A Scripting-based Approach to Robot Behavior Engineering
Using Hierarchical Generators

Thijs Jeffry de Haas, Tim Laue and Thomas Rofer

Abstract— When developing software for autonomous robots,
the aspect of behavior engineering is, among tasks such as sen-
sing, state estimation, and motion control, of major importance.
Current solutions range from basic behavior-based approaches
to sophisticated reasoning systems, in each case depending on
the complexity of the robot’s task as well as the available
amount of computing time. In this paper, we present a behavior
specification language, which is called b-script, to describe
hierarchical agent behaviors using the programming concept
of generators. We show that this is a convenient approach
to realize complex robot behaviors in an intuitive and clean
way that can be used in large-scale. Furthermore, the actual
implementation of this language is in particular suited to be
used on resource-restricted embedded systems. This is shown
in different examples of a Nao robot in a robot soccer scenario.

I. INTRODUCTION

Each robot that operates (at least partially) autonomously
needs an action selection (aka behavior) component to map
sensor input or world models to actions. For some trivi-
al tasks, this can already be achieved by sensor actuator
coupling, but in general, more sophisticated mechanisms
are necessary. These range from behavior-based approaches
[1] over pragmatically hand-coded finite state machines [2]
to complex planning systems such as [3] or [4]. Amongst
others, the applied approach might depend on the complexity
of the task, the number of different sub-tasks, as well as of
the necessary amount of computing time that is available
on the used robot platform. The actual task of defining a
robot’s action selection, which is often named as behavior
engineering, is, in general, supported by various description
languages or logics.

In this work, we focus on the development of behaviors
for robots with limited computational resources in dynamic
scenarios that require acting in realtime and that cannot be
handled by behavior-based approaches due to their comple-
xity or a strictly specified workflow that might conflict with
emergent behaviors. Typical examples for such scenarios are
office delivery, (semi-)autonomous transportation of humans,
or industrial pick and place tasks. In such domains, it is a
common practice to preprogram decisions explicitly and to
avoid any computationally expensive inference. This is often
realized by implementing state machines, either by using
special description languages or by directly using some kind
of common programming language.

Thijs Jeffry de Haas is with Department of Mathematics
and Computer Science, Universitit Bremen, Bremen, Germany.
jeffry@informatik.uni-bremen.de

Tim Laue and Thomas Rofer are with Cyber-Physical Systems, DFKI,
Germany. {Tim.Laue, Thomas. Roefer}@dfki.de

The contribution of this paper is a domain-specific langua-
ge called b-script to describe hierarchical agent behaviors
using the programming concept of generators. We show that
it is a convenient way to use hierarchical continuation-based
routines to realize complex robot behaviors in an intuitive
and clean way and that it can be used in large-scale appli-
cations. This is achieved by using a specialized generator
implementation, similar to Python’s generators, including
implicit context maintenance. The language is in particular
suited to be used on resource restricted embedded systems,
such as the Nao robot [5], and was already successfully
applied in actual competitions of the RoboCup [6] Standard
Platform League [7]. Furthermore, b-script has a strong type
system and a scripting-like look and feel that can be compiled
to C++.

The development was guided by different domain-specific
requirements, in particular:

o light-weight due to resource restricted hardware

« allow execution in realtime

o casily embeddable into existing robot architectures
(usually written in C/C++)

« consider long and costly edit-compile-deploy-test cycle

o “runtime safe” (no runtime exceptions)

In theory, the basic functionality of this approach could
also be realized by using several established high-level
languages, such as Python, Lua, Ruby, or C#. But in practice,
these languages have different drawbacks, as they are either
dynamic languages (conflicts with “runtime safe” and the
long edit-compile-deploy-test cycle) or need extensive runti-
me libraries such as Microsoft’s Common Language Runtime
(conflicts with light-weight). In addition, for modeling robot
behavior, the full expressiveness of general-purpose langua-
ges is not needed. In contrast, it can even be a drawback
when developing in large teams, because there is always
the risk of the introduction of hacks, i.e. constructs that
seriously impede the maintainability of the whole system.
Therefore, with b-script we specifically designed a language
for modeling robot behavior. As such, it excludes concepts
that are not needed for its purpose and bear the risk of
resulting in confusing code (e.g. global variables) and it
introduces new ones that are very beneficial in its domain
(e. g. tasks).

