Gait Optimization on a Humanoid Robot
using Particle Swarm Optimization

Cord Niehaus #!, Thomas Rofer +2, Tim Laue #3

# Fachbereich 3 - Mathematik und Informatik, Universitdt Bremen,
Postfach 330 440, 28334 Bremen, Germany

1 . . . .
cniehaus@informatik.uni-bremen.de,

3timlaue@informatik.uni-bremen.de

+DFKI Lab Bremen, Enrique-Schmidt-Str. 5,
28359 Bremen, Germany
2Thomas.Roefer@dfki.de

Abstract— This paper describes the application of Particle
Swarm Optimization (PSO) for gait optimization on a humanoid
robot. The biped gait is modeled by a number of parameterizable
trajectories. To achieve omni-directional walking, different sets
of gait parameters are optimized for specific walk directions
and interpolated later. By using a fitness test based on an
acceleration walk, the optimized sets of parameters are suitable
for a wide range of walk speeds. We tested the applicability of
the approach by performing gait optimization for several walk
directions on a modified Kondo KHR-1 robot.

Keywords—gait modeling, gait optimization, particle swarm
optimization (PSO), acceleration walk, omni-directional gait

I. INTRODUCTION

In RoboCup competitions, one major task is the robot
locomotion on a flat field and its optimization in terms of
quickness, flexibility, and stability. Especially in the leagues
with legged robots, such as the four-legged league and the
humanoid league, good omni-directional walking skills are
essential for winning games. The optimization of the robot’s
gait, i.e. the parameters of the gait, is a good area to apply
optimization methods that are able to deliver quick results.
On the one hand, it is prudent to avoid time-consuming
optimization runs that wear out the robot hardware, and on
the other hand it is also beneficial to be able to adapt the
robot gait to different surface conditions at the competition
site in a reasonable amount of time. Therefore, we examine
Particle Swarm Optimization (PSO) as suitable alternative to
other established optimization methods that have been used in
RoboCup leagues.

The paper is organized as follows: In Section II, we shortly
point out previous gait optimization approaches in the field
of legged RoboCup leagues, for both four-legged and biped
robots. Afterwards, we introduce the robot platform and the
gait modeling with its parameters. This is followed by the
description of the PSO algorithm in section V. We then outline
the experimental setup that includes a description of the opti-
mization process. In section VII we present the experimental
results of the gait optimization performed. Finally, section VIII
concludes this work and gives a short outlook on ongoing and
future work on this topic.

II. STATE OF THE ART

During recent years, the RoboCup Four-Legged League has
become a popular testbed for gait optimization approaches.
The reason is probably the reliable standard platform AIBO
by Sony that allows researchers to easily compare and apply
approaches and their results. Variations of evolutionary algo-
rithms were applied in [1] and [2] to achieve fast and stable
omni-directional gaits on the AIBO robot. In a later approach
of [3], machine learning methods were used to optimize the
fast walking with a focus on head stability to maintain the
robot’s visual capabilities.

In most cases, the knowledge achieved in the Four-Legged
League can be transferred to the Humanoid League [4].
There, some approaches already show exciting results in walk
speed and stability. The team Darmstadt Dribblers applied
“Sequential Surrogate Optimization” to speed-up their 55 cm
tall robot to 40 cm/s [5]. The KHR-1 robot that is similar to
the one used in our approach, but without carrying a PDA and
batteries, could be accelerated to walk speeds up to 22 cm/s,
by using evolutionary algorithms as shown by [6]. This work
also provides a survey of suitable optimization techniques. In
parallel to our work, Faber and Behnke [7] optimized the speed
of the forward gait of one of their soccer robots to 34cm/s by
using Policy Gradient Reinforcement Learning.

III. THE ROBOT PLATFORM

The commercially available robot kit KHR-1 from Kondo
was used as a basis for the robots that competed as the
joint team “BreDoBrothers” of the Universitit Bremen and the
University of Dortmund during RoboCup 2006. The original
version has a total of 17 degrees of freedom. There are five in
each leg, three in each arm and one in the head (cf. Fig. 2). The
hinge joints are realized by servo-motors of the type Kondo
KRS-784ICS. The humanoid structure enables the robot to
walk and stand up. The major deficit of the leg structure is
the absence of a hip joint that would allow the robot to rotate
and walk curves as a human. The rotation can therefore only be
achieved by sliding the soles of the feet on the floor in different
directions and using the friction to change the orientation of
the robot.



