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Abstract. In this paper, we show how the estimation of a robot’s world
model can be improved by actively sensing the environment through con-
sidering the current world state estimate through minimizing the entropy
of an underlying particle distribution. Being originally computationally
expensive, this approach is optimized to become executable in real-time
on a robot with limited resources. We demonstrate the approach on
a humanoid robot, performing self-localization and ball tracking on a
RoboCup soccer field.

1 Introduction

Many robot localizations use passive vision systems. Path planning and navi-
gation tasks are often based on a single given robot pose. While acting in an
environment to achieve a goal, the measurements used for localization are made
independently from the current belief in the state estimation. However, there are
several approaches showing that an active vision can be used to reduce uncer-
tainties in localizations. An active vision system controls the robot’s actuators or
sets sensor parameters to receive measurements that provide as much informa-
tion as possible. Active localization is often divided into active navigation and
active sensing. In active navigation even the target position of the robot is chosen
to minimize uncertainties. In this paper an active sensing system is described
that controls the head of a humanoid robot and thereby optimizes the state es-
timation. The focus of the work presented here is on computational efficiency.
i. e. to spend only a few milliseconds of the computation time on an embedded
system to implement the active sensing, leaving enough computational resources
for the other modules running on the robot that, in our case, realize playing
soccer.

This paper is organized as follows: The humanoid robot platform and its envi-
ronment are shortly described in Sect. 2. The active vision approach is presented
in Sect. 3, enhancements regarding its computational efficiency are presented in
Sect. 4. Section 5 presents the experiments that have been carried out together
with the results achieved.



1.1 Related Work

There are many approaches using mutual information. Fox, Burgard, and Thrun
realize active Markov localization by an entropy-minimizing action selection [1,
3]. Denzler and Brown use a similar method for choosing camera parameters
(pan, tilt, and zoom) for object recognition [2]. Vidal-Calleja et al. use an active
localization for SLAM [16]. However, active vision systems have also been used in
other domains, not only for localization. For instance, Schill et al. use active sens-
ing for the exploration of spatial scenes [12]. Except for the latter, all approaches
are using active navigation and active sensing, because the localization controls
all robot actions. However, in some cases the robot has to perform a global task
and the localization can only be improved by active sensing. Seara and Schmidt
use an entropy-based method for gaze control to optimize simultaneous localiza-
tion and obstacle detection [13]. A different approach by Zhou and Sakane uses
Bayesian networks to represent relationships between the environment, control
actions, and state estimates [17].

There are also task-oriented approaches to learn camera control strategies
for robots playing soccer. In [7] the camera control for shooting goals is learned
by reinforcement learning using the success rate for rewards. The camera control
of a goalkeeper is learned in [5].

2 Robot Platform and Environment

Our experimental platform is the RoboCup edition of the Nao robot [4] made by
Aldebaran Robotics as shown in Fig. 1. The robot is equipped with 21 degrees
of freedom, a 500 MHz processor, and a camera as main sensor3. In addition, it
provides measurements of joint angles which are combined with accelerometer
and gyroscope data for body posture estimation. Image processing and self-
localization are performed at the camera’s frame rate, i. e. 30 Hz.

The experimental environment is a RoboCup Standard Platform League field.
The field size is 7.4m × 5.4m. The only unique features are two colored goals
and one center circle. In addition, the field contains several different lines which
are non-unique.

The robot runs the software framework of the RoboCup team B-Human [11]
in the same configuration as it is used during real competitions, e. g. during the
team’s win of the RoboCup German Open 2009 and the RoboCup 2009. The self-
localization component is an improved version of the one described in [8] that is
based on [10], additionally including the Augmented MCL resampling approach
of [6]. The robot’s vision software is able to perceive a variety of features on the
field. In addition to the aforementioned ones, also field line crossings, a ball, and
single non-unique goal elements can be extracted from images and be used by
the self-localization component.

3 In fact, the robot has two cameras but only the lower one has been used for our
purposes.



Fig. 1. Left: Nao RoboCup robot used for the experiments. A colored pattern for
global tracking has been attached to its head. Middle and right: the robot’s perceptions.
Images taken by the robot’s camera, perceived objects – a yellow right goal post, a blue
goal post (side unknown), the center circle, the ball, and several lines – are labeled.

3 Active Vision

Self-localization and ball tracking is based on the perceptions retrieved from
camera images. The result of the state estimation is highly dependent on the
number and type of the visible features. The perceptions extracted from camera
images give information about the state of the robot and the ball. By calculating
particle weightings from observations, the uncertainty in the belief distribution
is reduced. In many cases moving the camera in a fixed pattern does not provide
as much information as possible. A camera control system choosing the point-
ing direction that gives the highest information gain should improve the state
estimation.