This paper is organized as follows: Section II provides an
overview of related work in general and the basic concept of
generators in particular. Their use in this work is explained in
Sect. III, followed by a description of their actual application
for specifying complex behaviors Sect. IV. The b-script

language details are presented in Sect. V. Finally, recent
applications of b-script are shown along with an evaluation
in Sect. VL.

II. RELATED WORK

As aforementioned, finite-state machines are a common
choice for describing a robot’s behavior. Although a di-
rect implementation is possible in almost any programming
language, it is a common practice to use domain specific
languages. Some recent examples include XABSL [2], XRo-
bots [8], and the use of UML state charts [9], [10]. These
implementations have in common that they are not limited to
the specification of single, possibly very huge state machines
but that they also allow structuring complex behaviors by
splitting them into a hierarchy (such as the example in Fig.
1b) of smaller state machines.

Other behavior description systems are COLBERT [11],
which includes finite state machines as one major concept, as
well as TDL (Task Description Language) [12], an extension
to C++. Also the known URBI framework [13] includes
its own, event-based behavior scripting language called
UrbiScript. All three approaches are based on concurrent
code blocks to realize the decomposition of problems, a
concept that makes the detailed interplay of different tasks
less comprehensible and — in case of bugs or necessary
fine-tuning — harder to debug. In addition, COLBERT as
well as URBIScript are both embedded in specific control
frameworks — Sapphira and URBI respectively — and cannot
be considered as light-weight regarding a usage inside other
frameworks or control concepts.

Most behavior engineering approaches use programming
paradigms that differ from the one that is, in general, used
for most other software components inside a robot system:
imperative programming'. Huge problems are decomposed
into small bits and assembled in a hierarchical structure.
Each component in the hierarchy is usually a function that
solves a sub-problem (e.g. finding the brightest pixel in
an image). This allows creating complex programs that are
well structured and relatively easy to understand. Almost all
programmers are familiar with this programming concept.

Considering robot behaviors on an abstract level, there
is actually only a minor difference from conventional pro-
gramming problems: the (sub)problems cannot be solved
immediately but need to be approached iteratively in dis-
crete steps (e.g. approaching an object and manipulating
it). However, usual blocking functions are not adequate to
decompose these problems hierarchically. By using the pro-
gramming concept of generators, we can create function-like
routines that provide exactly the behavior required. To put it
simple, they allow creating routines that can be suspended
(using the yield statement) at any point in execution and
be resumed later. When suspended, the context (program
counter and local variables) of the generator will be saved.
When resumed, the generator will continue its execution

'Even when using object-oriented languages such as C++, major parts of
the programs consist of imperative blocks.

from the saved context. Certain programming problems can
be modeled very elegantly with generators. In particular,
problems that are typical use cases for finite state machines,
such as parsers or communication protocols, can be described
efficiently, as demonstrated by [14]. A basic example that
computes a Fibonacci sequence using the b-script generator
implementation is shown in Fig. la.

Jouvin introduced an approach to use continuations —
the functionality underlying generators [15] — to specify
behaviors of conversational agents [16]. It is shown that
continuations can be used to describe agent behaviors in an
elegant and intuitive way, however, no applications to robot
behaviors are considered. Interestingly, it seems that this
approach was not further investigated. Furthermore, Bruce
and McMillen discussed the possibility of implementing a
robot soccer goalkeeper using Python generators [17]. They
showed a rudimentary example but apparently did not apply
the approach to real robots.

III. TASKS — GENERATORS FOR ROBOT BEHAVIORS

The core of our approach are so-called tasks. These are
specialized generators that provide a handy way to describe
hierarchical robot behaviors. In this section, the characteri-
stics compared to generators are described.

A. Context Maintenance

When using common generator implementations, there is
the need to handle the context of a generator explicitly.
One can create multiple instances of the same generator. For
specifying robot behaviors, this is not necessary since each
component of the hierarchy represents a skill and could be
treated as some kind of singleton (like a function). Therefore,
each task is associated with a single context instance, which
is stored in the b-script runtime environment and is retrieved
when the rask gets called (cf. Fig. 1a).

B. Task Parameters

Regular generators evaluate their parameters only once
when the context is created. When used in a hierarchical
orchestra controlling a robot, this usually is not very helpful.
Consider a problem from the robot soccer domain: the fask
Motion::walkTo(position) in Fig. lc that is called by a task
that tries to approach the ball. The relative position of the
ball will change while approaching it and hence the target
position passed to walkTo needs to be updated in every frame.
Therefore, b-script evaluates the parameters of a fask at each
call.

