A Robust Closed-Loop Gait for the
Standard Platform League Humanoid

Colin Graf *!, Alexander Hirtl 2, Thomas Rofer #3, Tim Laue #4

* Fachbereich 3 — Mathematik und Informatik, Universitiit Bremen,
Postfach 330 440, 28334 Bremen, Germany

1cgraf@ informatik.uni-bremen.de,

2allli@informatik.uni-bremen.de

DFKI Bremen, Safe and Secure Cognitive Systems
Enrique-Schmidt-Str. 5, 28359 Bremen, Germany

3Thomas.Roefer@dfki.de

Abstract—1In this paper, we present a robust closed-loop gait
for the Nao, the humanoid robot used in the RoboCup Standard
Platform League. The active balancing used in the approach
is based on the pose of the torso of the robot, the estimation
of which we also describe. In addition, we present an analytical
solution to the inverse kinematics of the Nao, solving the problems
introduced by the special hip joint of the Nao.

I. INTRODUCTION

Since 2008, the humanoid robot Nao [1] that is manufac-
tured by the French company Aldebaran Robotics is the robot
used in the RoboCup Standard Platform League (cf. Fig. 1).
The Nao has 21 degrees of freedom (cf. Fig. 2 left). It is
equipped with a 500 MHz processor, two cameras, an inertial
measuring unit, sonar sensors in its chest, and force-sensitive
resistors under its feet.

Aldebaran Robotics provides a gait for the Nao [1] that
is based on keeping the center of mass of the robot above
the area supported by the feet. It is completely open-loop
resulting in a low robustness on surfaces such as the carpet
usually used in RoboCup. In addition, it only allows the user
to choose between a pre-defined set of steps, i.e., it is not
omni-directional. This makes it hard to be used in RoboCup,
where precise and fast alignment behind the ball is a must.
The maximum speed reached is approximately 10 cm/s. For

Fig. 1.

Naos on a soccer field at RoboCup 2009 in Graz.

4Tim.Laue@dfki.de,

ShoulderOffsetY
>

NeckOffsetZ

ThighLength

\
A

TibiaLength

v

FootHeight

Fig. 2. The joints of the Nao [1] (left). The robot coordinate system used
in this paper (right).

RoboCup 2008, Kulk and Welch designed an open-loop walk
that keeps the stiffness of the joints as low as possible to both
conserve energy and to increase the stability of the walk [2].
The gait reached 14 cm/s. However, since it is still based on
the walking module provided by Aldebaran Robotics, it still
shares the major drawback of not being omni-directional. Two
groups worked on walks that keep the Zero Moment Point
(ZMP) [3] above the support area using preview controllers.
Both implement real omni-directional gaits. Czarnetzki et al.
[4] reached speeds up to 20 cm/s with their approach. In their
paper, this was only done in simulation. However, at RoboCup
2009 their robots reached similar speeds on the actual field,
but they seemed to be hard to control and there was a certain
lack in robustness, i. e., the robot fell down quite often. Strom
et. al [5] modeled the robot as an inverted pendulum in their
ZMP-based method. They reached speeds of around 10 cm/s.

The main contributions of this paper are: we describe a

CoM-based gait for the Nao that is supported by strong
balancing methods resulting in a robust system, as proven in
actual RoboCup games. We also describe an analytical solution
to the inverse kinematics of the Nao. To our knowledge, it is
the first one that was published so far, because in the work
described above, only iterative approaches are mentioned.
Finally, we provide some practical insights in how the pose
of the robot’s torso can be estimated using the readings from
the inertial board and we compare them to the pose estimation
provided by the inertia board itself.

The structure of this paper is as follows: first, we present
the analytical solution to the inverse kinematics of the Nao.
Then, our method for walking is presented, followed by
our approach to active balancing, which makes the gait a
closed-loop solution. Since balancing is based on the pose
of the torso of the robot, the estimation pitch and roll of the
torso is described afterwards. The paper closes with a short
presentation of the results.

II. INVERSE KINEMATICS

Solving the inverse kinematics problem analytically for the
Nao is not straightforward because of two special circum-
stances:

o The axes of the hip yaw joints are rotated by 45 degrees

(cf. Fig. 2).

« These joints are also mechanically connected among both

legs, i.e., they are driven by a single servo motor.

