Flip-Breakability: A Combinatorial Dichotomy for Monadically Dependent Graph Classes

Jan Dreier¹, Nikolas Mählmann², Szymon Toruńczyk³

STOC 2024

¹TU Wien

²University of Bremen

³University of Warsaw

The FO Model Checking Problem

Problem: Given a graph G and an FO sentence φ , decide whether

$$G \models \varphi$$
.

Example: G contains a dominating set of size k iff.

$$G \models \exists x_1 \ldots \exists x_k \forall y : \bigvee_{i \in [k]} (y = x_i \lor y \sim x_i).$$

Runtime: On the class of all graphs, FO model checking is AW[*]-hard. We will assume $FPT \neq AW[*]$.

Question: On which hereditary graph classes is FO model checking fixed-parameter tractable, i.e., solvable in time $f(\varphi) \cdot n^c$?

The Model Checking Conjecture

Conjecture

Let C be a **hereditary** class of graphs.

 ${\mathcal C}$ admits fpt FO model checking if and only if ${\mathcal C}$ is monadically dependent.

The Model Checking Conjecture

Conjecture

Let C be a **hereditary** class of graphs.

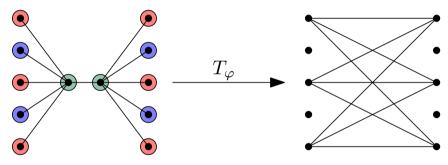
 \mathcal{C} admits fpt FO model checking if and only if \mathcal{C} is **monadically dependent**.

This conjecture has been verified for

- monotone classes, (here mon. dependence = nowhere denseness)
 [Grohe, Kreutzer, Siebertz, 2014]
- hereditary and orderless classes, (here mon. dependence = mon. stability)
 [Dreier, Mählmann, Siebertz, 2023]
 [Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2024+]
- hereditary and ordered classes. (here mon. dependence = bd. twin-width)
 [Bonnet, Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk, 2022]

FO Transductions

 $Transductions \; \hat{=} \; coloring \; + \; interpreting \; + \; taking \; an \; induced \; subgraph$



$$\varphi(x,y) := \operatorname{Red}(x) \wedge \operatorname{Red}(y) \wedge \operatorname{dist}(x,y) = 3$$

Monadic Dependence

Definition

A class is monadically dependent if it does not transduce the class of all graphs.

Monadic Dependence

Definition

A class is monadically dependent if it does not transduce the class of all graphs.

The following are mon. dependent:

- planar graphs
- bounded degree classes
- bounded treewidth classes
- classes excluding a minor
- nowhere dense classes
- monadically stable classes
- bounded cliquewidth classes
- bounded twinwidth classes

Monadic Dependence

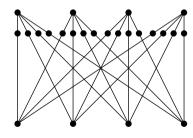
Definition

A class is monadically dependent if it does not transduce the class of all graphs.

The following are mon. dependent:

- planar graphs
- bounded degree classes
- bounded treewidth classes
- classes excluding a minor
- nowhere dense classes
- monadically stable classes
- bounded cliquewidth classes
- bounded twinwidth classes

The class of all 1-subdivided bicliques is not monadically dependent.



Wanted: Combinatorial Characterizations

Conjecture

Let C be a **hereditary** class of graphs.

 ${\mathcal C}$ admits fpt FO model checking if and only if ${\mathcal C}$ is monadically dependent.

Monadically dependent classes are defined using logic.

Working towards algorithms we need tools that are combinatorial.

Wanted: Combinatorial Characterizations

Conjecture

Let C be a **hereditary** class of graphs.

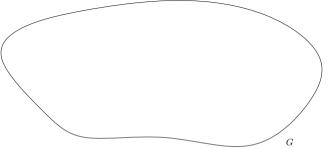
C admits fpt FO model checking if and only if C is **monadically dependent**.

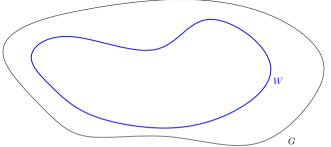
Monadically dependent classes are defined using logic.

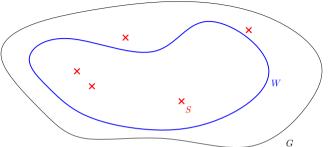
Working towards algorithms we need tools that are combinatorial.