C. Task States

The context of a common generator usually has discrete
states. If not in execution, the state is either suspended or
dead. A suspended context can be resumed whereas a dead
context indicates that the generator terminated and can not
be resumed. In contrast, in b-script a task can be in a nearly
arbitrary number of states. If a rask is running (any task state
> 0), the task is suspended and will resume its context on the
next call. A task is done when it terminated with the previous

a) b)

1 task alignForKick()
© 5

3
gotoBallAndKick 4 task gotoBallAndKick()
1 requires "io" 5 func kickPoseReached() : bool
2 6 return #determine aligned for kick
3 task fib() 7
4 inta=0 8 for(; input.ball.position.abs() > 150; yield)
5 intb=1 i) 9 Motion::walkTo(input.ball.position)
6 alignForKick 10
7 for(; true; yield) 11 for(; !'kickPoseReached(); yield)
8 io::printi(b) 12 if(input.ball.position.abs() > 250)
9 intt =b 13 yield TaskState::failure
10 b += a 14 alignForKick()
11 a=t 15
12 16 for(; true; yield)
13 func main() 17 Motion: :kick()
14 for(int i = 0; 1 < 20; i+=1) 18 if (taskState(Motion::kick) == TaskState::done

15 fib()

Fig. 1.

19 break

a) Using a b-script task to generate the Fibonacci sequence. b) A simple hierarchy of behaviors which serves as comprehensible main example

for the description of b-script. The main task of playing a ball is decomposed into simpler tasks such as kicking and walking. Each task can be considered

as a single behavior. ¢) The according b-script code to this example.

call and will be restarted with the next call. A fask can also
be in failure state (any number < 0), which also results it to
be restarted with the next call. Besides the implicit task state
handling (termination — done, yield — running), the yield
statement has an optional parameter that allows explicitly
setting the task state, e. g. yield TaskState: :failure. The state
of a task can by retrieved by its caller (or any other task or
function) with the expression raskState(<taskldentifier>).

Thus, task states can be used to indicate the internal state
of a task — e. g. termination or errors — that can be retrieved
by other tasks and functions in order to react on them (cf.
Fig. 1c¢).

D. Implicit Context Handling

Hierarchical finite state machine implementations, such
as XABSL [2], use implicit context management. The basic
“scheduling” algorithm used in XABSL is to reset the
context of a state machine if the state machine transitioned
to a target state in the previous call, or it was not called
at all during the previous execution cycle. Otherwise, the
previous context will be continued. b-script uses the same
approach for the task contexts. As mentioned in Sect. III-C,
tasks will reset their context at a call if their task state is
either TaskState::done or TaskState::failure. Furthermore
the task will reset its context if it was not called in the
previous execution cycle. A nice side effect of this behavior
is that a task even continues its context if it was called
from different callers consecutively, i.e. when the same
sub-behavior is required by different successive higher level
behaviors, it is simply continued.

These specializations provide a handy and clean way to
handle tasks without any “overhead”. From a callers point
of view, they behave exactly like functions. In fact, one
can turn a b-script function into a task without changing
the invocation (assuming the parameters are the same). The
only difference to a regular function is the use of the
yield statement. Figure lc depicts how to specify a simple
gotoBallAndKick skill using a task.

IV. COMPOSING TASKS TO DESCRIBE BEHAVIORS

The tasks introduced in Sect. III can be used to describe
reactive low-level behaviors as well as composed and deli-

beratetive higher level behaviors in an intuitive way. In the
domain of robot soccer, executing a certain kick or head
control (to control the robot’s gaze) are common low-level
tasks, whereas gotoBallAndKick is a typical composed high
level task. Figure 2 shows a more complete implementation
of a gotoBallAndKick skill including the two low-level tasks
mentioned.

In general, the tasks will be called like functions and
execute one step, i.e. generate the next action based on the
actual state, and suspend again. In terms of usual generators,
this could be seen as a dynamic iterator executing an action
instead of yielding a value. As Fig. 2 illustrates, this can be
used to easily describe behavior components in a clean way,
where in particular the connectedness of the code fragments
is obvious because it follows the common procedural control
flow.

