# Flip-Breakability: A Combinatorial Dichotomy for Monadically Dependent Graph Classes

Jan Dreier<sup>1</sup>, Nikolas Mählmann<sup>2</sup>, Szymon Toruńczyk<sup>3</sup>

STOC 2024

<sup>&</sup>lt;sup>1</sup>TU Wien

<sup>&</sup>lt;sup>2</sup>University of Bremen

<sup>&</sup>lt;sup>3</sup>University of Warsaw

### The FO Model Checking Problem

Problem: Given a graph G and an FO sentence  $\varphi$ , decide whether

$$G \models \varphi$$
.

Example: G contains a dominating set of size k iff.

$$G \models \exists x_1 \ldots \exists x_k \forall y : \bigvee_{i \in [k]} (y = x_i \lor y \sim x_i).$$

Runtime: On the class of all graphs, FO model checking is AW[\*]-hard. We will assume  $FPT \neq AW[*]$ .

Question: On which hereditary graph classes is FO model checking fixed-parameter tractable, i.e., solvable in time  $f(\varphi) \cdot n^c$ ?

# The Model Checking Conjecture

### Conjecture

Let C be a **hereditary** class of graphs.

 ${\mathcal C}$  admits fpt FO model checking if and only if  ${\mathcal C}$  is monadically dependent.

# The Model Checking Conjecture

### Conjecture

Let C be a **hereditary** class of graphs.

 $\mathcal{C}$  admits fpt FO model checking if and only if  $\mathcal{C}$  is **monadically dependent**.

#### This conjecture has been verified for

- monotone classes, (here mon. dependence = nowhere denseness)
  [Grohe, Kreutzer, Siebertz, 2014]
- hereditary and orderless classes, (here mon. dependence = mon. stability)
   [Dreier, Mählmann, Siebertz, 2023]
   [Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2024+]
- hereditary and ordered classes. (here mon. dependence = bd. twin-width)
   [Bonnet, Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk, 2022]

### **FO** Transductions

 $Transductions \; \hat{=} \; coloring \; + \; interpreting \; + \; taking \; an \; induced \; subgraph$ 



$$\varphi(x,y) := \operatorname{Red}(x) \wedge \operatorname{Red}(y) \wedge \operatorname{dist}(x,y) = 3$$

### Monadic Dependence

### Definition

A class is monadically dependent if it does not transduce the class of all graphs.

# Monadic Dependence

#### **Definition**

A class is monadically dependent if it does not transduce the class of all graphs.

The following are mon. dependent:

- planar graphs
- bounded degree classes
- bounded treewidth classes
- classes excluding a minor
- nowhere dense classes
- monadically stable classes
- bounded cliquewidth classes
- bounded twinwidth classes

# Monadic Dependence

#### **Definition**

A class is monadically dependent if it does not transduce the class of all graphs.

The following are mon. dependent:

- planar graphs
- bounded degree classes
- bounded treewidth classes
- classes excluding a minor
- nowhere dense classes
- monadically stable classes
- bounded cliquewidth classes
- bounded twinwidth classes

The class of all 1-subdivided bicliques is not monadically dependent.



### Wanted: Combinatorial Characterizations

### Conjecture

Let C be a **hereditary** class of graphs.

 ${\mathcal C}$  admits fpt FO model checking if and only if  ${\mathcal C}$  is monadically dependent.

Monadically dependent classes are defined using logic.

Working towards algorithms we need tools that are combinatorial.

### Wanted: Combinatorial Characterizations

### Conjecture

Let C be a **hereditary** class of graphs.

C admits fpt FO model checking if and only if C is **monadically dependent**.

Monadically dependent classes are defined using logic.

Working towards algorithms we need tools that are combinatorial.

In this talk we will present:

- a combinatorial structure characterization: flip-breakability
- a combinatorial non-structure characterization: forbidden induced subgraphs











### Uniform Quasi-Wideness (slightly informal)

A class C is uniformly quasi-wide if for every radius r, in every large set W we find a still large set A that is r-independent after removing a set S of constantly many vertices.



#### Uniform Quasi-Wideness (slightly informal)

A class C is *uniformly quasi-wide* if for every radius r, in every large set W we find a still large set A that is r-independent after removing a set S of constantly many vertices.

#### Theorem [Něsetřil, Ossona de Mendez, 2011]

A class C is uniformly quasi-wide if and only if it is nowhere dense.



















#### Uniform Quasi-Wideness (slightly informal)

A class C is *uniformly quasi-wide* if for every radius r, in every large set W we find a still large set A that is r-independent after removing a set S of constantly many vertices.

#### Theorem [Něsetřil, Ossona de Mendez, 2011]

A class  $\mathcal C$  is uniformly quasi-wide if and only if it is nowhere dense.

### Towards Dense Graphs

Denote by  $G \oplus (P, Q)$  the graph obtained from G by complementing edges between pairs of vertices from  $P \times Q$ .