The target of the feet is given as homogenous transforma-
tion matrices, i.e., matrices containing the rotation and the
translation of the foot in the coordinate system of the torso.
To explain our solution we use the following convention:
A transformation matrix that transforms a point p4 given
in coordinates of coordinate system A to the same point
pp in coordinate system B is named A2B, so that pg =
A2B - p4. Hence the transformation matrix that describes the
foot position relative to the torso is F'oot2T orso that is given
as input. The coordinate frames used are depicted in Fig. 3.

The position is given relative to the torso, i.e., more
specifically relative to the center point between the intersection
points of the axes of the hip joints. So first of all the position
relative to the hip is needed!. This is a simple translation along
the y-axis?

ldist

Foot2Hip = Trans, () - Foot2T orso (1)

with [g4;s¢ = distance between legs. Now the first problem
is solved by describing the position in a coordinate system
rotated by 45 degrees, so that the axes of the hip joints can
be seen as orthogonal. This is achieved by a rotation around
the z-axis of the hip by 45 degrees or 7 radians.

Foot2HipOrth = Rotz(%) - Foot2Hip)

'The computation is described for one leg. Of course, it can be applied to
the other leg as well.

2The elementary homogenous transformation matrices for
rotation and translation are noted as Rotcggis>(angle) resp.
Trans<qazis> (translation).

Because of the nature of the kinematic chain, this transfor-
mation is inverted. Then the translational part of the transfor-
mation is solely determined by the last three joints and hence
they can be computed directly.

HipOrth2F oot = Foot2HipOrth™? 3)

The limbs of the leg and the knee form a triangle, in
which an edge equals the length of the translation vector
of HipOrth2F oot (lirqns). Because all three edges of this
triangle are known (the other two edges, the lengths of the
limbs, are fix properties of the Nao) the angles of the triangle
can be computed using the law of cosines (4). Knowing that
the angle enclosed by the limbs corresponds to the knee joint,
that joint angle is computed by equation (5).

A=d>+b>—-2-a-b-cosvy 4)

2 2 2
lupperLeg +llowe7"Leg _ltrans (5)

¥ = arccos
2. lupperLeg : llowerLeg

Because 7 represents an interior angle and the knee joint
is being streched in the zero-position, the resulting angle is
computed by

5knee =T =7 (6)
Additionally the angle opposite to the upper leg has to be
computed, because it corresponds to the foot pitch joint:

2

2 2
llowerLeg +ltrans _lupperLeg (7)

0 foot Pitchl = Arccos
2- llowerLeg . ltrans

Now the foot pitch and roll joints combined with the triangle
form a kind of pan-tilt-unit. Their joints can be computed from
the translation vector using atan2.3

6footPitch2 = atan2(x, V 92 + 22) (8)
5footRoll = atanz(y7 Z) (9)

where z,y,z are the components of the translation of
Foot2HipOrth. As the foot pitch angle is composed by two
parts it is computed as the sum of its parts.

5footPitch = 5footPitch1 + 6footPitch2 (10)

After the last three joints of the kinematic chain (viewed
from the torso) are determined, the remaining three joints
that form the hip can be computed. The joint angles can
be extracted from the rotation matrix of the hip that can be
computed by multiplications of transformation matrices. For
this purpose another coordinate frame T'high is introduced that
is located at the end of the upper leg, viewed from the foot.
The rotation matrix for extracting the joint angles is contained
in HipOrth2T high that can be computed by

HipOrth2T high = Thigh2Foot ™' - HipOrth2F oot (11)

3atan2(y, x) is defined as in the C standard library, returning the angle
between the z-axis and the point (z,y).

Fig. 3.
in red, the y-axis in green, and the z-axis in blue.

where T'high2F oot can be computed by following the kine-
matic chain from foot to thigh.

Thigh2F oot = ROtw((SfootRoll) - Rot,, (6footPitch)
'Transz(llowerLeg) : ROty (&enee)
Trans;(lupperLeg)

(12)

To understand the computation of those joint angles, the
rotation matrix produced by the known order of hip joints
(yaw (2), roll (x), pitch (y)) is constructed (the matrix is noted
abbreviated, e.g. ¢, means cosd,).

