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Abstract. Particle filter-based approaches have proven to be capable of
efficiently solving the self-localization problem in RoboCup scenarios and
are therefore applied by many participating teams. Nevertheless, they
require a proper parametrization — for sensor models and dynamic models
as well as for the configuration of the algorithm — to operate reliably. In
this paper, we present an approach for optimizing all relevant parameters
by using the Particle Swarm Optimization algorithm. The approach has
been applied to the self-localization component of a Standard Platform
League team and shown to be capable of finding a parameter set that
leads to more precise position estimates than the previously used hand-
tuned parametrization.

1 Introduction

In recent years, the application of particle filters to robot localization, the so-
called Monte-Carlo Localization (MCL) approach [4], gained immense popularity
and is also a commonly used approach in different RoboCup scenarios since it
is able to efficiently cope with non-linear dynamics, multi-modal probability
distributions, and the kidnapped robot problem. Especially in soccer leagues with
local directed vision systems such as the Standard Platform League (SPL) and
the Humanoid KidSize League it can be considered as being the de facto standard
approach for self-localization. At RoboCup 2009, it was used by all top three
teams of the KidSize League — Darmstadt Dribblers [5], FUmanoid [13], and
CIT Brains [7] — as well as by two of the top three teams of the SPL — B-Human
[15] and Nao Dewvils Dortmund [3]. Only the runner-up Northern Bites [8] used
an EKF-based approach [16]. In other RoboCup Soccer leagues, self-localization
is not a topic of research — the Small Size League provides a global view on
the whole relevant environment [17] — or can be solved in a different way — the
Middle Size League allows omni-directional vision systems that make iterative
matching approaches as [11] an efficient solution.

Nevertheless, successfully applying particle filters demands a proper configu-
ration of a variety of different parameters. This affects the sensor models as well



as different parameters that control the sensor resetting [12] that is needed to
recover from kidnapping situations. The major contribution of this paper is an
optimization approach that is able to optimize all relevant parameters in order
to obtain more precise position estimates. In general, adequate sensor models
can be learned as described in [16] but in this case, they have to be optimized
together with the algorithm’s parameters due to the strong interdependencies
between sensor models and sensor resetting. Our work is based on the Particle
Swarm Optimization (PSO) approach by [9] that is able to provide results faster
than evolutionary algorithms [1]. PSO has already been applied successfully to
gait optimization in the RoboCup context, e.g. by [14]. Since the proposed op-
timization procedure is computationally intensive, a minor contribution of this
work is a modification of the original PSO algorithm that leads to a faster con-
vergence near an optimum, in case of noisy problems. Please note that due to
the use of stochastic factors in the algorithm and the noisy evaluation, the par-
ticles may converge to a local optimum and a better parameter set may remain
undiscovered.

This paper is organized as follows: Section 2 describes the particle filter-based
approach and all parameters that need to be optimized. The optimization process
as well as the applied Particle Swarm Optimization algorithm are presented in
Sect. 3. The conducted experiments and their results are described in Sect. 4.

2 Particle Filter-based Self-Localization

The implementation to become optimized is using an adapted version of the
Augmented MCL approach by [6] that extends the standard MCL approach by
an adaptive sensor resetting component. This section provides a brief overview
of the algorithm and describes in detail all parameters that need to become
optimized for obtaining more accurate position estimates.

2.1 Basic Localization Algorithm

Using the Monte-Carlo Localization approach, a set of samples representing the
belief of the robot is sequentially updated with the estimate of the current action
and weighted by applying likelihood functions of the observed field features. Re-
sampling the samples according to their weightings is used to reduce the number
of required samples to approximate arbitrarily probability densities.