Fig. 1. The modified Kondo KHR-1 with the added PDA on the upper
body. The camera head with two additional hinge joints was removed during
optimization.

Several modifications of the basic robot kit were necessary
to use the robot in RoboCup competitions (cf. Fig. 1). The
original controller board was replaced by an more reliable and
faster custom-made board that includes an Atmel ATMegal28
controller, three accelerometers and one gyroscope. The head
of the robot was extended by a pan-tilt unit that consists
of two small servo motors and carries a camera. A Pocket
LOOX PDA by Fujitsu Siemens was added to the robot for
all on-board computations. In addition, the servo motors were
upgraded with more reliable and stronger metal gears. Also the
original batteries were exchanged by lighter Lithium-Polymer
batteries and the base areas of the feet were enlarged to
90 x 65 mm? each in order to get more static stability. With
these modifications, the robot weights about 1500 g and is
38 cm tall when standing; the leg length is 21 cm.

IV. GAIT MODELING

The control software of the robot is based on the widespread
software framework of the GermanTeam [8], ported to run on
Microsoft Windows Mobile on the PDA. On the Kondo, the
framework sends new joint angles to the servos every 12 ms.
These joint angles are computed by the walking engine from
a vector that describes the desired motion speeds in forward,
sideward, as well as rotational direction and a set of parameters
that describe the gait in general. The trajectories of the feet
are first calculated in Cartesian space, and transformed into
sequences of joint angles afterwards using inverse kinematics.
The parameters of a gait shape these trajectories as well as
how much the robot’s weight is shifted during walking, and
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Fig. 2. The kinematic chain of the humanoid robot Kondo KHR-1 with
additional head joints

whether or how much the arms swing.

A complete trajectory covers the duration of a walk mo-
tion cycle and can be constructed by a sequence of two-
dimensional points. The values between the points are de-
scribed by parts of standard functions, e.g., sine or sigmoid.

The foot positions relative to the center of the hip can be
calculated by a combination of four trajectories. Two of these
trajectories shape the foot movement and the other two the
movement of the robot’s upper body. The trajectory stepX (cf.
Fig. 3) describes the foot movement in walk direction and the
trajectory stepHeight (cf. Fig. 3) controls the lifting of the foot
off the ground. The robot bends from the waist according to
the trajectory bodyTilt (cf. Fig. 4). Furthermore, the trajectory
bodyShift (cf. Fig. 4) shifts the upper body sideways to allow
lifting the foot without load off the ground. In addition to these
trajectories, the motion of the arms is also described by two
additional parameters.

There is a set of parameters which control the size and the
shape of the trajectories. The general parameter stepDuration
defines the duration of a walk motion cycle that contains
two steps. The three parameters stepOriginX, stepOriginY and
stepOriginZ set the origin of the steps in Cartesian space
relative to the center of the hip. The ratio between the step
length in front and behind the stepOriginX is set in the
parameter stepRearFrontRatio. The parameter doubleSupport
influences the phase during a walk motion cycle, where
both feet have ground contact within the trajectory stepX.
The trajectory stepHeight can be adjusted by a total of six
parameters. A walk motion cycle is basically divided into four
phases for each leg (ground, lift, air, down). While the foot is
lifted off the ground, the trajectory is described in dimensions
by three parameters. The parameter stepHeightAir sets how
high the robot lifts a foot off the ground. The parameter
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Fig. 4. The trajectories bodyTilt and bodyShift regulate the movement of the robot upper body.

stepHeightAirPick decides at which point during the lift phase
the maximum height is reached, and the parameter stepHeigh-
tAirLength specifies for how long it remains in the maximum.
The parameters stepHeightGround, stepHeightGroundPick and
stepHeightGroundLength have the corresponding meaning for
the phase when the opposite leg is lifted.

