritize the execution
schedule of the capture threads over the GUI thread, thus minimizing the impact
of visualization on processing latency. Of course it is also possible to completely
disable all visualizations in the GUI for maximum processing performance.

In some processing scenarios it is necessary to synchronize the processing
results of multiple camera threads after all the single-stack plugins have finished
executing. This is done through optional multi-camera plugins. A typical example
would be a plugin which performs the data fusion of all the threads’ object
detection results and then sends the fused data out to a network.

2.2 Parameter Configuration

Configurability and ease of use are both important goals of the SSL-Vision frame-
work. To achieve this, all configuration parameters of the system are represented
in a unified way through a variable management system called VarTypes [3]. The
VarTypes system allows the organization of parameters of arbitrarily complex
types while providing thread-safe read/write access, hierarchical organization,
real-time introspection/editing, and XML-based data storage.

Fig. 1 shows the hierarchical nature of the system’s configuration. Each
plugin in the SSL-Vision framework is able to carry its own set of configura-
tion parameters. Each single-camera stack unifies these local configurations and
may additionally contain some stack-wide configuration parameters. Finally, the
multi-camera stack unifies all single-camera stack configurations and further-
more contains all global configuration settings. This entire configuration tree
can then be seamlessly stored as XML. More importantly, it is displayed as a
data-tree during runtime and allows real-time editing of the data. Fig. 2 shows
a snapshot of the data-tree’s visualization.

Fig. 2. Screenshot of SSL-Vision, showing the parameter configuration tree (left), live-
visualizations of the two cameras (center), and views of their respective color thresh-
olding YUV LUTs (right).

3 RoboCup SSL Image Processing Stack

The system’s default multi-camera stack implements a processing flow for solving
the vision task encountered in the RoboCup Small Size League. In the Small Size
League, teams typically choose a dual-camera overhead vision setup. The robots
on the playing field are uniquely identifiable and locatable based on colored
markers. Each robot carries a team-identifying marker in the center as well as a
unique arrangement of additional colored markers in order to provide the robot’s
unique ID and orientation. In the past, each team was able to determine their
own arrangement and selection of these additional markers. However, with the
introduction of the SSL-Vision system, it is planned to unify the marker layout
among all teams for simplification purposes.

The processing stack for this Small Size League domain follows a typical
multi-stage approach as it has been proven successful by several teams in the
past. The particular single-camera stack consists of the following plugins which
we explain in detail in the forthcoming sections: image capture, color thresh-
olding, runlength encoding, region extraction and sorting, conversion from pixel
coordinates to real-world coordinates, pattern detection and filtering, and deliv-
ery of detection results via network.

3.1 CMVision-Based Color Segmentation

The color segmentation plugins of this stack, namely color thresholding,
runlength-encoding, region extraction and region sorting, have all been im-
plemented by porting the core algorithms of the existing CMVision library to

the new SSL-Vision plugin architecture [4]. To perform the color thresholding,
CMVision assumes the existence of a lookup table (LUT) which maps from the
input image’s 3D color space (by default YUV), to a unique color label which is
able to represent any of the marker colors, the ball color, as well as any other de-
sired colors. The color thresholding algorithm then sequentially iterates through
all the pixels of the image and uses this LUT to convert each pixel from its
original color space to its corresponding color label. To ease the calibration of
this LUT, the SSL-Vision system features a fully integrated GUI which is able to
not only visualize the 3D LUT through various views, but which also allows to
directly pick calibration measurements and histograms from the incoming video
stream. Fig. 2 shows two example renderings of this LUT. After thresholding
the image, the next plugin performs a line-by-line runlength encoding on the
thresholded image which is used to speed up the region extraction process. The
region extraction plugin then uses CMVision’s tree-based union find algorithm to
traverse the runlength-encoded version of the image and efficiently merge neigh-
boring runs of similar colors. The plugin then computes the bounding boxes and
centroids of all merged regions and finally sorts them by color and size.

3.2 Camera Calibration

In order to deduce information about the objects on the field from the measure-
ments of the cameras, a calibration defining the relationship between the field
geometry and the image plane is needed. Depending on the applied calibration
technique, current teams use a variety of different calibration patterns, leading
to an additional logistic effort while attending tournaments. Furthermore, many
such calibration procedures require the patterns to cover the field partially or as
a whole, making the field unusable for other teams during the setup.

For the calibration procedure of SSL-Vision, no additional accessories are
required. Instead, the procedure uses solely the image of the field and the di-
mensions defined in the league’s rules. Because SSL-Vision uses two independent
vision stacks, we calibrate both cameras independently using the corresponding
half field. To model the projection into the image plane, a pin-hole camera model
including radial distortion is used. The corresponding measurement function h
projects a three-dimensional point M from the field into a two-dimensional point
m in the image plane. The model parameters for this function are, intuitively, the
orientation q and the position t, transforming points from coordinate system of
the field into the coordinate system of the camera, and the intrinsic parameters
f , (u0, v0) and κ indicating the focal-length, image center and radial distortion,
respectively.