3.1 Information and Uncertainty

The uncertainty of a belief b about a state x is given by the Shannon entropy:

Hb(x) = −
∫
b(x) log b(x)dx (1)

The information gain (the mutual information) of an action a is equal to the
decrease in uncertainty and it can be calculated by the difference between the
entropies in cycles:

I(x, a) = Hb(x)−Hb(x′|x, a) (2)

In our system, state estimation is realized using particle filters. Therefore the
belief is represented as a set of samples. These samples only approximate the
actual probability density function. The entropy cannot be calculated directly
and has to be estimated. There are many approaches for entropy estimation, for
example maximum-likelihood or m-spacing estimators. One of these methods
is to create partitions in the state space and to calculate the discrete entropy
over the sum of particle weightings (probability mass) in each partition (e. g. as
in [14]). Similar to that method, simple histogram-based entropy estimation is



Fig. 2. An example for a belief with samples and the grid used for entropy estimation.
The grid dimensions are (18, 12, 16) on the x, y, and rotational axes (the latter is not
shown).

used in this paper. The belief is approximated by using a grid on the x, y, and
rotation axes (cf. Fig. 2). The discrete entropy over all cells can be calculated
very efficiently, because the number of cells with a probability greater than 0 is
limited by the number of samples. Therefore most cells have no probability and
can be ignored. The entropy estimation over a constant grid gives comparatively
poor results with a high bias. Nevertheless it is used here because of the limited
computational resources.

3.2 Entropy-based Camera Control

The camera control has to choose the direction with the highest mutual in-
formation expected. Thus the entropy expected after executing a given action
a in state x is needed for an entropy-minimizing action selection. Equation 3
gives the entropy expected in an probabilistic environment (e. g. used for active
localization in [1]). A set of observations is denoted as z. So p(z|x) gives the
probability of perceiving z in the state x. The probability of reaching the state
x′ by executing the action a in state x is written as p(x′|a, x).

Hb(x′|a) ≈ Ez[Hb(x′|z, a)]
=

∫ ∫ ∫
Hb(x′|z, a)p(z|x′)p(x′|a, x)b(x)dzdx′dx

(3)

An action selection based on minimizing the entropy only for the immediate
next step only produces a greedy exploration. The camera movement created
in this way is not the optimal strategy. Due to local maxima, a sequence of
other actions could be necessary to produce a higher information gain. However,
planning the camera control for more than a single step will result in much
higher computational costs due to exponential complexity. Therefore, a camera
control system optimizing the information gain only for a single step can be
calculated more frequently. Thus, such a control system is more reactive and will
possibly perform better in a dynamic environment. The camera control has to
react to unexpected changes in the belief, for example when the robot’s position
is changed by collisions.



The policy for controlling the camera is given by equation 4. The action with
the lowest entropy expected and lowest costs is selected. The costs for each action
a in the state x is given by r(x, a) as negative values. The weighting between
costs and the entropy expected is given by α.

π(b) = argmax
a

α(Hp(x)− Ez[Hb(x′|z, a)]) +
∫
r(x, a)b(x)dx

= argmax
a

∫
r(x, a)b(x)dx− α(Ez[Hb(x′|z, a)])

(4)

An implementation of this strategy is the Monte Carlo exploration in algo-
rithm 1:

Algorithm 1 Monte carlo exploration (described in [15])
1: Monte Carlo Exploration(b):
2: set pa = 0 for all actions a
3: for i = 1 to N do
4: sample x ∼ b(x)
5: for all control actions a do
6: sample x′ ∼ p(x′|a, x)
7: sample z ∼ p(z|x′)
8: b′ = Bayes filter(b, z, a)
9: pa = pa + r(x, a)− αHb′(x′)

10: end for
11: end for
12: return argmax

a
pa

By sampling from the various probability distributions, the method approx-
imates the expected entropy for N →∞. As the belief is already represented as
samples, line 4 only means to choose one sample of the particle filter. In fact a
state x consists of the belief and the head joint angles given by sensor readings.
Drawing samples from p(x′|a, x) in line 6 can be simplified by the assumption
that the state change from x to x′ is deterministic. The actions available do
only affect the head movement. Many approaches for active localization have to
consider uncertainty and the probability of collisions when determining the next
state x′ for an action a. However by limiting the actions to head movements,
the next state x′ consist of the same belief for the poses only with changed head
joint angles. The state x′ is given by the action a.

The last probability function needed for calculating the expected entropy is
p(z|x′) in line 7. There, the expected observations for a given state x′ are created
to be used as measurements in the state estimation in line 8. In this paper,
all particle weightings are calculated using the expected observation z. These
weightings produce an information gain by changing the entropy calculated in
line 9.



Fig. 3. Sensor model for lines and the right goal post. The color denotes the probability
to recognize a line depending on its orientation and distance to the robot (left) and
the right goalpost depending on its relative position to the robot (right).