Rotpip = Rot,(6,) - Rot,(dz) - Roty(dy)
CyCy — SpSyS, —CgS: CzSy + CySz Sz
= CzSzSy + CySy CpCy —CyCzSy + SySz
—Cg Sy Sy CqCy

(13)
The angle &, can obviously be computed by arcsin r3p.* The
extraction of ¢, and 0, is more complicated, they must be
computed using two entries of the matrix, which can be easily
seen by some transformation:

cosd, - sind, sind,

oS0y - COSO, COSO,

—T12

=tand, (14)

722
Now J. and, using the same approach, J, can be computed
by
(15)

(16)

0. = Onipyaw = atan2(—ry2,722)
0y = OnipPitch = atan2(—rszy, ra3)

At last the rotation by 45 degrees (cf. eq. 2) has to be
compensated in joint space.
T

OhipRoll = O0p — 1

Now all joints are computed. This computation is done for
both legs, assuming that there is an independent hip yaw joint
for each leg. The computation described above can lead to
different resulting values for the hip yaw joints of the left and
the right leg. Given these two joint values, a single resulting
value is determined, the computation of which is dynamically
parameterized. This is necessary, because if the values differ,
only one leg can realize the desired target, and normally
the support leg (cf. sect. II) is supposed to reach the target

a7

4The first index denotes the row, the second index denotes the column of
the rotation matrix.

Visualization of coordinate frames used in the inverse kinematic. From left to right: T'orso, Hip, HipOrth, Thigh, Foot. The x-axis is shown

position exactly. Given this fixed hip joint angle, there are
only five variable joints supposed to realize a 6DOF-pose,
thus it is impossible to reach the desired pose exactly. This
is a typical optimization problem that we solved analytically
by introducing a virtual foot yaw joint at the end of the
kinematic chain. Now we have again six joints to realize a
6DOF-pose which is, as described above, solvable analytically.
This modified kinematic chain can be seen as reversed since
the universal joint is now located at the foot and not at the torso
anymore. Hence this modified inverse kinematic problem can
be solved for each leg as described above. The only difference
is that the order of joints and the transformation of the foot
relative to the torso has to be inverted.

The decision to introduce a foot yaw joint was mainly taken
because an error in this (virtual) joint has a low impact on the
stability of the robot, whereas other joints (e.g. foot pitch or
roll) have a huge impact on stability.

III. WALKING

Walking means that the robot moves with desired speeds
in forward, sideways, and rotational directions. To accomplish
this, the two feet of the robot have to follow three-dimensional
trajectories that define the actual steps. In previous work [6],
we determined the trajectories of the feet relative to the torso.
However, in the approach presented here, the trajectories of the
feet are modeled relative to the center of mass (CoM). The foot
positions relative to the CoM and the stance of the other body
parts are used for determining foot positions relative to the
torso that move the CoM to the desired point. Foot positions
relative to the torso allow using inverse kinematics (cf. Sect. II)
for the generation of joint angles.

Before the creation of walking motions starts, a stance (the
stand) that will be used as basis for the foot joint angles during
the whole walking motion is required. This stance is called .S
and it is created from foot positions relative to the torso using
inverse kinematics (cf. Sect. II). S is mirror-symmetrically to
z-z-plane of the robot’s coordinate system (cf. Fig. 2 right).
For the temporal dimension, a phase ¢ that runs from 0 to
(excluding) 1 and repeats permanently is used. The phase can
be separated into two half-phases, in each of which alternately
one leg is the support leg and the other one can be lifted up.
The size of each half-step is determined at the beginning of
each half-phase.

a) =0

><Co

left fqot ri
body

Q
=3
EX
5}
o
el

left fg

ight foot

ight foot rig

Fig. 4.

Tllustration of the foot shifting within three half-phases from a top-down view. At first, the robot stands (a) and then it walks two half-steps to the

front (b, c). The support leg (left leg in (a)) changes in (b) and (c). Between (a) and (b), the step size s, is added to the right foot position. Between (b)
and (c), s, is subtracted from the right and left foot positions, so that the body moves forwards. Additionally, the new offset s, 4+ s; is added to the left
foot position. The CoM visualized is the projection of the desired CoM position on the ground, that differs significantly from the respective projection of
the “center of body”. Therefore an additional offset has to be added to all translational components of both foot positions, to move the CoM to the desired

position.