In scenarios that include the possibility of robot kidnappings, such as most
RoboCup robot soccer leagues, a mechanism for position recovery is needed. In
general, the sensor resetting approach by [12] is applied; it generates new samples
based on recent sensor measurements and can easily be integrated into the MCL
resampling step (cf. line 13 of Algorithm 1). The Augmented MCL approach
includes a mechanism for controlling the number of new samples by keeping track
of the sample set’s overall weighting over time. Recent changes can be interpreted
as a delocalization that requires a resetting. In detail, the probability for inserting
new samples is computed by using two averaged weightings wsio,, and wyqs:



Algorithm 1 Augmented MCL, derived from [16, p.258]
function Augmented MCL(X;_1,ty, 2:):

1: static Wsiow, Wrast

Xt = @,X'ﬁ = @7wavg =0

for m =1 to M do
xgm] = sample,motion,model(ut,x?ﬂ)
wgm] = measurement_model(z¢, x,[tm])

X = Xo + (2™, w}™)
Wavg = Wavg + ﬁwtm]

end for

9! Wslow = Wslow + Qslow (wavg - ws]ow)
10: Weast = Wrast + afast(wavg - wfast)
11: for m =1 to M do

12:  with probability max{0, 1 — “fast/wgo, }

13: add random pose to X

14:  else )

15: draw 4 with probability wﬁ” + resampling_threshold - wavg
16: add x,[gi] to X

17: endwith

18: end for

19: return X,

of the mean sample weighting wg.g. The ratio is calculated using two scalars
Ofqst and o that control the reactiveness of this mechanism. These two
parameters are subject to the optimization process. One additional parameter
is resampling_threshold which prevents the effect of particle depletion which
might occur easily in case of small sample sets.

The complete algorithm is shown in Algorithm 1.

2.2 Motion Model

The pose of each sample is updated in every cycle using odometry data. Since
the data is error-prone a random offset is added (Algorithm 2) depending on
the motion speed. In addition to a minimum white noise, factors (Az, Ay, Ag) are
used to scale the level of the noise in respect to the motion speed (A;, A,, Ag):

>‘x = max{AxNOiseTranslationMajorDirWeight7 (1)
AyNOiseTranslationMinorDirWeighta NOiseTranslation}

>\y = max{A:L’NOiseTranslationMinorDirWeight7 (2)
AyNOiseTranslationMajorDichight ) NOiseTranslation}

WE maX{|A$ + Ay|NOiseRotationMovedDistWeight7 (3)

A@NOiseRotationMovedAngleWeight 3 NOiseRotation }

All six Noise, parameters are subject to the optimization process.



Algorithm 2 Noisy update of the state hypotheses (z:,y:,6:) with action A.
The noise is scaled by the A, argument to the random function sample.

function sample_motion-model(A, (t—1,yt—1,0¢-1)) :

T T, m Ar + Sample(A%)
(T ) e (Fe) + R (
(yim]) (yt[’_"]1> =1\ Ay + sample(\y)
2: 0™ — 0™ + Ag + sample(Ns)
3: return (zy,y, 0;)

2.3 Measurement Models

To calculate a weighting for each sample used in the particle filter, a set of
measurement models is applied to the features extracted from the camera images.
The current implementation of the vision system is able to perceive goal posts,
lines, line crossings, and the center circle of a standard SPL field. A detailed
description of the system is given in [10].

The implemented sensor models are configured via standard deviations for
the likelihood of errors in measured sensor data. An example of the perception
of a goal post is depicted in Figure 1: The angle o between the upper and lower
post points (Pupper) and (Prower) is used to calculate the distance d. Estimation
errors in respect to « are rated by the sensor model using the density function of
a normal distribution with the standard deviation ogoalpostSizeDistance- In Fig. 1b,
the observed angle 0 to a goal post is compared to the assumed measurement.
The difference is used to rate the likelihood of sample s; based on the standard
deviation O GoalpostSizeAngle

An overview of all standard deviations which are subject to the optimization
process used by the measurement models is provided in Tab. 1.