3.3 Expected Observations

The probability function p(z|x′) needed for the Monte Carlo Exploration gives
the probability for a measurement z in a given state x′. It is necessary to pre-
dict the measurements for different actions to calculate utility values for action
selection. The raw measurement used for state estimation is the camera image.
However the vision modules of the RoboCup team B-Human extract features
from the camera image. Therefore, the self-localization and the ball tracking are
feature-based localizations using the features recognized as observations. These
features are field lines, goal posts, the middle circle, corners, and the ball. An ob-
servation z consists of a set of visible features. Predicting an observation means
to create a set of features that could be perceived in state x′. Due to the known
environment, the expected observations can be created from the known field
model by iterating through all features and checking which features can be seen.
The decision whether a feature is visible or not depends on the feature’s relative
position (x, y) and orientation φ to the camera and the current camera tilt angle
θ:

(x, y, φ, θ)→ [0, 1] (5)

The simplest solution would be to check whether an object lies inside the
image and is not too far away. But each feature can have special properties that
have an influence to the probability of actually being perceived. For instance,
horizontal field lines cannot be seen in as large distances as vertical lines. In
general, a better solution for solving this problem is to create sensor models by
learning the function in equation 5 with examples created from real perceptions.
In this approach, the function was approximated with a feed-forward neural
network with 20 hidden nodes and by using backpropagation to minimize the
output error. With these sensor models it is possible to decide where certain
features are visible. For example, Fig. 3a shows the probability of perceiving a
field line depending on the distance and the orientation. The maximum distance
varies for different orientations as expected. As another example, Fig. 3b shows



Fig. 4. An example belief. The grey drawing in the middle is the ground truth robot
pose.

the probability for seeing a goal post depending on its x and y coordinates. Here,
the orientation is always set to the direction to the right goal post. There must
be a small part of the upper bar of the goal visible to detect the side of the goal
post. As a result, the colored area is slightly shifted to the right side. Now the
expected observations z for a given state x′ including any pan/tilt-angles can be
created using these sensor models. For the sample set in the self-localization in
Fig. 4, the actual mutual information and the expected information gain for the
belief and head joint angles are compared in Fig. 5. In that example, the camera
was moved from pan angle −π2 to π

2 and back with a constant tilt angle of 20◦.
The robot is already localized well, so the prediction of the information gain is
similar to the actual information gain produced by the perceptions.

The expected information gain for a given belief can be calculated for any
camera direction by calculating the average information gain caused by the ex-
pected observations for all sample poses. The expected information gain for all
reachable camera angles is shown in Fig. 6. The best information is provided by
the goals in the upper part. The large red area on the left side is the direction
to the center circle.
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Fig. 5. The mutual information (red) and the expected information gain (black). The
values are very similar, because most samples are near the correct robot pose. The
actual information gain is only affected by noise. The approximated information gain
(green) as described in Sect. 4.



Fig. 6. The entropy expected for all reachable camera angles in one frame from the
example in Fig. 4.

These values are calculated only for a fixed number of head joint angles
defined as actions. The action selection chooses one of these directions as a
target position for the head control. The cost of an action is given by the angular
distance between the target camera position and the current camera position.

3.4 Feedback

The calculation of the expected information gain is based only on the expected
observation for the current belief. However, the expected observations can be
wrong due to occlusions or bad sample positions. In Fig. 7, the robot was moved
in frame 700. In the following frames the expected values do not match the
measured values, so the measured values at an action’s position are stored as
feedback values and used for some seconds to adjust the expected information
gain for this action. This way the action selection does not choose an action with
a high expected value, where actually no information has been retrieved a short
time before.

3.5 Ball

The calculation of the entropy expected in the localization of the ball is realized
with the same method. Because there is only a single type of perception, i. e. a
visible ball, an expected observation for a given sample is simply a ball percept
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Fig. 7. At the beginning the same data as in Fig. 5, but the robot has been moved in
frame 700.



at this position. The weightings produced by an observation at a given sample
position can directly be obtained by the sample positions and the differences
between their distances and angles to the robot. Thus the entropy expected can
be calculated directly from the particle positions.

The entropy-based camera control has to optimize the results of the self-
localization and ball tracking simultaneously. This is realized by minimizing the
sum of both entropies, weighted by a factor for the importance of the ball.