The shifting of the feet is separated into the “shift’- and
“transfer”’-phases. Both phases last a half-phase, run sequen-
tially, and are transposed for both feet. Within the “shift’-
phase, the foot is lifted (“lift’-phase) and moved (“move”-
phase) to another place on the ground, so that the foot is
completely shifted at the end of the phase. The foot-shifting is
subtracted from the foot position within the “transfer’-phase
and also subtracted from the other foot position until that foot
is shifted (cf. Fig. 4). This alone creates a motion that already
looks like a walking motion. But the desired CoM movement
is still missing.

So the foot positions relative to the torso (p;re; and prrer)
are calculated as follows:

op + SiLift - tiLift
+5l * thove

PlRel = —Sr (1 - thove) : tl if ® < 0.5 (18)
o1+ SiLift - tiLift
+s1-(1—t,) otherwise
or + SrLift * trLift
+Sp - t'fMo’ue
PrRel = —Sr (1 - trMove) “t, ifp>05 (19)

Or + SrrLift * trLift

+s. (1 —1t) otherwise

o; and o, are the foot origin positions. siz;f: and s,r;¢¢
are the total offsets used for lifting either the left or the
right leg. s; and s, are the current step sizes. ?;r;r; and
t, i are parameterized trajectories that are used for the foot
lifting. They are parameterized with the beginning (z;) and the
duration (y;) (cf. Fig. 5) of the “lift”-phase. t;prove and & prove
are used for adding the step sizes. They are parameterized with
the beginning (z,,) and the duration (y,,) of the “move”-
phase (cf. Fig. 6). t; and ¢, are shifted cosine shapes used
for subtracting the step sizes (cf. Fig. 7). The trajectories are
defined as follows (p = p — 1):

1—cos(2w(2¢p—21) /Y1) if 2¢ €]l‘ + [
. 2 © Lo ZTE T Yl o
ILift {O otherwise .

1-cos(2m(2@—z1)/y1) i 955 ¢ |z +ul
tr . — D) 2 1...2] Yl 21
Lt {0 otherwise @D
1—cos(m(20—%m)/Ym) if 2()0 c
]xTVL AR m’"b + y’m[
tivove = § 1 if 2¢ € 22)
[T + Y - - 1]
0 otherwise
1fcos(w(2€7mm)/ym) if 2;0\ c
|Tm -+ Ty + Ym |
trMove = {1 if 2@ S (23)
[T + Ym - 1]
0 otherwise
1—cos(@mp) 4
0 otherwise
1—cos(2mp)
t, = 5 if ¢ 2.0.5 25)
0 otherwise

The CoM movement has to be performed along the y-axis
as well as in walking direction. The CoM is already moving
in walking direction by foot shifting, but this CoM movement
does not allow walking with a speed that meets our needs.
Also, a CoM movement along the z-axis is useful. First of all,
the foot positions relative to the CoM are determined by using
the foot positions relative to the CoM of stance .S and adding
the value of a trajectory to the y-coordinate of these positions.
Since the calculated foot positions are relative to the CoM, the
rotation of the body that can be added with another trajectory
has to be considered for the calculation of the foot positions.
The CoM movement in z-direction is calculated with the help
of the step sizes of the currently performed half-steps.

If any kind of body and foot rotations and CoM-lifting along
the z-axis are ignored, the desired foot positions relative to the

0.8

0.6

0.4

0.2

Hife

XY

Fig. 5.
to t;7, ¢ except that it is shifted one half-phase to the right.

0.8

0.6

0.4

0.2

0.2

0.8

The trajectory #;7,;7; that is used for foot lifting. ¢,.1,; ¢ is similar

L timove

Xm*Ym

0.2

Fig. 6. The trajectory ¢;psove that is used for adding step sizes. t,arove 1S

similar to ¢;p70pe €xcept that it is shifted one half-phase to the right.

1k J—
08|]
06 |]
04| 1
02 B

////
ol—]
0 02 0.4 06 08
2¢
Fig. 7. The trajectory ¢; that is used for subtracting step sizes. t,- is similar

to ¢; except that it is shifted one half-phase to the right.

tcom
s()

r(p)
i)

Fig. 8. The trajectory tcom that is used for the CoM movement along the
y-axis. It is a composition of s(p), r(¢) and I(p).

