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Abstract. This paper is motivated by the goal of a visual perception
system for the RoboCup 2050 challenge to win against the human world-
cup champion. Its contribution is to answer two questions on the sub-
problem of predicting the motion of a flying ball. First, if we could detect
the ball in images, is that enough information to predict its motion pre-
cise enough? And second, how much do we lose by using the real-time
capable Unscented Kalman Filter (UKF) instead of non-linear maximum
likelihood as a gold standard? We present experiments with a camera and
an inertial sensor on a helmet worn by a human soccer player. These con-
firm that the precision is roughly enough and using an UKF is feasible.

1 Introduction

1.1 Motivation: A Vision for 2050

In RoboCup’s humanoid leagues, the limiting factor is often the robot hardware,
in particular actuation. Current robots can walk and kick the ball, but are far
away from running, jumping, or tackling. Comparing the official RoboCup vision
to win against the human world champion in 2050 to the last 10 years of hardware
development, 40 years to go sound realistic but not overly conservative.

As computer vision researchers, we look at the other end of the causal chain.
How long is the road to a visual perception system that meets the RoboCup
2050 challenge? — Not too long, maybe a decade, was our conclusion in a recent
analysis [1]. This idea is encouraging. But would it help, if we would build a vision
system and then wait until 2050 to try it out? We propose an experiment without
a robot instead. We mount a camera and an inertial sensor on a helmet worn by
a human soccer player (Fig. 1) and ask, whether this setup and computer vision
could provide enough information for a humanoid to take the human’s place.

The paper is our first step towards this goal. It contributes a study on the
subproblem of predicting a flying ball. The study focuses on the tracking part and



Fig. 1. The proposed sensor setup with a wide angle camera and an inertial sensor.

hence uses manually processed images from real human soccer. We deliberately
chose not to implement a full system because real-time vision of soccer scenes
from a helmet camera is way beyond the scope of a single paper and instead of
presenting incremental progress towards this, we rather want to definitely answer
two basic questions on the tracking part: Is the information provided by a camera
and an inertial sensor enough to predict a flying ball with the necessery precision
for playing soccer? And, how much do we lose by using a real-time capable filter
compared to the slow gold standard solution of non-linear maximum likelihood
estimation? — In short, the answers will be positive: “Yes” and “not too much”.

1.2 From Walking to Running

For localization and tracking, it is essential to know the camera pose relative
to the ground. Today, it is usually obtained by forward kinematics since the
robots have well defined contact with the ground. Once robots start to run and
jump this will not be possible anymore. Instead, an additional sensor is needed
that perceives the camera’s motion, i.e. an inertial sensor measuring acceleration
and angular velocity. The insight that motion without ground contact will come
up in RoboCup sooner or later additionally motivates our experimental setup,
where the camera motion has to be treated as free motion anyway, because “on
a human”, of course, no kinematic information is available.

1.3 Methods

To show how to track a ball and its observer state with this combined sensor
setup, we will use well known methods and provide a quantitative evaluation.

Tracking algorithms exist in several variations. The family of Kalman filters is
well understood, reliable and often used. You will mostly find its variations, the
Extended Kalman Filter (EKF) [2] and the Unscented Kalman filter (UKF) [3],



in RoboCup applications. Also, filters based on Monte-Carlo methods, such as
the particle filter, or combinations of both [4] are popular.

In our case, the filter estimates the orientation of the free-moving camera. The
orientation has three degrees of freedom, but suffers from singularity problems
when parameterized with three variables, such as Euler angles. We therefore
use quaternions as singularity-free representations and a special technique, the
so-called embedding operator B, for handling them in an UKF.

To evaluate the UKF, we compared it to maximum likelihood estimation using
Levenberg-Marquardt as a gold standard. Furthermore, we evaluated the accu-
racy by comparing the calculated bouncing point from the tracker to the ground
truth bouncing point obtained manually from the images.