In particular in the domain of robotics, special cases
are often necessary to realize certain features. Using finite
state machines implementing a special case always results in
adding a new state. This often leads to multiple states that
only differ slightly from each other and are inconvenient to
maintain. Using fasks, we can easily add special cases. Most
likely this can be realized using an if...else... statement at
a certain position in the code. Such a special case is, e.g.,
shown in Fig. 2c in lines 10-13. A finite state machine would
have to have two distinct states to realize that the head control
is depending on the distance to the ball.

Obviously, this approach is suited best to specify more or
less sequential behaviors. The practical use of this system
showed that most non-sequential situations can be decom-
posed into hierarchical components, which can be described
properly with this approach. As in all procedural languages,
we can also emulate finite state machines if they are actually
needed. Since we can use usual procedural programming
features, the control flow, and local variables to maintain the
“state”, we can easily specify customized state-based general
automata. In addition, we can integrate further features such
as, e. g., the use of utility functions, neural networks, or other
high as well as low-level decision making components.

a)
task executeKick()
#set output signal until motion agent reacts
for(; input.executedMotion != MotionType::kick; yield)
output.motion = MotionType::kick

for(; input.executedMotion == MotionType::kick; yield)

1
2
3
4
5
6 #reset output signal and wait until kick is finished
7
8 output.motion = MotionType::stand

b

~

task lookAtBallAndGoal()
float ballRatio = 0.75

1
2
3
4 int startTime = input.time
5 for(; true; yield)
6
7
8
9

float progress = ((input.time - startTime) % 2000) / 2000.0

if(progress < ballRatio)

TlookAtBall()
10 else
11 lookAtOppGoal()
)

1 task gotoBallAndKick()
func kickPoseReached() : bool
return #determine aligned for kick

2

3

4

5 int ballNearDist = 100
6 int ballFarDist = 300
7
8

for(; input.ball.position.abs() > ballNearDist; yield)

9 Motion::walkTo(input.ball.position)
10 if(input.ball.position.abs() < ballFarDist)
11 Head: : lookAtBall()
12 else
13 Head: : lookAtBallAndGoal()
14
15 for(; !'kickPoseReached(); yield)
16 if(input.ball.position.abs() > ballFarDist)
17 yield TaskState::failure
18 alignForKick()
19
20 for(; true; yield)
21 Motion: :executeKick()
22 Head: : lookAtBall()
23 if(taskState(Motion::executeKick) == TaskState::done)
24 break
d)

gotoBallAndKick
alignForKick

Head

lookAtBallAndGoa

lookAtBall lookAtOppGoal

Fig. 2. A cross section of a gotoBallAndKick skill: a) & b) executeKick
from the Motion module and lookAtBallAndGoal from the Head module
are common low level tasks c) gotoBallAndKick is a common composed
high level task, Motion::walkTo includes obstacle avoidance d) shows the
visualized hierarchy of the behaviors used to describe the gotoBallAndKick
task.

V. B-SCRIPT - LANGUAGE & FEATURE OVERVIEW
A. Syntax

The syntax of b-script is mainly a mixture of Python
and C++ syntax. It uses pythonic indentation-based block
delimiting while using a C++ like syntax for if and for
statements. This provides a common compact high level
syntax with good code readability, which should be familiar
and intuitive to most programmers.

Many domain-specific languages use special syntactical
and semantic constructs (e.g. Colbert [11] and UrbiScript
[13]). To ensure easy migration, b-script does not use any
specialized constructs. At the same time, this should encou-
rage to exploit the capabilities of usual procedural program-
ming constructs extensively to gain specialized solutions.

1 #include "../Util/b-script/src/bsNativeModule.h"
2 #include "bs_Math.h"

3

4 BS_MODULE (Math,

5 registerClass<Vector2<> >(module, "Vector2f", "Vector2<>")
6 .var("x", &ector2<>::x)

7 .var('"y", &ector2<>::y)

8 .func("abs", &ector2<>::abs)

9 .func(" plus ", &Vector2<>::operator+, "operator+")

10 .func("_min_ ", (Vector2<> (Vector2<>::*)(const Vector2<>&) const)
11 &Vector2<>::operator-, "operator-")

12 ;

13

14 registerFunction(module, "fabs", (float(*)(float))&fabs, "fabs");

Fig. 3. A code snippet declaring a C++ b-script module. The C++ class
Vector2<> gets registered as Math::Vector2f including its member varia-
bles = and y as well as a member function and two operators. Furthermore
a function gets registered. The types and signatures of the registered classes
and functions will be deduced automatically. Each register... call takes the
predefined module variable as well as the b-script identifer, the C++ pointer
and optionally a C++ identifier (for the C++ code generation) as parameters.