CoM (picom and prcom) can be calculated as follows:

—Cg + S5 - tcom + 0

Picom = —srtunse(tin) if o < 0.5 (26)
DrCom — PrRel + PlRel Otherwise
—Cs + S5~ teom + Or

PrCom = —%ﬂliw if @ > 0.5 @7
DiCom — PiRel + PrRel Otherwise

cs is the offset to the CoM relative to the torso of the
stance S. sy is the vector that describes the amplitude of the
CoM movement along the y-axis. t.,, is the parameterized
trajectory of the CoM movement. Therefore, a sine (s(p)),
square root of sine (r(p)) and a linear (I(p)) component are
merged according to the ratios . (for s(p)), y. (for r(p)) and
ze (for I(p)) (cf. Fig. 8). tcom is defined as:

e 5(0) + Yo 7(p) + 20 - 1)

teom = (28)
Te+ Yo+ 2
s(p) = sin(2wp) 29)
r(p) = +/|sin(27p)| - sgn(sin(27p)) (30)
4p if p<0.25
Ip) = { 2—4p ifp>025Ap<0.75 (31
p—-4 ifp>0.75

t1in 1s a simple linear trajectory used for moving the CoM
into the walking direction.

_l 2%

Based on the desired foot positions relative to the CoM,
another offset is calculated and added to the foot positions
relative to the torso (p;re; and prrer) to achieve the desired
foot positions relative to the CoM with coordinates relative to
the torso. For the calculation of the additional offset, the fact
that the desired CoM position does not change significantly

if <05

if ¢ > 0.5 (32)

between two cycles is exploited, because the offset that was
determined in the previous frame is used first. So, given the
current leg, arm, and head stance and the offset of the previous
frame, foot positions relative to the CoM are determined. The
difference between these foot positions and the desired foot
positions is added to the old offset to get the new one. The
resulting foot positions relative to the CoM are not precise,
but the error is negligible.

The additional offset (ej,q,) can be calculated using the old
offset (e,;4) as follows:

e _ PiRel—PiCom+PrRel—PrCom
new — 2

(33)
~Ceora,PLRel,PrRel
Ceorapiret,prre 15 the CoM offset relative to the torso given
the old offset, the new foot stance, and the stance of the other
limbs.
Finally, pire; — €new and Prrei — €new are the positions
used for creating the joint angles, because:

(34)
(35)

PiRel = Cepew,piret;prret — Enew =~ PlCom

PrRel — Cepew,piret,Prret — Enew = PrCom
IV. BALANCING

To react on unexpected events and for stabilizing the walk
in general, balancing is required. Therefore, several balancing
methods are supported. Three of them are simple p-controllers.
Only the step-size balancing also has an integral component.
The error that is used as input for the controllers is solely
determined from the actual pose of the robot torso, i.e., the
pitch and roll angles of the torso relative to the ground, and
the expected pose. The delay between the measured and the
desired CoM positions is taken into account by buffering
and restoring the desired foot positions and torso poses. The
different kinds of balancing are:

A. CoM Balancing

The CoM balancer works by adding an offset to the
desired foot positions (p;com and prcom). Therefore, the
error between the measured and desired foot positions has
to be determined, so that the controller can add an offset to
these positions according to the determined error. The error is
calculated by taking the difference between the desired foot
positions and the same positions rotated according to rotation
error.

B. Rotation Balancing

Besides CoM Balancing, it is also possible to balance with
the body and/or foot rotation. Therefore, angles depending on
the rotation error can be added to the target foot rotations
or can be used for calculating the target foot positions and
rotations. This affects the CoM position, so that the offset
computation that is used for moving the foot positions relative
to the CoM might compensate the balancing impact. So this
kind of balancing probably makes only sense when it is
combined with CoM Balancing.

C. Phase Balancing

Balancing by modifying the walking phase is another possi-
bility. Therefore, the measured x-angle, the expected x-angle
and the current walking phase position are used to determine
a measured phase position. The measured position allows
calculating the error between the measured and actual phase
position. This error can be used for adding an offset to the
current phase position. When the phase position changes in
this manner, the buffered desired foot positions and body
rotations have to be adjusted, because the modified phase
position affects the desired foot positions and body rotations
of the past.