2.4 Sensor Resetting

For the generation of new samples, only perceptions of goal posts are used since
this is the only kind of feature providing a unique global direction. To avoid the
placement of all new samples on the same spot within one execution cycle, a mea-
surement used for resetting becomes distorted by an uncorrelated random error
scaled by O GoalpostSampleBearingDistance OT 0GoalpostSampleSizeDistance depending on
the kind of measurement provided by the vision system.

3 Particle Swarm Optimization

To optimize the parameters in Table 1, the Particle Swarm Optimization [9]
approach is used as it is known to quickly find parameters in the neighborhood
around the minimum of a function (cf. [1]). This section briefly explains the
general approach, an extension to PSO that had to be added for this scenario, the
applied benchmark function, and the setup for efficient distributed optimization.



3.1 General Approach

Optimization in this context means to find a parameter set x with the lowest
localization error f(x):

2 = argmin f(x;)

Zi

In order to optimize parameters for a self-localization scenario, every parameter
set needs to be tested against the same sequence of observations. To assure this
condition, the whole optimization process is carried out offline using recorded log
data. To compute f(z), the data is augmented with reference results obtained
from a global tracking system as described in Sect. 4.2.

The algorithm uses a set of particles P to find results in the given search space
(Algorithm 3). Each particle p has a memory ppestpos for the best parameter set
found in the previous iterations. The first iteration is randomly initialized within
given limits (Table 2). Neighborhoods are used to exchange information between
the particles. The velocity p,¢; is updated with a momentum to direct a particle’s
position towards a randomized combination of the best position found by itself
and the best position known in its neighborhood.

Pupper

(b)

Fig. 1. a) Sensor model for distance estimation by observed goal post height «. b)
Measurement error 3 for hypothetical field position s;, the real robot position is 7.



parameter value  parameter value

Qslow 0.0059  Qfast 0.0060
resampling_threshold 4.0

OFieldLines 512 rad/1024 O Corners 512 tad/1024
0 GoalpostAngle 0.02rad O GoalpostBearingDistance 0.4rad
O GoalpostSizeDistance 0.2 rad O GoalpostSampleBearingDistance 150.0 mm
O GoalpostSampleSizeDistance 150.0 mm O CenterCircleAngle 0.2rad
O CenterCircleDistance 0.4rad NoiseTranslation 25.0mm
NOiseTranslationMajorDirWeight 2.0 NOiseTranslationMinorDirWeight 1.0
NoiseRrotation 0.1rad NOiseRota“onMovedAnglewejght 1.0
NoiserotationMovedDistWeight 0.002

Table 1. Parameters for Augmented MCL algorithm (upper) and implemented sen-
sor models (lower part). All parameters have been determined empirically by human
experts.

3.2 Modification for Noisy Data

Noisy results are apparent in an environment where a simulation or real-world
experiments are used to evaluate the performance of a specific parameter set.
Since PSO has a memory for the best result found so far, it becomes irritated by
outliers. A modification (cf. Algorithm 4) has been made to the PSO algorithm
(cf. Algorithm 3) in line 4 to lessen this effect. After the evaluation of a param-
eter set, the result is compared with the particle’s best result as in the original
implementation. If the memory is not updated with a better position, the previ-
ous rating is degraded by a configurable factor . This allows the algorithm to
escape from a local minimum over time.

Algorithm 3 Particle Swarm Optimizer (cf. [2, Page 801ff.] ).
function PSO():
1: while continueSearch do

2: forpe Pdo

3: Presult < f(ppos)

4: if Pbestresult > Presult then

5: DPresult <~ Pbestresult; Pbestpos < Ppos
6: end if

7:  end for

8 forpe Pdo

9: Dneighbestpos < FindBestNeighbour(p)

10: Puel < C1T1Pvel + CmazT2 (pbestpos - ppos) + CmazT3 (pneighbestpos - ppos)
11: Ppos < Ppos + Puel

12:  end for

—
w

: end while




Algorithm 4 Modification to PSO.