1.4 Related Work

In RoboCup, tracking of balls was studied by Voigtldnder et al. [5]. Their sys-
tem recognizes balls in the Middle-Size League and tracks their state over time
with a position error of < 0.5m. Their sensor setup consists of a perspective
as well as a catadioptric camera. Within the Small-Size League Rojas et al. [6]
developed a system to detect and track lifted kicks with a statically mounted
overhead camera. After a couple of frames, this system allowed a reliable predic-
tion of the ball’s bouncing point. Another interesting work was done by Frese et
al. [7]. There, the catch point for a robotic softball-catcher was determined by
predicting the ball trajectory which was tracked using stereo vision and an EKF.
Similarly, in [8] a system was developed that tracks a flying dart and repositions
the dartboard to always hit the bull’s eye.

Recently, even a commercial system has been introduced [9]. The so-called Robo-
Keeper employs cameras to track the ball. It intercepts the ball with a plastic
plate rotated around the lower end by a single motor. The system is intended
for public entertainment, so the plate shows the image of a goal keeper.

All these approaches either have a static camera or a camera fixed relative to the
ground plane. In contrast, we are dealing with a freely moving observer. This
requires to track the observer itself, making the problem much harder.

1.5 Outline

This paper is structured as follows. We introduce the proposed camera-inertial
system and the measurements obtained from it. Then, the calibration of the
alignment of the inertial-sensor and the camera will be discussed. The description
of the system variables and the underlying model lead then to an overview of the
UKF implementation. Finally, we present experimental results and a conclusion.
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Table 1. Measurements from the sensor setup and their corresponding units.

2 Experimental Setup

As mentioned above, we propose to use a combination of a monocular camera
and an inertial sensor as the sensor setup for answering the question if the motion
of flying balls can be predicted sufficiently.

2.1 Camera-Inertial Sensor System

In our setup, the monocular camera is a Basler A312fc (54 Hz) with a Pentax
H(416)KP lens (86° wide-angle). Attached to this camera is a XSens MTx inertial
sensor synchronized to the camera shutter. The camera provides information
about the environment and the inertial sensor about the setup’s motion (Tab. 1).

What information can these sensors provide? In principle, the pose of the camera
can be obtained by integrating gyro and accelerometer measurements, however
with accumulating error. To compensate this error, vision measurements of land-
marks, e.g. lines on the field, are used. The camera provides the direction towards
the ball from its image position. The image radius provides the depth, however
with a large error since the ball is small. Interestingly, implicit depth informa-
tion also comes from the effect of gravity over time. After a time of ¢ the ball
has fallen %gt2 relative to motion without gravity. This distance is implicitly
observed and, after some time, provides preciser depth than the ball radius.

One might also consider a stereo vision setup instead of a monocular one to
obtain the distance by triangulating at the stereo baseline. However, we use the
image radius of the ball implicitly triangulating at the ball diameter which is
rather even a bit larger. So we expect no great benefit from stereo.

2.2 Sensor Calibration

Both sensors operate in different coordinate systems. For that, a transformation,
mapping measurements between both, is needed. Our setup is not rotating too
fast. Therefore, we can neglect the translation and the problem reduces to finding
the rotational displacement. It is parameterized as a quaternion ¢, leading to the
following mapping of a vector veq,, from camera to v;ne, in inertial coordinates:

(0, Uiner) = Qﬁ:? : (0’ Ucal‘ﬂ) : QICSCT ! (1)
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Table 2. Tabulated summary of the systems’s state € S.

The rotational displacement ¢{2 is found by calibration. The idea here is to

use a horizontal checkerboard calibration plate so both camera and inertial sen-
sor know the direction “down” in their respective coordinate systems [10]. The
camera parameters are computed by nonlinear least squares estimation following
Zhang’s method [11] which is extended to estimate the rotational displacement
g with (1). The camera equations are described in Sec. 3.2. For our setup, the
calibration had = 0.2 pixels (camera) and = 0.26° (inertial sensor) residual.

3 System Model

The flight of a ball observed by a camera-inertial sensor can be formally rep-
resented by a dynamical system. Within this system, the state of the ball and
sensor changes as the ball flies and time progresses. The composition of the
system’s state and its variables is given in Tab. 2.