D. Step-Size Balancing

Step-size balancing is the last supported kind of balancing.
It works by increasing or decreasing the step size during the
execution of half-steps according to the foot position error
that was already used for CoM Balancing. Applied step-size
balancing has the disadvantage that the predicted odometry
offset becomes imprecise. Therefore, it can be deactivated for
critical situations such as when positioning for kicking the
ball.

V. TORSO POSE ESTIMATION

Estimating the pose of the torso consists of three different
tasks. First, discontinuities in the inertial sensor readings are
excluded. Second, the calibration offsets for the two gyro-
scopes (x and y, cf. Fig. 2 right for the robot coordinate system
used in this paper) are maintained. Third, the actual torso pose
is estimated using an Unscented Kalman filter (UKF) [7].

Excluding discontinuities in the sensor readings is neces-
sary, because some sensor measurements provided by the Nao
cannot be explained by the usual sensor noise. This malfunc-
tion occurs sporadically and affects most measurements from
the inertial measuring unit within a single frame (cf. Fig. 9).
The corrupted frames are detected by comparing the difference
of each value and its predecessor to a predefined threshold. If
a corrupted frame is found that way, all sensor measurements
from the inertial measuring unit are ignored. Corrupted ac-
celerometer values are replaced with their predecessors and
corrupted gyroscope measurements are simply not used.

Gyroscopes have a bias drift, i.e., the output when the
angular velocity is zero drifts over time due to factors such as
temperature that cannot be observed. The temperature changes
slowly as long as the robot runs, so that it is necessary to re-
determine the bias continuously. Therefore, it is hypothesized
that the torso of the robot and thereby the inertial measurement
unit has the same pose at the beginning and the end of a
walking phase (i.e. two steps). Therefore, the average gyro
measurement over a whole walking phase should be zero.
This should also apply if the robot is standing. So either,
the average measurements over a whole walking phase are
determined, or the average over 1 sec for a standing robot.
These averages are filtered through one-dimensional Kalman
filters and used as biases of the gyroscopes. The collection of
gyroscope measurements is limited to situations in which the

—rawAccZ

—accZ

0.75

0.5

0.25

Fig. 9. A typical corrupted inertia sensor reading between the frames 110
and 100. The corrupted data was detected and replaced with its predecessor.

—rawAngleY
9| —angley

;W\ ﬂ /

-10
200 190 1380 170 160 150 140 130 120 110 100 90 80 70 &0

50 40 30 20 10

Fig. 10. The difference between the estimated pitch angle angleY and the
pitch angle rawAngleY provided by the inertia board of the Nao.

robot is either standing or walking slowly and has contact to
the ground (determined through the force-sensitive resistors in
Nao’s feet).

The UKF estimates the pose of the robot torso (cf. Fig. 10)
that is represented as three-dimensional rotation matrix. The
change of the rotation of the feet relative to the torso in each
frame is used as process update. The sensor update is derived
from the calibrated gyroscope values. Another sensor update is
added from a simple absolute measurement realized under the
assumption that the longer leg of the robot rests evenly on the
ground as long as the robot stands almost upright. In cases in
which this assumption is apparently incorrect, the acceleration
sensor is used instead.

It is not only possible to get the orientation from the

UKEF, but also to get a “filtered” version of the gyroscope
measurements from the change in orientation, including a
calculated z-gyroscope value that is actually missing on the
Nao.

VI. RESULTS

The gait described here was used at RoboCup 2009 by the
team B-Human [8] in the Standard Platform League — the
world champion and winner of the technical challenge. The
maximum speeds reached in soccer competitions were 15 cm/s
forwards, 10 cm/s backwards, 9 cm/s sideways, and 35°/s
rotational speed. An interesting effect is that the theoretical
maximum forward speed resulting from the foot trajectories
generate is only 12 cm/s. The additional 3 cm/s seem to
result from balancing by changing the step size. Therefore it
seems that the robot is walking faster because it continuously
prevents itself from falling down to the front.