In a typical Small Size League camera setup, estimating such a set of cali-
bration parameters by using only the field dimensions is actually ill-posed, due
to the parallelism of the image plane and the field plane (which is the reason
for the frequent use of calibration patterns). The estimator cannot distinguish
whether the depth is caused by the camera’s distance from the field (encoded
in tz) or the focal length (encoded in f). To circumvent this problem, a man-

a) b)

Fig. 3. Camera calibration: a) Result of calibration. The points selected by the user
are depicted by labeled boxes, the field lines and their parallels are projected from the
field to the image plane. b) Detected edges for the second calibration step.

ual measurement of the camera’s distance from the field is performed and the
parameter is excluded from the estimation algorithm.

The actual calibration procedure consists of two steps:

1. The user selects the four corner points of the half-field in the camera image.
Based on the fact that the setup is constrained by the rules, rough but
adequate initial parameters can be determined in advance. Based on these
initial parameters, a least squares optimization is performed to determine a
set of parameters corresponding to the marked field points [5] (cf. Fig. 3a).
Thus, we want to minimize the squared difference of the image points mi

that were marked by the user in the image plane and corresponding field
point Mi, projected into the image plane using the measurement function
mentioned above:

4∑
i=1

|mi − h(Mi, q, t, f, uo, vo, κ)|2 (1)

Since this is a nonlinear least squares problem, the Levenberg-Marquardt
algorithm [6] is used to find the optimal set of parameters.

2. After this first estimate, the parameters are refined by integrating segments
of field lines into the estimation. Since the field lines contrast with the rest
of the field, an edge-detector is applied to find the lines using their predicted
position computed from the estimate and the field dimensions as a search
window (cf. Fig. 3b). A reasonable number of edges on the lines is then used
to extend the least squares estimation. For this, we introduce a new to be
estimated parameter α for each measurement and minimize the deviation of
the measured point on the field line and the projection of the point (α p1 +
(1− α) p2 between the two points p1, p2 constraining the line segment. The
term to be minimized now reads

4∑
i=1

|mi − h(Mi, p)|2 +
n∑

i=1

|mi − h(αi Li,1 + (1− αi) Li,2, p)|2 (2)

where Li,1 and Li,2 constrain the line segment and αi describes the actual
position of measurement i on this line. Please note, that multiple measure-
ments may lie on the same line. For better readability, the camera parameters
were combined into p.

After this calibration procedure, the inverted measurement function h−1 can
be used to transform pixel coordinates to real-world coordinates.

3.3 Pattern Detection

After all regions have been extracted from the input image and all their real-
world coordinates have been computed, the processing flow continues with the
execution of the pattern recognition plugin. The purpose of this plugin is to
extract the identities, locations, and orientations of all the robots, as well as the
location of the ball. The internal pattern detection algorithm was adopted from
the CMDragons vision system and is described in detail in a previous paper [7].

Although this pattern detection algorithm can be configured to detect pat-
terns with arbitrary arrangements of 2D colored markers, the Small Size com-
mittees are intending to mandate a standard league-wide pattern layout with
the transition to SSL-Vision, for simplification purposes.

3.4 System Integration and Performance

After the pattern detection plugin has finished executing, its results are deliv-
ered to participating teams via UDP Multicast. Data packets are encoded using
Google Protocol Buffers [8], and contain positions, orientations, and confidences
of all detected objects, as well as additional meta-data, such as a timestamp and
frame-number. Furthermore, SSL-Vision is able to send geometry data (such
as camera pose) to clients, if required. To simplify these data delivery tasks,
SSL-Vision provides a minimalistic C++ sample client which teams can use to
automatically receive and deserialize all the extracted positions and orientations
of the robots and the ball. Currently, SSL-Vision does not perform any “sensor
fusion”, and instead will deliver the results from both cameras independently,
leaving the fusion task to the individual teams. Similarly, SSL-Vision does not
perform any motion tracking or smoothing. This is due to the fact that robot
tracking typically assumes knowledge about the actual motion commands sent
to the robots, and is therefore best left to the teams.

Table 1 shows a break-down of processing times required for a single frame of
a progressive YUV422 video stream of 780×580 pixel resolution. These numbers
represent rounded averages over 12 consecutive frames taken in a randomly con-
figured RoboCup environment, and were obtained on an Athlon 64 X2 4800+
processor.