1: if Pbestresult > Presult then

2 Pbestresult < Presult; DPbestpos < Ppos
3: else

4: Pbestresult <— pbestresult(l + K/)

5: end if

3.3 Benchmark Function

To rate a parameter set x, a benchmark function is required to estimate an
error f(x). In this scenario, the Euclidean distance between the estimated field
position p(t, z) using parameter set x and the reference position p'(t) is used for
every data set corresponding to a captured camera image t (frame). The camera
is able to capture images at a rate of 30 Hz, some frames are missing ground
truth information due to a fallen robot or obscured marker and are therefore
ignored for parameter benchmarking. The self-localization is conducted using
the complete input data stored in a log file for one parameter set under test.
The image processing is only conducted once while recording the log file and
storing the extracted perceptions. We used the distance as the error per frame
but it is also possible to use a linear combination of the square or logarithmic
translational and rotational distances. The mean of the per frame errors is used
as parameter rating for a single log file evaluation:

frames /
_ Zat=1 Hp(tal‘) — P (t)H
flz) = frames '

3.4 Distributed Computing

Since the evaluation of a previously recorded log file consisting of about 17000
frames is computationally expensive, the implementation of the optimizer sup-
ports distribution by using multiple processes controlled over TCP/IP network
connections. The number of particles determines the maximum number of pro-
cesses. In the current implementation, all parameters have to be evaluated before
the velocity and position can be updated to generate a new set of particles.

4 Experiments and Results

The proposed approach has been applied to recorded game scenes with two Nao
robots in each team. During the experiments, all perceived data of one robot
became recorded and merged with reference data from a global tracking system.

4.1 Evaluation of PSO Modification

Before using the proposed PSO modification for optimization, it was successfully
tested with Griewank30D, a function commonly used for optimization bench-
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Fig. 2. Benchmark function fGriewanksop with added noise Ny 1, search space is
[—300; 300]2°.

marks (Figure 2). The slow degrading of old ratings (x = 0.01, x = 0.05) accel-
erates the optimization within the first 3000 frames in comparison to the non-
modified PSO (k = 0). The performance is significantly worse for high levels
(k = 0.4) of degradation.

4.2 Global Tracking System

To rate the performance of a parametrization the SSL-Vision application (cf.
[17]) is used as a ground truth system. A camera is mounted above the field
(Figure 3a) to keep track of a marker fixed on the head of the Nao. The SSL-
Vision is calibrated to provide the projection of the marker position to the ground
in a global coordinate system. This information is transmitted to the robot via
WLAN, the offset caused by tilt of the robot body and different head joint
angles is compensated using filtered sensor readings of the accelerometer, gyro-
scope, and measured joint angles. The result is used as ground truth position
(Figure 3b).

4.3 Optimization

The Particle Swarm Optimizer is configured as follows: number of particles: 40,
full neighborhood, ¢; = 0.69, cpnax = 1.43, K = 0.1. The values for ¢; and cpax
are suggested in [2], a large neighborhood, the amount of particles and the value
used for degradation of results (k) were found to produce good results in pre-
viously conducted experiments. Modifications of these parameters may improve
the performance of the optimizer but they are computationally expensive to eval-
uate. Two log files containing recognized field features like goal posts and field
lines out of ten minutes of game play are used as training data. Each evaluation
is repeated three times, the mean of these measurements is used as parameter
rating. The optimization progress was canceled after 41 iterations due to a lack
of progress. The best parameter set was selected by re-evaluating all particles of
the last iteration for 16 times. The position of the particles in the search space
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Fig. 3. a)Schematic view of the ground truth setup used. b)Comparison of ground
truth data with self-localization.
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Fig. 4. a) Particle position for asiow and afast during optimization. b) Result of eval-
uation of particles per iteration step.

are displayed in Figure 4a using the example of ag)ow and agast, the rating of the
particles in each iteration is shown in Figure 4b.