4 Optimizations

The calculation of the action utility values used for action selection described so
far is too expensive to be performed for each camera image. The most complex
part is to create the expected observations and to calculate the hypothetical
particle weightings in the self-localization. In the experiments presented in the
next section, these weightings are stored in a look-up-table. This table stores
the weightings for a given sample pose produced by the observation at any hy-
pothetical robot pose and tilt angle. By combining the pan angle with the robot
rotation, there are seven dimensions left (two poses and the tilt angle). Although
the resolution used for the look-up-table is quite low due to the number of dimen-
sions, the approximated entropy values can still be used for action selection (see
Fig. 5). There is a high error in the weighting, but the calculation of the expected
entropy for an action has been reduced to reading values from the weightings
table and calculating the entropy of these values. The calculation of the entropy
has been optimized by using fixed-point arithmetics and an approximation of
the logarithm using a table for the logarithm to the base 2.

The full calculation of the entropy expected for only one robot pose hypothe-
sis and a given camera direction needs an average time of 41 ms on the Nao. The
largest part of this time is needed to create the expected observations (38.5 ms).
By using the weights table and the optimized entropy calculation this time has
been reduced to less than 0.07 ms.

In the experiments in the following section the active head control uses 44 dif-
ferent actions. Considering that there are 44 actions and 100 particle poses that
are possible robot poses, there are 4400 expected entropies to be calculated
in every cycle (4400 × 0.07 ms = 308 ms). Consequently the number of robot
pose hypotheses has to be decreased significantly. In practice, samples rarely
distribute over the state space but cluster at a few positions, as, e. g., shown in
Fig. 2 where the probability distribution has only two major modes. Through
extracting the distribution’s nm most significant modes from ns samples and
using them as robot hypotheses for entropy calculation, the time necessary for
computing can be reduced by a factor of ns

nm
. Of course, this assumes that the

mode extraction is computationally comparatively inexpensive. Thus this task is
realized by the Particle History Clustering algorithm [9] which robustly provides
good results in linear time.

The calculation of a utility value in the ball localization needs 0.015 ms on
average. In most cases the belief for the ball is a unimodal distribution. Therefore



-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

 500  1000  1500  2000  2500

groundTruth
estimate

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

 500  1000  1500  2000  2500

groundTruth
estimate

Fig. 8. Left: path used for the experiments. Middle: walked path and the estimated
robot position using the passive head control. Right: same for entropy-based head
control.

the hypotheses positions used are reduced only to the average sample position,
similar to the cluster positions in the self-localization.

Considering an average number of 1.5 clusters in the self-localization and
44 different actions, all utility values are calculated in 5.28 ms. Thus enough
processing time is left for the other modules that have to run on a soccer-
playing robot (at 30 Hz). All these timings have been measured on a Nao with
the operating system and a separate joint control thread running in parallel.

5 Experimental Results

In the experiment, the new active head control is compared to the former head
control, used by the striker of the RoboCup team B-Human. The former head
control points the camera at the ball, at a goal, and at some look-around positions
on the left and the right side in regular intervals. The directions to the ball and
the goal are based on the current state estimates.

Figure 8 shows the path the robot walks along several times to measure the
average errors in the state estimation. The motion control uses the ground truth
pose to walk along the path independently from self-localization. As source for
ground truth data, a global tracking system has been used. For this purpose, a
unique marker has been fixed on the robot’s head (cf. Fig. 1) and been tracked by
a camera hanging above the field, the software for this purpose is the standard
vision system of the RoboCup Small Size League [18]. The system provides the
position as well as the rotation (which is fused with the robot’s head rotation)
of the robot on the field. The self-localization module, described in Sect. 2, has
been configured to use 100 samples.

The robot’s ground truth position and the estimated state during the exper-
iments are shown in Fig. 8 for the old head control and for the active method.



Table 1. Errors in self-localization and ball tracking.

Self-localization Ball tracking
Head control avg. in mm stdv. in mm avg. in rad avg. in mm stdv. in mm seen

passive 163.915 94.8412 0.144 483.547 782.94 37.6%

active 130.062 79.1946 0.105 271.419 360.043 51%

The robot walked along the path 5 times for each experiment. The overall er-
rors in the self-localization and ball tracking are summarized in table 1. The
ball importance was quite high in this experiment. By decreasing this value, the
self-localization gets better, but the error in ball-tracking will increase again.

6 Conclusions and Future Work

In this paper, we present an approach for an active head control. The method is
based on a commonly used entropy-minimizing action selection, but the compu-
tationally expensive operations have been executed in a preprocessing step. This
allows applying active head control on a robot with low computing power. Thus
the action selection takes only a few milliseconds. The error in state estimation
in the RoboCup scenario used for the experiments was reduced by 20% in self-
localization and by 44% in ball tracking. So both competing state estimations
are significantly improved.

A better approximation of the weights with another data structure could
improve the results. But nevertheless the computational costs should not be
increased too much and an efficient access on the stored weightings is essential
for this method to become applied on robots such as the Nao.
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9. Laue, T., Röfer, T.: Pose extraction from sample sets in robot self-localization - a
comparison and a novel approach. In: Petrović, I., Lilienthal, A.J. (eds.) Proceed-
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