At RoboCup 2009, our walk was the most robust one
for the Nao, and it still was among the fastest walks. Its
precision made us the team that was able to most quickly
align behind the ball for kicking. As a result we scored more
goals than all the other 23 teams in the Standard Platform
League together. There is a video on the B-Human homepage
(http://www.b-human.de) showing some scenes from
the games in which the gait can be seen. The software used
by B-Human at RoboCup 2009 can also be downloaded from
that website, including the implementation of the algorithms
described in this paper.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented a CoM-based closed-loop gait
for the Nao. Four different balancing methods make the gait
very robust, as has been proven during the RoboCup 2009
competitions. We also described an analytical solution to the
inverse kinematics of the Nao that is used for our gait. Finally,
we described the estimation of the pose of the robot’s torso,
which is the reference for the balancing methods.

Higher speeds can be achieved with this approach, but so
far not in a way that would allow walking omni-directionally
for more than 10 minutes in a row (a half-time) without falling
down. Hence, we will replace the CoM-based core of our gait
with a ZMP-based preview controller in the future, carefully
keeping the balancing methods in place that are the main
reasons for the robustness of the current walk. In addition,
we will work on automatically optimizing the parameters of
our gait, using Particle Swarm Optimization (PSO) [9] as we
have already done for a Kondo robot [10]. Actually, a few
parameters of the gait presented in this paper were already
optimized using this method.

ACKNOWLEDGEMENTS

The authors would like to thank all B-Human team members
for providing the software base for this work.

[1]

[2]

[3

[t}

[4

=

[5

=

[6]

[7]

[8

[t}

[9]

[10]

REFERENCES

D. Gouaillier, V. Hugel, P. Blazevic, C. Kilner, J. Monceaux, P. Lafour-
cade, B. Marnier, J. Serre, and B. Maisonnier, “The NAO hu-
manoid: a combination of performance and affordability,” CoRR, vol.
abs/0807.3223, 2008.

J. A. Kulk and J. S. Welsh, “A low power walk for the NAO robot,”
in Proceedings of the 2008 Australasian Conference on Robotics &
Automation (ACRA-2008), J. Kim and R. Mahony, Eds., 2008.

M. Vukobratovic and B. Borovac, “Zero-moment point — thirty five years
of its life,” International Journal of Humanoid Robotics, vol. 1, no. 1,
pp. 157-173, 2004.

S. Czarnetzki, S. Kerner, and O. Urbann, “Observer-based dynamic
walking control for biped robots,” Robotics and Autonomous Systems,
vol. 57, no. 8, pp. 839-845, 2009.

J. Strom, G. Slavov, and E. Chown, “Omnidirectional walking using
ZMP and preview control for the nao humanoid robot,” in RoboCup
2009: Robot Soccer World Cup XIII, ser. Lecture Notes in Artificial
Intelligence, J. Baltes, M. G. Lagoudakis, T. Naruse, and S. Shiry, Eds.
Springer, to appear in 2010.

T. Rofer, T. Laue, A. Burchardt, E. Damrose, K. Gillmann,
C. Graf, T. J. de Haas, A. Hirtl, A. Rieskamp, A. Schreck,
and J.-H. Worch, “B-Human team report and code release 2008,”
2008, 72 pages. [Online]. Available: http://www.b-human.de/media/
coderelease08/bhuman08_coderelease.pdf

S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, “A new approach
for filtering nonlinear systems,” in American Control Conference, 1995.
Proceedings of the, vol. 3, 1995, pp. 1628-1632. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=529783

T. Rofer, T. Laue, O. Bosche, I. Sieverdingbeck, T. Wiedemeyer,
and J.-H. Worch, “B-Human team description for robocup 2009,” in
RoboCup 2009: Robot Soccer World Cup XII Preproceedings, J. Baltes,
M. Lagoudakis, T. Naruse, and S. Shiry, Eds. RoboCup Federation,
2009.

R. C. Eberhart and J. Kennedy, “A new optimizer using particles swarm
theory,” in Sixth International Symposium on Micro Machine and Human
Science, 1995, pp. 39-43.

C. Niehaus, T. Rofer, and T. Laue, “Gait optimization on a humanoid
robot using particle swarm optimization,” in Proceedings of the Second
Workshop on Humanoid Soccer Robots in conjunction with the 2007
IEEE-RAS International Conference on Humanoid Robots, C. Zhou,
E. Pagello, E. Menegatti, and S. Behnke, Eds., 2007.