### Flip-Flatness (slightly informal) [Gajarský, Kreutzer]

A class C is *flip-flat* if for every radius r, in every large set W we find a still large set A that is r-independent after performing a set S of constantly many flips.



### Flip-Flatness (slightly informal) [Gajarský, Kreutzer]

A class C is *flip-flat* if for every radius r, in every large set W we find a still large set A that is r-independent after performing a set S of constantly many flips.

### Theorem [Dreier, Mählmann, Siebertz, Toruńczyk, 2022]

A class  ${\cal C}$  is flip-flat if and only if it is monadically stable.









# Flip-Flatness: Example



# Flip-Flatness: Example



### Characterizing Monadic Stability: Flip-Flatness



#### Flip-Flatness (slightly informal) [Gajarský, Kreutzer]

A class C is *flip-flat* if for every radius r, in every large set W we find a still large set A that is r-independent after performing a set S of constantly many flips.

#### Theorem [Dreier, Mählmann, Siebertz, Toruńczyk, 2022]

A class  $\mathcal C$  is flip-flat if and only if it is monadically stable.











#### Flip-Breakability (slightly informal)

A class C is *flip-breakable* if for every radius r, in every large set W we find two large sets A and B that are at distance greater than 2r from each other after performing a set S of constantly many flips.



#### Flip-Breakability (slightly informal)

A class C is *flip-breakable* if for every radius r, in every large set W we find two large sets A and B that are at distance greater than 2r from each other after performing a set S of constantly many flips.

#### Theorem [Dreier, Mählmann, Toruńczyk]

A class  ${\mathcal C}$  is flip-breakable if and only if it is monadically dependent.

















#### Flip-Breakability (slightly informal)

A class C is *flip-breakable* if for every radius r, in every large set W we find two large sets A and B that are at distance greater than 2r from each other after performing a set S of constantly many flips.

#### Theorem [Dreier, Mählmann, Toruńczyk]

A class  ${\mathcal C}$  is flip-breakable if and only if it is monadically dependent.

1. We modify a graph using either flips or vertex deletions.

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

- 1. We modify a graph using either flips or vertex deletions.
- We demand our resulting set is either flat or broken.flat: pairwise separated; broken: separated into two large sets
- 3. Separation means either distance-r or distance- $\infty$ .

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

|                     |           | flatness          | breakability       |
|---------------------|-----------|-------------------|--------------------|
| dist-r              | flip-     | monadic stability | monadic dependence |
|                     | deletion- | nowhere denseness |                    |
| $dist	ext{-}\infty$ | flip-     |                   |                    |
|                     | deletion- |                   |                    |

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

|                     |           | flatness          | breakability       |
|---------------------|-----------|-------------------|--------------------|
| dist-r              | flip-     | monadic stability | monadic dependence |
|                     | deletion- | nowhere denseness | nowhere denseness  |
| $dist	ext{-}\infty$ | flip-     |                   |                    |
|                     | deletion- |                   |                    |

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

|                     |           | flatness          | breakability       |
|---------------------|-----------|-------------------|--------------------|
| dist-r              | flip-     | monadic stability | monadic dependence |
|                     | deletion- | nowhere denseness | nowhere denseness  |
| $dist	ext{-}\infty$ | flip-     | bd. shrubdepth    | bd. cliquewidth    |
|                     | deletion- |                   |                    |

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

|                      |           | flatness          | breakability       |
|----------------------|-----------|-------------------|--------------------|
| dist-r               | flip-     | monadic stability | monadic dependence |
|                      | deletion- | nowhere denseness | nowhere denseness  |
| $dist\text{-}\infty$ | flip-     | bd. shrubdepth    | bd. cliquewidth    |
|                      | deletion- | bd. treedepth     | bd. treewidth      |

#### Wanted: Combinatorial Characterizations

#### In this talk we will present:

- a combinatorial structure characterization: flip-breakability
- a combinatorial non-structure characterization: forbidden induced subgraphs



 $\begin{array}{l} {\rm star} \ r{\rm -crossing} \\ = r{\rm -subdivided} \ {\rm biclique} \end{array}$ 







comparability grid



#### Theorem [Dreier, Mählmann, Toruńczyk]

Let  $\mathcal C$  be a graph class. Then  $\mathcal C$  is monadically dependent if and only if for every  $r\geq 1$  there exists  $k\in\mathbb N$  such  $\mathcal C$  excludes as induced subgraphs

- all layerwise flipped star r-crossings of order k, and
- all layerwise flipped clique r-crossings of order k, and
- all layerwise flipped half-graph r-crossings of order k, and
- the comparability grid of order *k*.

### Forbidden Induced Subgraphs: Applications



Theorem [Dreier, Mählmann, Toruńczyk]

FO Model checking is  $\mathrm{AW}[\ast]\text{-hard}$  on every hereditary, mon. independent class.

Summary: We give two combinatorial characterizations of mon. dependent graph classes.

A structure characterization called flip-breakability:



A non-structure characterization by forbidden induced subgraphs:



FO model checking is  $\mathrm{AW}[*]$ -hard on hereditary monadically independent graph classes.