For the trajectory bodyShift, the parameter bodyShiftOrigin
sets its origin, the parameter bodyShiftFootDiff defines the
magnitude of the oscillation in dependency to the stepO-
riginY. The parameter bodyShiftPause defines the duration
of a pause in the maximum positions. In addition, the pa-
rameter bodyShiftPhaseShift specifies a temporal shift relative
to the trajectory stepX. The parameters define the trajectory
bodyTilt as angle values with bodyTiltOrigin as the origin,
bodyTiltScale as the magnitude of the oscillation in body direc-
tion and bodyTiltBackFrontRatio as the ratio between leaning
backward and forward. Equal to the trajectory bodyShift,
the parameter bodyTiltPhaseShift marks the temporal shift
relative to the trajectory stepX. The movement of the arm
is synchronized with the opposite leg’s trajectory. The scale
of the arm movement is defined by the armTiltScale and the

parameter armRollOrigin, which defines the origin of the hand
in sideway direction.

V. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) is an optimization ap-
proach with stochastic characteristics that imitates the behavior
of biological populations, e.g. a flock of birds searching for
food. In order to optimize the gait parameter set, PSO has been
chosen with a focus lying on quickly finding suitable results.

PSO was introduced by Kennedy and Eberhart in [9], [10],
and it is inspired by studies of fish and bird flocks by [11].
The basic idea is to use the biological swarm behavior of
animal populations to resolve numerical optimization problems
in multi-dimensional search spaces.

Therefore, PSO is an algorithm that makes use of the advan-
tages of social systems and their dynamic to solve optimization
problems. Each member of the swarm, which is referred to as
particle, has a position and velocity inside the borders of the
search space and displays a possible solution to the problem.
In each iteration, the particles test their position and collect
experience about the search space. After each iteration, each



particle communicates its best known position to a number
of other particles. The new position of each particle in the
next iteration is based on its own knowledge, the information
from the other particles, and its last position and velocity.
Through the mass of collected information and its usage by
the whole swarm, a directional and parallel search for the
optimum is achieved. The stochastic weighting of the different
available information provides the stochastic character of the
optimization process.

The PSO algorithm proposed as the Standard PSO Version
2006 requires the adjustment of a number of parameters that —
in combination with the given optimization problem — change
the behavior of the algorithm and its performance strongly. The
following table gives a short overview about the parameters
used and their meaning:

o sizeOfSwarm: Determines the number of particles in the

swarm.

o formOfNeighbourhood: The form of neighborhood within
the swarm describes in which way the particles commu-
nicate with each other and how the information flows
within the swarm. Using the form full, each particle is
informed by all other particles. Using the form k-random,
each particle is informed by only %k other particles.

o first cognitive confidence coefficient: The first coefficient
c1 describes the confidence of the particle in its own
current velocity.

o second cognitive confidence coefficient: The second coef-
ficient ¢, describes the confidence in the information
about the best known positions both of itself p; and other
particles gq. For the update, these values are multiplied
by random values between 0 and 1 (r(0,1)).

o maximum velocity: The maximum velocity sets the max-
imum distance that a particle is able to move inside the
dimension borders within a single iteration.

In each iteration, first the velocity vy and afterwards the

position x4 of the particle in each dimension is updated
according to the equations 1 and 2.

Vg = 104+ Cmaz”(0,1)(Pa— %) + Cmaar(0,1) (94 —xa) (1)
Tqg = Tq+ Vg )
VI. OPTIMIZATION PROCESS AND SETUP

The optimization was performed in two stages. First a
simulator was used to find suitable parameters for the PSO
itself, and afterwards these settings were used to optimize the
gait of the real robot.

A. Optimization in the Simulator

Before the optimization on the real robot, different sets
of parameters for the PSO were evaluated using a simulated
model of the KHR-1 robot (cf. Fig. 5). The simulations were
conducted in SimRobot [12], a physical robot simulator that
is capable to simulate user-defined robots in three-dimensional
space since it includes a physical model based on rigid body
dynamics. The goal was to find out how the results differ when
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Fig. 5. Optimization in SimRobot

the size of the swarm and the form of the neighborhood within
the swarm varied. Four combinations from two values for the
size of the swarm (12, 20) and the neighborhood (full and k-
random) were chosen. The maximum number of iterations was
set to 25 in order to test whether a good walk parameter set can
be found within this range. Similar to the testing performed
later on the robot, an accelerated walk with a time limit was
chosen, and the distance covered in walk direction during the
test defined the fitness value. All other PSO parameters were
set to the recommended values proposed in [13].