3.1 Dynamic Equations

The evolution of the state, i.e. the motion, is given by ordinary differential equa-
tions. For the ball, these obey classical mechanics with gravitation and air drag.

Sbb = Vp (2)
cadp 3)

where g represents gravity. The effect of air drag is determined by the factor «,
where cq4 is the drag coefficient, p is the density of air, A is the cross-sectional
area and m the mass of the ball. Our football had a cross-sectional area of
A =0.039 m? and mass of m = 0.43 kg, resulting in o = 0.011 m™'.

vy =g—a-|vpl vy, a= 5
m

Similarly, the motion of the sensor follows differential equations that incorporate
the measurements from the inertial sensor (Tab. 1 and 2).

y . 1

dworld = Gworld * 5(0, w) (4)
T, = Vg (5)
Vs = g+ Gyona * (0,a) - qxlzifrrld_l (6)

Basically the inertial measurements are converted from body- to world coordi-
nates and integrated once (¢ from w) or twice (x from a).



3.2 Measurement Equations

The measurement equations model the measurements from the monocular cam-
era, i.e. image position and radius of the ball and of point landmarks on the
soccer field. We model the projection of these features from the state using a
pin-hole camera model plus radial distortion. The first function simply projects
a point T0rq from a 3D-scene into the image plane at (u,v)”:

()}(,c‘”") _cam —1 ( 0 ) cam (7)
cam = Qyorid Qworld

Zecam Lyorld — Ls

T\ Xcam
()- (i)
u fa x! Ug
- : + 9
(U> (fy) (y') (”0> )
The first equation transforms the world point into camera space according to
the quaternion ¢220, = gy, - ¢52™ and the sensor’s position x,. Equation (8)
is the actual perspective projection. The last equation transforms the result to
pixels according to f,, f, (effective focal distance) and ug,vo (image center).
)T

The camera’s radial distortion is considered by scaling (z,y)" according to

x/ T asr + asr? 9 9 9
(y’) (y)( +1+b1r+brzr2+b3r3>’ TEry (10)

To model the ball measurements, we project the ball from a 3D-scene as a circle
into the image plane. For this, we use the introduced projection to calculate
the position of four outer points of the ball state, which are computed from the
always known ball diameter, on the image plane. After that, we recombine the
projected points to center and radius by computing mean and std. deviation.

4 Unscented Kalman Filter (UKF) for Ball Tracking

For tracking the ball and sensor state over time, we use an UKF incorporating
the preceding equations into the dynamic update and measurement update step.

4.1 Dynamic and Measurement Equations

The UKF’s dynamic update step uses a numerical solution of (2), (3), (5), (6).
For (4) an analytic solution is used. The camera measurements are integrated in
the measurement update step using the perspective projection (7)-(10).

Kalman filters assume noisy processes. Therefore, the dynamic noise R and mea-
surement noise @ need to be defined. We set (2) and (5) to zero noise assuming
that every error in position comes from an error in velocity. The dynamic noise



of the inertial sensor, affecting (4) and (6), was calibrated from a resting sen-
sor. The dynamic noise of the ball (3) was tuned by looking at the recorded
trajectory. This parameter is important since it models side wind and bended
trajectories caused by ball spin. Based on these values, the measurement noise
for the ball and landmark measurements were calibrated by maximizing their
likelihood in an recorded series of a ball flight [12].

4.2 Quaternions in the UKF State

To track the state of the system described above, we use a customized UKF.
While tracking xs,vs, p, vy is straight-forward, the orientation qgfrrld poses a
special problem. In Sec. 3, we modeled the orientation in the state space S using
a unit quaternion to avoid singularities. Unfortunately, such a state cannot be
treated as a vector R? because of the constraint [¢%" || = 1. In mathematics such
a structure is called a 3-manifold in R*. The filter doesn’t know this structure
and assumes to operate on a flat vector. Hence, after a measurement update,

usually ¢, | # 1 and the result is not an orientation anymore.