3.5 GPU-Accelerated Color Thresholding

The traditional sequential execution of CMVision’s color thresholding process
is – despite its fast implementation through a LUT – a very computationally

Table 1. Single frame processing times
for the plugins of the default RoboCup
stack.

Plugin Time

Image capture 1.1 ms
Color thresholding (CPU) 3.6 ms
Runlength encoding 0.7 ms
Region extraction and sorting 0.2 ms
Coordinate conversion < 0.1 ms
Pattern detection < 0.1 ms
Other processing overhead 0.4 ms

Total frame processing < 6.2 ms

Table 2. Single frame processing times
for the näıve GPU-accelerated color
thresholding.

Component Time

Copy data to texture memory 3.0 ms
Color thresholding (GPU) 32 µs
Copy data from frame buffer 11.0 ms

Total thresholding time < 15 ms

intensive process. The performance values in Table 1 clearly show that color
thresholding currently constitutes the latency bottleneck of the processing stack
by a significant margin. One of the best ways to overcome this latency problem
is by exploiting the fact that color thresholding is a massively parallelizable
problem because all pixels can be processed independently. However, even with
the reasonable price and performance in current Personal Computers, only 2 or
4 physical CPU cores are available for parallel computing which in our case are
already occupied by each camera’s capture threads, the visualization process, and
other OS tasks. Nevertheless, modern commodity video cards which feature a
programmable Graphic Processing Unit (GPU) have become widely available in
recent years. Because GPUs are inherently designed to perform massively parallel
computations, they represent a promising approach for hardware-accelerated
image processing. In this section we will provide initial evaluation results of a
GPU-accelerated color thresholding algorithm which may be included in a future
release of SSL-Vision.

To implement the GPU-accelerated thresholding algorithm, we selected the
OpenGL Shading Language (GLSL), due to its wide support of modern graphics
hardware and operating systems. GLSL allows the programming of the graph-
ics hardware’s vertex processor and fragment processor through the use of small
programs known as vertex shaders and fragment shaders, respectively [9]. Vertex
shaders are able to perform operations on a per-vertex basis, such as transfor-
mations, normalizations, and texture coordinate generation. Fragment shaders
(also commonly referred to as pixel shaders), on the other hand, are able to
perform per-pixel operations, such as texture interpolations and modifications.

Because we are interested in performing color thresholding on a 2D image,
we implement our algorithm via a fragment shader. Fig. 4 shows an overview
of this GPU-accelerated color thresholding approach. First, before any kind of
video processing can happen, we need to define a thresholding LUT. This LUT is
similar to the traditional CMVision version in that it will map a 3D color input
(for example in RGB or YUV) to a singular, discrete color label. The difference
is however, that this LUT now resides in video memory and is internally rep-

System Memory

Video Memory

Frame Buffer

Input Image Result

3.0 ms 11.0 ms

2D Texture 3D Texture (LUT)

Fragment Shader
(32 µs)

Fig. 4. Block diagram of color thresholding using GLSL

resented as a 3D texture which can be easily accessed by the fragment shader.
As modern video hardware normally provides 128MB video memory or more,
it is easily possible to encode a full resolution LUT (256x256x256, resulting in
approximately 17MB). In order to perform the actual color thresholding pro-
cessing, any incoming video frame first needs to be copied to the video hardware
to be represented as a 2D texture that the shader will be able to operate on. The
fragment shader’s operation then is to simply replace a given pixel’s 3D color
value with its corresponding color label from the 3D LUT texture. We apply
this shader by rendering the entire 2D input image to the frame buffer. After
the render process, we now need to transfer the labeled image from the frame
buffer back to system memory for further processing by any other traditional
plugins.

Table 2 shows the average time used by each step of the color thresholding
process using an NVIDIA Geforce 7800 GTX video card under Linux, on the
same CPU that was used for the measurements in Table 1. The input video
data again had a size of 780×580 pixels. The values clearly indicate that the
actual thresholding step is about 100 times faster than on the normal CPU.
Interestingly, however, this approach has introduced two new bottlenecks in the
upload and download times between system memory and video memory which,
in total, makes this approach more than four times slower than the traditional
color thresholding routine.

A potential approach for improving this performance would be to convert
most or all other image-processing related plugins, which follow color threshold-
ing, to the GPU. This way, there would be no requirement to transfer an entire
image back from video memory to system memory. Instead, a major portion of
the image processing stack would be computed on the GPU, and only the re-
sulting data structures, such as final centroid locations, could be transfered back
to system memory. For this process to work however, the color segmentation
algorithms would need to be majorly revised, and as such this approach should
be considered future work.

4 Further Steps and Implications

Beyond a proper technical realization, as described in the previous sections, the
introduction of a shared vision system for the Small Size League bears several
organizational issues as well as implications for future research, even for other
RoboCup leagues.