The main result of testing in the simulator was that the
most hardware-saving combination of 12 members and the
neighborhood form full are capable to bring up fast and good
results. Therefore, this combination was chosen to be used for
the parameter optimization on the real robot KHR-1.

B. Optimization on the Real Robot

The optimization scenario (cf. Fig. 7) is set up on a
RoboCup Humanoid Kid-Size League field. The green carpet
is of comparable quality to the surface that is used at official
competitions. In order to get rid of the task of changing
batteries, the power supply of the robot is covered via cable by
a power supply unit. Therefore the robot operates on a constant
voltage level during the test runs. However the robot still
carries the battery that it would require for a fully autonomous
operation. The distance measurement is performed by manual
metering from a laid-out tape. Furthermore, a PC — connected
via WLAN with the PDA on the robot — is used to enter the
measured fitness values, and thus it completes the setup.

During a complete test run, we optimized five of the main
eight walk directions (cf. Fig. 6). The main walk directions
are: straight ahead and backward walking, walking sideways
to the left and the right, and also walking in all four diagonal
directions. To obtain parameters for all eight main walk di-
rections, we mapped the optimized parameter set for diagonal
walking to the walk directions on the other body sides.
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Fig. 6. The walk directions optimized that are later mirrored along the body
direction.

For each walk direction, a test run lasts over 25 iterations
of the PSO. A single test of a parameter set is performed by
letting the robot run an almost constantly accelerated walk
within a time limit of 20 seconds. The step size is increased
after the duration of two walk motion cycles, which equals
four steps. The increasing margin was chosen in a way that
the robot starts with zero speed and increases its step size to
end up at the theoretical maximum step size within the time
limit. In case of straight ahead walking, the increasing margin
was 20 mm.

The fitness value is defined by the distance covered in the
desired walk direction during the time limit of 20 seconds.
The distance covered by the robot is measured along the tape
and entered manually by using the PC that sends the data to
the robot via WLAN. A particle test ends early if one of the
following abort situations occurs:

« The robot falls down. If the distance covered until the fall
is higher than 10 cm, the distance is taken as the fitness
value, otherwise a fitness value of O is rewarded.

o The walk parameter set tested results in no movement
into the desired walk direction. This is rewarded with a
fitness value of 0.

o The robot’s walk direction drifts away more than 45
degree from the desired walk direction. This is rewarded
with a fitness value of 0.

The search space is limited by minimum and maximum
values for each dimension (cf. table I). On the basis of
knowledge about the robot platform, walk trajectories, and
their synchronizations, the limits were chosen in a reasonable
way. Furthermore, a number of parameters were set to constant
values to favor symmetric trajectories, e.g. for the trajectory
stepHeight. At the initial iteration, the particle’s positions were
uniformly spread within the search space.

VII. RESULTS

The result section is structured as follows: First we present
the results from simulator test runs to confirm our choice
concerning the PSO parameters. After this, we show the fitness
charts for forward walking and list the best parameters found
for forward and sideways walking, followed by the results
of the average and variance tests for the best parameter sets

TABLE I
MINIMUM AND MAXIMUM DIMENSION BORDERS

Parameter min value | max value
stepDuration 1000 ms 2000 ms
stepOriginX -10 mm 10 mm
stepOriginY 30 mm 50 mm
stepOriginZ -190 mm -170 mm
stepRearFrontRatio 0,5 2,0
doubleSupport 0,0 0,2
stepHeightAir 10 mm 30 mm
stepHeightAirPick 0,5 0,5
stepHeightAirLength 0,0 0,0
stepHeightGround 0 mm 0 mm
stepHeightGroundPick 0,5 0,5
stepHeightGroundLength 0,0 0,0
bodyShiftOrigin 0,0 mm 0,0 mm
bodyShiftFootDiff -15 mm 15 mm
bodyShiftPause 0,0 0,0
bodyShiftPhaseShift -0,1 0,1
bodyTiltOrigin 0,0 0,05
bodyTiltScale -0,005 0,0
bodyTiltPhaseShift 0,0 0,2
bodyTiltBackFrontRatio 0,1 0,3
armTiltScale 0,0 0,5
armRollOrigin -1,0 -1,0

The cursively written parameters are constant. All values are chosen by expert
knowledge and experiments.

found. A summary of other test results collected concludes
this section.