4.4 Interpretation of Results

By comparing the optimized parameter values in Table 2 to the original values
in Table 1, big differences are apparent. The large values for oo, and agfqs:
suggest that insertion of new samples by sensor resetting or randomized field
positions is used to a greater extend. The small values were originated from a
scenario with more landmarks used for sensor resetting and thus introducing
more ambiguous state hypotheses.

The resampling_threshold was reduced to 0, indicating that the modification
of the Augmented MCL in line 15 of Algorithm 1 in comparison to the Aug-
mented MCL in [16] to support particles with low weightings had no significant
benefit.

The o, values were mostly adjusted to larger values with the exception of
O GoalpostBearingDistance and OcenterCircleDistance- L hese higher standard deviations



parameter initial range value

Qslow 0.0001 — 5.0 4.807
Ofast 0.0001 — 10.0 12.43
resampling _threshold 0.0 — 100.0 0.0
OFieldLines 16 — 4000rad/1024 1883.0r2d/1024
T Corners 16 — 4000 rad/1024 747.8 rad/1024
T GoalpostAngle 0.01 — 2.0rad 0.96 rad
O GoalpostBearingDistance 0.01 —2.0rad 0.32rad
CCerlpes i Diiores 0.01 — 2.0rad 0.436 rad
O GoalpostSampleBearingDistance 0.01 — 2000.0 mm 1878.0 mm
O GoalpostSampleSizeDistance 0.01 — 15000.0 mm 8418.0 mm
O CenterCircleAngle 0.01 — 2.0rad 0.402rad
O CenterCircleDistance 0.01 — 2.0rad 0.08 rad
NoiseTranslation 0.0 — 100.0 mm 115.2 mm
NOiseTranslationMajorDichight 0.0 —20.0 5.11
NoiseTranslationMinorDirWeight 0.0 —20.0 1.13
Noiserotation 0.0 —1.0rad 0.072rad
NOiseRotationI\/Iovchngchcight 0.0 —-10.0 2.7
NOiseRotationMovedDistWeight 0.0—-0.1 0.0

Table 2. Parameter set of best particle after 41 iterations.

can be interpreted as a certain compensation for the elimination of resam-
pling_threshold as they lead to more homogeneous weightings within a sample
set.

The uncertainty introduced in the motion update is slightly reduced for the
minimum rotational noise and nearly unchanged concerning the factor for rota-
tional noise by moved distance. The ratios for random translational errors by

moved distance (NOiseTranslationMajorDirWeight;NOiseTranslationMinorDirWeight) and
the velocity independent minimum error NoiseTyansiation are increased.

After the optimization, the overall precision of the self-localization has been
increased. Comparisons are shown in Table 3 and Figure 5.

log file min max mean error

log file A (original) 242.7mm 332.2mm 292.3mm (£6.1 %)

log file A (optimized) 160.0 mm 222.2 mm 188.9 mm (£8.4 %)

log file B (original)  283.5 mm 364.7 mm 307.7mm (£6.0 %)

log file B (optimized) 154.2 mm 231.0 mm 198.5 mm (£8.9 %)
Table 3. The performance of the self-localization is compared by reprocessing data
from a log file not used for optimization 100 times.
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Fig. 5. Histogram of mean errors used for the evaluation of a parameter set (log file
was used in training data set).

5 Conclusions and Future Work

In this paper, we presented an approach for optimizing the parameters of a
robot’s self-localization component. The approach has been successfully applied
to a Standard Platform League game scenario. The results did not only lead to
a more precise position estimate but also provided insights into the necessity of
certain parameters of the applied localization algorithm.

Due to computational constraints set by the robot hardware, the number of
samples (which is currently set to 100) used in the particle filter has not been
subject to the conducted optimization. As the runtime of the self-localization
scales linearly with the number of samples, including this parameter would also
demand a more complex evaluation function for the optimizer, trading off com-
puting time versus precision.

In the future, more experiments have to be conducted to study the effects of
different error functions (i.e. weighted mean of translational and rotational er-
ror). Another interesting extension might also be the inclusion of more variables,
e. g. those controlling the image processing modules.
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