Our idea to solve this problem is to use the mean-state from the UKF as a
reference and parameterize small deviations from that reference as a flat vector
with a dimension corresponding to the dimension of the manifold (i.e. 3 for

iner

ginen 4)- As the deviations are small, this is possible without singularities.

The operation of applying such a small change to the state is encapsulated by an
operator H and the inverse operator H. They provide an interface for the UKF
to access the state, which is then treated as a black-box datatype.

B: SxR"—S (11)

H: SxS—R" (12)
8153(82581)282 ( )
sB(a+b)~(sBa)Bb (14)

To summarize the interaction between the UKF and the blackbox state datatype,
dynamic and measurement equations access the state’s internal structure as they
depend on the concrete problem. However, the generic UKF equations for sigma
point propagation and measurement update access the state only through H
and B with a flat vector. Thereby, the state’s internal structure, in particular
the manifold structure underlying quaternions, is hidden from the UKF. Notably,
this corresponds to a common implementation issue, that one would prefer the
state to have named members sometimes and sometimes a flat vector.

As a result, in all the matrix computations of the UKF the quaternion part of the
state qw(f’rrld simply corresponds to 3 columns just as the vector part x, v, p, Vp.
The only difference arises when the UKF finally applies the innovation to the
state by H, where the vector part is a simple + and the quaternion part is a

more complex operation (multiplication with an angle-axis rotation).



Fig. 2. Grid overlay of a homography between the image plane and the field plane.
Observe the fine correspondence near the line in front of the goal.

This method is more elaborated in [13]. Its beauty lies in the fact that it is
obtained from the classical UKF simply by replacing + with B and — with B.

5 Experiments

We implemented the ball tracker as described above and held a series of exper-
iments on a real soccer field. A human wearing the helmet with the camera-
inertial sensor followed the trajectories of several ball flights which where initi-
ated by another person. The data was recorded and the images were manually
processed (confer the introduction why). The image center and radius of the ball
and the image position of the field’s landmark points were extracted. Landmarks
were all intersections of two lines on the field, the lower end of the goal posts,
the intersections of the goal post with the crossbar and the penalty spot.

5.1 Performance Compared to a Gold Standard

To evaluate the performance of the unscented Kalman filter, we implemented a
nonlinear maximum likelihood estimator using the Levenberg-Marquardt (LM)
algorithm [14]. It performs the same task and uses the same model as the Kalman
filter. In contrast to the UKF, however, estimating the current state requires
to estimate all past states as well. This makes maximum likelihood estimation
computationally expensive and unsuitable for real-time tracking. The question
we want to answer here is, whether the UKF is good enough or whether we will
have to think about better real-time capable alternatives in the future.

5.2 Obtaining Ground Truth

To analyze the accuracy of the tracker, we wanted to compare the predicted
bouncing points of the tracked ball states with the real bouncing point. This



Fig. 3. Tracked trajectories and velocity vectors of the unscented Kalman filter (shown
as red spheres) and the Levenberg-Marquardt algorithm (shown as green spheres). The
purple sphere denotes the initial ball position.

turned out to be not that easy as the ball leaves no permanent mark on field,
making a manual measurement infeasible. However, at least temporarily raised
dust is visible on the video. So for the evaluation here, the actual bouncing
point was determined from the image position of the dust in the video using a
homography between at least four landmarks on the field and their corresponding
points in the image plane (correcting for distortion). If the dust was visible in
several images, we took the mean of these results. While we have no quantitive
value, the homography looks visually rather precise (Fig. 2).

5.3 Results

In order to show how well the ball flight observed by a moving camera-inertial
sensor can be estimated and predicted, results from one fully filtered ball flight
recorded during the experiments will be given. For this, a ball flying about 3 m
(reaching an maximum height of 1.6 m) towards the observer from about 7 m
away was chosen. The ball was flying almost spin-less and the impact of the side
wind to the ball at this range of flight and speed was minimal. The performance
of tracking and predicting the trajectory is obtained by comparing the predicted
bouncing points of the tracked trajectory with the ground truth bouncing point.