The results of the PSO parameter testing in the simula-
tor showed the best performance by combining 12 particles
with the neighborhood form full (cf. Fig. 8). This parameter
combination full-12 converges after about 200 evaluations
and performs at least as good as the other combinations do,
although they need more evaluations. Therefore, it was chosen
to optimize the gait parameters on the real robot.

Among the results of the five walk directions optimized,
the fitness chart for the walk direction O shows a usual
optimization progress (cf. Fig. 8). The chart rises up to the

Fig. 7. The optimization scenario for the real robot on a RoboCup Humanoid
Kid-Size League field
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walk direction O on the real robot is displayed.

maximum fitness of 150 cm at iteration 24. It also shows
a steadily rising average level of all particles. With respect
to the almost constantly accelerated motion, an approximated
maximum speed of 17 cm/sec for straight forward walking
was achieved.

The table II presents the best parameter sets found for
the forward and sideward walking. The values of the walk
parameters for both directions lie within the preset borders of
the search space.

After the optimization was finished, we ran the best param-
eter sets found another 30 times for each walk direction to
evaluate their average fitness value and its standard deviation.
The average values of the best parameter sets found showed
that the results that were reached during the optimization,
could be repeated, respectively outperformed. The average
values lie about 10% under the best values, and they also
show a relatively high standard deviation.

In addition, we examined the best 10% of all test runs for
each walk direction to find out that their parameter values form
a narrow cluster within the search space. This information can

TABLE II
BEST WALK PARAMETER SETS

Parameter 0 90
stepDuration 1399,52 ms 1154,03 ms
stepOriginX -3,46 mm -3,98 mm
stepOriginY 37,90 mm 49,88 mm
stepOriginZ -182,16 mm -190 mm
stepRearFrontRatio 1,703 1,680
doubleSupport 0,062 0,0
stepHeightAir 21,42 mm 13,71 mm
bodyShiftFootDiff 8,06 mm -11,52 mm
bodyShiftPhaseShift -0,030 -0,069
bodyTiltOrigin 0,048 0,042
bodyTiltScale -0,0025 -0,0023
bodyTiltPhaseShift 0,027 0,091
bodyTiltBackForthRatio 0,166 0,100
armTiltScale 0,351 0,433
Fitness 150 cm 96 cm

Results after a total of 25 iterations for the walk directions of 0° and 90°.
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The figure on the left shows the results of the PSO parameter testing in the simulator, while on the right, the fitness chart for gait optimization in

be used to limit the borders of the search space further for
future optimizations.

In closing tests the optimized gait parameter sets were
integrated into the walking engine and linear interpolation
was used to achieve omni-directional walking. The robot was
controlled via a joypad, and it showed good results in terms
of interpolation between different walk directions and speeds.

The gait optimization for a single walk direction with 25
iterations and 12 particle tests per iteration lasts between 3
and 3.5 hours. This represents a relative short duration in
comparison to similar optimization approaches on a Kondo
KHR-1, such as, e.g., [6].

VIII. CONCLUSION AND ONGOING WORK

In this paper we presented a fast and hardware-saving
optimization approach based on Particle Swarm Optimization
to optimize the gait of a biped humanoid robot. The parameters
of a gait were optimized for a large range of walk speeds
and different walk directions. The best parameter set for
the main walk direction was interpolated to achieve omni-
directional walking with speeds of up to 17 cm/sec. The main
advantage of the PSO approach is the possibility to obtain
results comparably fast.

An ongoing work is the transfer of the optimization ap-
proach to the RoboCup Simulation League, since a physical
model of a humanoid robot was introduced in this year’s 3D
Simulation Competition. The gait modeling and optimization
is integrated into the framework of the team Virtual Werder.

TABLE III
DISTRIBUTION OF BEST FITNESS VALUES

walk direction 0 90 180 -45 -135
avg value 140,1 89,1 84,1 89,47 70,87
std deviation 12,027 | 14,072 | 5,938 | 9,677 | 12,998

min value 100 54 68 64 36

max value 152 109 91 105 83

Average fitness values and standard deviations of the best parameter sets found
for the different walk directions.



Using the PSO approach for behavior optimization, e.g.,
approaching the ball with integrated obstacles avoidance, is
also a research topic.
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