B. Language Overview

In b-script, each file declares a module similar to Python
or Lua. Dependencies to other modules can be declared using
the requires statement at the top of a module. Each module
consists of functions and tasks. This makes the language very
modular and enables comfortable parallel development of
huge behaviors in teams without interfering with each other.

b-script implements a minimalistic but sufficient subset
of common procedural programming statements. This makes
the language easy to learn and understandable for non-
experts (the examples in this paper demonstrate almost all
features).

C. C++ Integration

b-script includes an object-oriented interface to integrate
C++ functions and classes similar to Boost. Python [18]. This
makes embedding b-script into existing robot architectures
easy and comfortable. Furthermore it provides a powerful
way to extend the language itself since modules can be
written in C++ and used in b-script. Notable is that b-script
does not have any support for declaring objects. All objects
and types available are C++ objects registered through the
C++ interface (this even includes basic data types such as
integers, floats, and Booleans). Figure 3 shows an example
declaration of a C++ b-script module.

Scripts written in b-script can either be executed using an
interpreter or be compiled to C++ code. The generated C++
code defines a C++ b-script module, which can be loaded
by the b-scriptEngine and be executed very efficiently.

D. System Overview - Input/Output - Communication

In general, behavior systems are using input values provi-
ded by the robot software and produce output values that will
be returned to the robot software. The input values usually
are pre-processed sensor readings and world models built
on top of these sensor readings. The output values normally
are actuator commands or high-level commands that will be
post-processed by the robot software to generate actuator
commands.

As such a behavior system, b-script can be integrated into
any robot control architecture that provides the world model

Action
Selection

Sensor
Processing
(Sense)

Motion
Generation
(Act)

World
World Model
Modeling @

(Think)

World

Fig. 4. System overview of a typical robot control software following
the Sense-Think-Act cycle using b-script. The surrounding robot software
provides the world model as input and receives the action selection in return.

Application #Tasks | #Func. | #regClasses | #SLOC
RE GO2011 | 37 20 16 1543
RE RC2011 | 56 35 16 2615
BH RC2011 | 46 33 26 1630

Fig. 5. Statistics of RoboCup behaviors written in b-script. Legend: RE
= RoboEireann, BH = B-Human, GO2011 = GermanOpen2011, RC2011
= RoboCup 2011, regClasses = registered classes, SLOC = source lines of
code

as input data and generates actuator commands from b-
script’s action selection. Figure 4 depicts a system overview
of a robot control software using b-script as behavior system.

To access the input and output structures, b-script has
two global variables declared and assigned through the b-
scriptEngine. These variables are arbitrary data structures
registered through the C++ interface. Both variables are
accessible globally in b-script modules through the identifiers
input and output.

Intentionally, general communication between fasks is
prohibited. This is done to avoid obscure communication
channels (e. g. global variables), which would break the clean
structure and modularity of b-script behaviors. Therefore,
input is a read-only variable, output is a write-only variable,
and no further global variables can be declared. The only
communication between tasks are their parameters and the
task states.

VI. APPLICATION AND EVALUATION
A. Application

So far, b-script was applied in RoboCup competitions
in the Standard Platform League. The RoboCup provides
several complex and dynamic benchmark environments for
all kinds of robot software and hardware systems. In the
Standard Platform League, the humanoid Nao robot [5] by
Aldebaran Robotics is used. Teams consisting of four auto-
nomous robots each play soccer games against each other on
a 6x4m? color-coded pitch as depicted in Fig. 6. The robots
mainly use their cameras with an diagonal opening angle of
58° to perceive the world and build world models on top
of the resulting percepts. The robots use two-legged walking
algorithms for locomotion. Due to the limited field of view
and the bipedal locomotion, the perception, world models as
well as motions are subjects of high uncertainty and noise.

The Standard Platform League team RoboFEireann [19]
used b-script to develop the behavior system for the German
Open 2011 and the RoboCup 2011. Especially the behavior
system used on the German Open 2011 performed very suc-
cessful. RoboEireann achieved the fourth place and defeated

-
ey /L /L
V- 7 Al 77~ PN

Fig. 6. RoboCup Standard Platform League: Nao robots autonomously
playing a 4 on 4 soccer match in a color-coded environment.

the later vice world champion in a penalty shootout. Here,
b-script allowed rapid and easy behavior development and
adaptation to new situations even in short match timeouts
without circumstances. It definitely fulfilled its contribution
to the successful participation.