Figure 3 shows the trajectory and velocity vectors tracked by the unscented
Kalman filter and the LM algorithm from this flight. As can be seen, both
methods calculate almost the same series of state estimates. But the tracked
trajectories do not resemble the smoothness of the actual trajectory. Note that,
since we plotted the estimate over time, Fig. 3 does not show how the tracker
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Fig. 4. Error between the predicted bouncing points computed from the estimated
trajectory and the mean of the ground truth measurements over time.

believes the ball flew, but how the belief of the tracker on where the ball is
changed. So the jerkiness in the beginning is due to new information arriving.

Another interesting behavior is the estimation of the velocity vectors pointing
away from the actual flight direction. This behavior is not suprising since the
monocular camera defines the ball distance by the ball diameter. Within the
first few frames the diameter is 16 + 1 pixels, leading to an expected error of
6.25% in the distance. So, initially estimating the distance is very difficult, the
situation only gets better after the ball has been observed for some time.

5.4 Prediction Performance Compared to Ground Truth

To show how the prediction performs over time, Fig. 4 depicts the error between
the prediction of the tracked ball state and the assumed bouncing points as
a function of time. It can be clearly seen that the UKF and the LM method
perform similar. The error of both methods decreases with time. Interestingly,
the prediction performance improves in a wave-like shape, caused by the integer
based image radius measurements. The peaks of the waves decrease, since the
influence of the radius diminishes and the distance becomes more defined by
gravity (Sec. 2.1).

A quantative analysis reveals that the estimation of ball states behind the initial
ball position lead to very inaccurate ball predictions in the beginning. The error
decreases significantly after 7 frames (or about 129 ms), reaching a surprisingly
good estimate with a difference between 0.1 m and 0.4 m. Then, the accuracy
decreases rapidly for a couple of frames before it reaches a next good estimate
after 16 frames (297 ms) with an error between 0.1 and 0.15 m. From here, the
estimates seem to be quite reliable and the prediction performance improves in
the above mentioned wave-like shape.



Fig. 5. Predicted trajectory of a flying ball observed by a moving camera-inertial sen-
sor projected into image coordinates. See http://www.informatik.uni-bremen.de/
~ufrese/sportrobotics/accuracyanalysis/index_e.html.

Figure 5 shows a predicted trajectory of a ball from its tracked state projected
into images coordinates. This image is part of a video visualizing the prediction
performance within the recorded images from the experiments.

The results observed within this ball flight match the results from the two other
ball flights that were evaluated. All three flights showed a suprisingly good pre-
dicted trajectory after 8 — 10 frames. But all of these predictions only lasted for
one or two frames, assuming that there is still a large amount of uncertainty at
this point of the time during tracking. A couple of frames later, namely after
15 — 16 frames (278 — 296 ms), all examined flights show a quite accurate indi-
cation of the predicted bouncing point. This number of frames seem to be the
point in time in which the distance is more defined by gravity than by the image
radius.

For more information on our experiments and results on further scenes, see [12].

6 Conclusion

In this paper, we have shown how to track and predict the trajectories of flying
balls using a freely moving monocular camera-inertial sensor. We have evaluated
the precision by comparing the predicted bouncing points over time with the real
bouncing point. The results indicate that after half the time of flight the error
is about 0.3m which we judge to be enough for playing soccer. The real-time
capable UKF and Levenberg-Marquardt, the gold standard, perform very similar.
We can conclude that with such a setup, flying balls can be predicted roughly
precise enough for playing soccer and the UKF is a feasible algorithm for that.

The next step is, of course, to replace the manual vision by computer vision.
This is difficult because of the uncontrolled lighting and background on a real
soccer field. Our idea [1] is to use, in turn, the tracking component as context for



the ball detection. In real images, many things may look like a ball, e.g. a head,
a white spot, or reflections, but few of them move according to the physics of
a flying ball. So by treating the problem as a combined likelihood optimization
with respect to both the physical trajectory model and visual appearance, we
hope to obtain a reliable vision system.

Furthermore, we want to go away from predicting a single pass to tracking the
ball during a full scene. Therefore, we need a multi-state tracker which not only
tracks the state of a flying ball, but also a ball which is rolling or just lying.
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