4.1 Schedule of Introduction

The first release of SSL-Vision has been published in spring 2009. Since then,
all teams are free to test the application in their labs, to review the code, and
to submit improvements. At the upcoming regional competitions as well as at
RoboCup 2009, the usage of the system is voluntary, i. e. teams can run it on
their own computers or decide to share the vision system with others. However,
everybody is free to keep using their own system. After this transition phase,
which has been established to provide a rehearsal under real competition con-
ditions, the usage of SSL-Vision will become obligatory, in time for RoboCup
2010.

4.2 Implications for Research

By introducing a shared vision system for all teams, one degree of individuality
for solving the global task “Playing Soccer with Small Size Robots” becomes re-
moved. However, during the last years, most experienced teams have converged
towards very similar sensing solutions, and have produced only few significant
research results regarding computer vision. De facto, having a performant vision
system does not provide any major advantage, but should rather be considered a
minimum requirement as sophisticated tactics and precise control are dominant
factors in the SSL. On the other hand, new teams often experience problems
having an insufficient vision application which strongly decreases their entire
system’s performance. Thus, SSL-Vision will directly benefit all newcomers, al-
lowing them to base their tactics on a robust global vision sensor.

Furthermore, the transition to a shared vision system does not imply a stag-
nation in vision-related research. In fact, due to its open and modular architec-
ture (cf. Sect. 2), SSL-Vision allows researchers to develop and “plug in” novel
image processing approaches without needing to struggle with technical details
(e.g. camera interface control or synchronization). Therefore, new approaches
can be fairly and directly compared with existing ones, thus ensuring a con-
tinuing, community-driven evolution of SSL-Vision’s processing capabilities and
performance.

Whereas the system’s impact for the Small Size League is obvious, it might
also become directly useful for teams in other RoboCup leagues. Many re-
searchers in local vision robot leagues require precise reference data – so-called
ground truth – to evaluate their results during development, e. g. of localization
algorithms or for gait optimization. One example for tracking humanoid soccer
robots with an SSL vision system is shown in [10]. Due to the standardized field

size, SSL-Vision becomes an off-the-shelf solution for the Humanoid as well as
the Standard Platform League.

Finally, it needs to be strongly emphasized that SSL-Vision’s architecture is
not at all limited to only solving the task of robot soccer vision. Instead, the
system should really be recognized as a framework which is flexible and versatile
enough to be employed for almost any imaginable real-time image processing
task. While, by default, the system provides the stacks and plugins aimed at the
RoboCup domain, we are also eagerly anticipating the use and extension of this
system for applications which go beyond robot soccer.

5 Conclusion

In this paper, we introduced the shared vision system for the RoboCup Small Size
League, called SSL-Vision. We presented the system’s open software architecture,
described the current approaches for image processing and camera calibration,
and touched upon possible future improvements, such as GPU-acceleration. Fi-
nally, we discussed SSL-Vision’s scheduled introduction and its impact on re-
search within the RoboCup community. We strongly believe that the system
will positively affect the Small Size League by reducing organizational problems
and by allowing teams to re-focus their research efforts towards elaborate multi-
agent systems and control issues. Because SSL-Vision is a community project,
everybody is invited to participate. Therefore, SSL-Vision’s entire codebase is
released as open-source [11].

References

1. RoboCup Small Size League: SSL Web Site.
http://small-size.informatik.uni-bremen.de (2009)

2. Nokia Corporation: The Qt Toolkit. http://www.qtsoftware.com/
3. Zickler, S.: The VarTypes System. http://code.google.com/p/vartypes/
4. Bruce, J., Balch, T., Veloso, M.: Fast and inexpensive color image segmentation for

interactive robots. In: Proceedings of the 2000 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS ’00). Volume 3. (2000) 2061–2066

5. Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on
Pattern Analysis and Machine Intelligence 22(11) (2000) 1330–1334

6. Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters.
SIAM Journal on Applied Mathematics 11(2) (1963) 431–441

7. Bruce, J., Veloso, M.: Fast and accurate vision-based pattern detection and iden-
tification. In: Proceedings of the 2003 IEEE International Conference on Robotics
and Automation (ICRA ’03). (2003)

8. Google Inc.: Protocol Buffers. http://code.google.com/p/protobuf/
9. Rost, R.J.: OpenGL Shading Language (2nd Edition). Addison-Wesley Profes-

sional (2006)
10. Laue, T., Röfer, T.: Particle filter-based state estimation in a competitive and

uncertain environment. In: Proceedings of the 6th International Workshop on
Embedded Systems, Vaasa, Finland. (2007)

11. SSL-Vision Developer Team: RoboCup Small Size League Shared Vision System
Project Home. http://code.google.com/p/ssl-vision/ (2009)