The reigning world champion in the Standard Platform
League B-Human [20] used b-script to develop the penalty
behavior for the RoboCup 2011. (Un)fortunately, B-Human
did not have to participate in an official penalty shootout in
the course of the competition. A complete integration into the
B-Human software system was implemented providing full
access to all sensor and world model inputs and to all actuator
outputs as well as a set of tasks providing high level access
to all outputs, such as those depicted in Fig. 2a. This base
system was also used to implement test match opponents.
It met the demands of the B-Human software standards and
performed well.

Figure 5 illustrates some statistics about the complexity
of the b-script behavior systems developed by RoboEireann
and B-Human.

B. Evaluation

Since many autonomous robots are running restricted
hardware systems and must meet real time constraints,
the runtime performance is a crucial property of behavior
specification systems. To evaluate the runtime performance
of b-script, the penalty behavior developed for the RoboCup
2011 by the team B-Human was examined. The behavior was
compiled to b-script C++ modules and loaded as dynamic
library into the b-scriptEngine. In Fig. 7, the runtime per
frame is plotted. The average runtime is approximately
0.8ms when running complex behaviors. Since the system’s
cognitive main loop (including vision, world modeling, and
the behavior) is running at 30Hz, this meets the real time
requirement and leaves enough computing time for other,
computationally more expensive software components.

The test was run on a Nao V3.3 robot running the regular
B-Human RoboCup code. The Nao V3.3 runs a Linux system
on a x86 AMD GEODE 500MHz CPU and 256MB SDRAM.

16 T T T T
14 F g
5 l2f |
£ ‘ ‘ (
g o1r bl 1
i fo in il |
s % h 'J‘“L'“i‘h HM w M"H“ﬂ'ﬁ |
06 fﬁy‘w}w f 1
e o
4 b 1
0.2 1 1 1 1
0 200 400 600 800 1000
execution cycle
Fig. 7. The timings of the B-Human 2011 RoboCup penalty behavior

running in a Nao robot. The different levels are caused by the different
complexities of the actual behaviors (i.e. cycles 0-350 set state: stand &
look around, cycles 350-450 approaching the ball for a short kick, cycles
450-600 executing a short kick, cycles 600-780 approaching the ball for the
final kick, 780-900 executing the final kick). The short peaks are artifacts
of the time measurement method on the Nao robot.

VII. CONCLUSIONS AND FUTURE WORKS
A. Conclusions

In this paper, we presented b-script, a domain speci-
fic language based on hierarchical generators to describe
complex robot behaviors in an intuitive and clean way.
Through its procedural design it is very flexible, powerful,
and allows specifying robot behaviors very precisely. The
object-oriented C++ interface provides a handy way to easily
extend the language and embed it into existing robot software
systems. The scripting-like design of the language gives a
commonly known look and feel and makes the migration for
programmers very easy. Furthermore the modular structure
allows working in large teams and provides the opportunity
to reuse code in different applications. Thus it seems to be
an elegant alternative to commonly used hierarchical finite
state machines to script robot behaviors.

The application in the RoboCup Standard Platform League
proved that it allows convenient behavior development in
large-scale and that it is suitable to be used on robots
with restricted hardware resources. Even though b-script was
developed to be used in the RoboCup, it contains no domain
specific features and can be used in other scenarios as well.

The source code as well as the complete b-script B-
Human 2011 penalty behavior and further documentation is
available at http://www.informatik.uni-bremen.de/
~jeffry/b-script.

B. Future Works

The actual b-script implementation distinguishes between
functions and tasks, where tasks do not support return values.
Since functions are actually specialized tasks (i.e. tasks that
do not yield and thus terminate on each call), these two
concept could be unified. Therefore, a task would need to
support return values. Furthermore, adding return values to
tasks would give new possibilities to use tasks, namely to
outsource decisions (and their states) and thus simplifying
the caller’s code, resulting in an even more modular design
of behaviors.

VIII. ACKNOWLEDGMENTS

The authors of this paper would like to especially thank
Sonja Stiidli for working with b-script from the beginning
and giving great feedback and bug reports as well as the
B-Human team and the RoboEireann team for providing the
software base for the applications in RoboCup. This work
was partially funded by the SFB/TR 8 Spatial Cognition
Research Center of the German Research Foundation (DFG).

REFERENCES

[1] R. Arkin, Behavior-based robotics. The MIT Press, 1998.

[2] M. Létzsch, M. Risler, and M. Jiingel, “XABSL - A pragmatic
approach to behavior engineering,” in Proceedings of IEEE/RSJ Inter-
national Conference of Intelligent Robots and Systems (IROS), Beijing,
China, 2006, pp. 5124-5129.

[3] D. Nau, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and F. Yaman,
“SHOP2: An HTN planning system,” Journal of Artificial Intelligence
Research, vol. 20, pp. 379-404, 2003.

[4] C. Dornhege, M. Gissler, M. Teschner, and B. Nebel, “Integrating
symbolic and geometric planning for mobile manipulation.” in Pro-
ceedings of the 2009 IEEE International Workshop on Safety, Security
and Rescue Robotics (SSRR), Denver, CO, USA, 2009.

[5] D. Gouaillier, V. Hugel, P. Blazevic, C. Kilner, J. Monceaux, P. La-
fourcade, B. Marnier, J. Serre, and B. Maisonnier, “The NAO hu-
manoid: a combination of performance and affordability,” CoRR, vol.
abs/0807.3223, 2008.

[6] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, and H. Mat-
subara, “RoboCup: A challenge problem for ai,” AI Magazine, vol. 18,
no. 1, pp. 73-85, 1997.

[71 “RoboCup Standard Platform League web site,” 2011, http://www.tzi.
de/spl/.

[8] S. Tousignant, E. Van Wyk, and M. Gini, “An overview of XRobots:
A hierarchical state machine-based language,” in Proceedings of The
4th Workshop on Software Development and Integration in Robotics
(SBIR-1V), Shanghai, China, May 2011.

[9] O. Obst, “Specifying rational agents with statecharts and utility
functions,” in RoboCup 2001: Robot Soccer World Cup V, ser. Lecture
Notes in Computer Science, vol. 2377. Springer, 2002, pp. 173-182.

[10] J. Murray, “Specifying agent behaviors with UML statecharts and
StatEdit,” in RoboCup 2003: Robot Soccer World Cup VII, ser. Lecture
Notes in Computer Science, vol. 3020. Springer, 2004, pp. 145-156.

[11] K. Konolige, “Colbert: A language for reactive control in Sapphira,”
in In KI-97: Advances in Artificial Intelligence, 21st Annual German
Conference on Artificial Intelligence, ser. Lecture Notes in Artificial
Intelligence, vol. 1303. Springer, 1997, pp. 31 — 52.

[12] R. Simmons and D. Apfelbaum, “A task description language for
robot control,” in Proceedings of the 1998 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 1998), Victoria,
B.C., Canada, 1998, pp. 1931 — 1937.

[13] J.-C. Baillie, “URBI: towards a universal robotic low-level program-
ming language,” in Proceedings of the 2005 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2005), Edmonton,
Alberta, Canada, 2005, pp. 820 — 825.

[14] E. Bendersky, “Co-routines as an alternative to state machines,”
2011. [Online]. Available: http://eli.thegreenplace.net/2009/08/29/
co-routines- as-an-alternative- to- state-machines/

[15] L. Allison, “Continuations implement generators and streams,” The
Computer Journal, vol. 33, no. 5, pp. 460-465, 1990.

[16] D. Jouvin, “Continuations and behavior components engineering in
multi-agent systems,” in Multiagent System Technologies, ser. Lecture
Notes in Computer Science, vol. 4196. Springer, 2006, pp. 147-158.

[17] C. McMillen, “Creating robot behaviors with python generators,”
2011, not available anymore, previous address: http://colinm.org/blog/
creating-robot-behaviors- with-python- generators.

[18] D. Abrahams and R. Grosse-Kunstleve, “Building hybrid systems with
Boost.Python,” C/C++ Users Journal, vol. 21, pp. 29-36, 2003.

[19] “RoboEireann::Robot Soccer Team::National University of Ireland,
Maynooth,” 2011. [Online]. Available: http://www.eeng.nuim.ie/
robocup/

[20] “B-Human — RoboCup Standard Platform League,” 2011. [Online].
Available: http://www.b-human.de