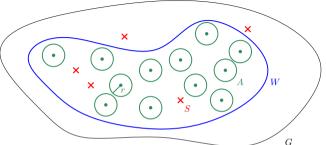
In this talk we will present:

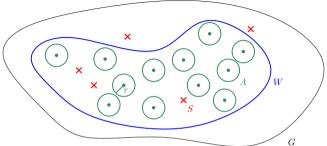
- a combinatorial structure characterization: flip-breakability
- a combinatorial non-structure characterization: forbidden induced subgraphs





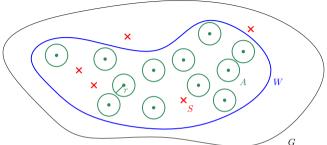






Uniform Quasi-Wideness (slightly informal)

A class C is uniformly quasi-wide if for every radius r, in every large set W we find a still large set A that is r-independent after removing a set S of constantly many vertices.

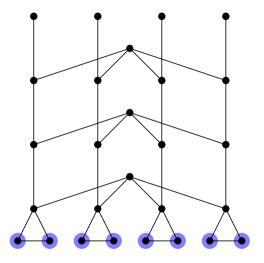


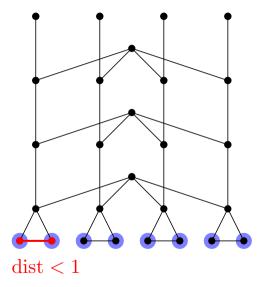
Uniform Quasi-Wideness (slightly informal)

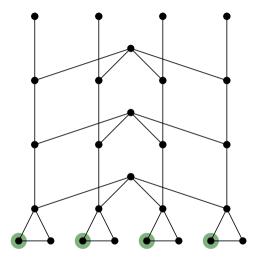
A class C is *uniformly quasi-wide* if for every radius r, in every large set W we find a still large set A that is r-independent after removing a set S of constantly many vertices.

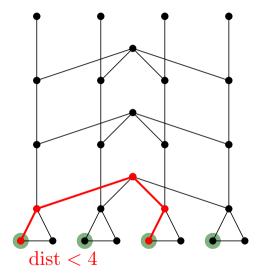
Theorem [Něsetřil, Ossona de Mendez, 2011]

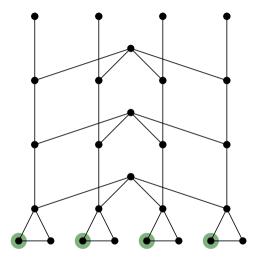
A class C is uniformly quasi-wide if and only if it is nowhere dense.

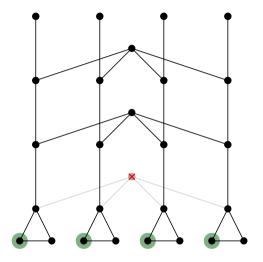


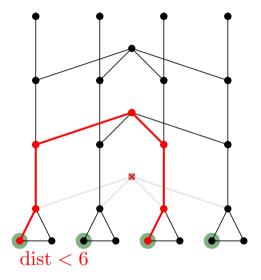


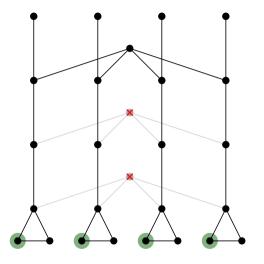


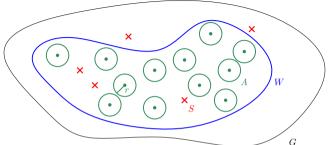












Uniform Quasi-Wideness (slightly informal)

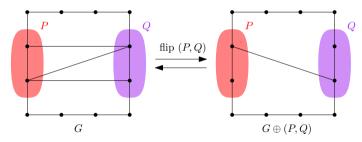
A class C is *uniformly quasi-wide* if for every radius r, in every large set W we find a still large set A that is r-independent after removing a set S of constantly many vertices.

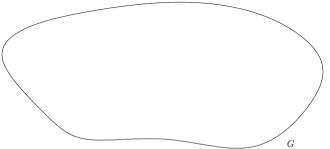
Theorem [Něsetřil, Ossona de Mendez, 2011]

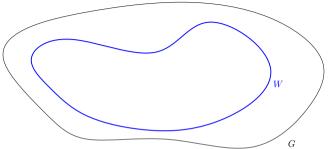
A class $\mathcal C$ is uniformly quasi-wide if and only if it is nowhere dense.

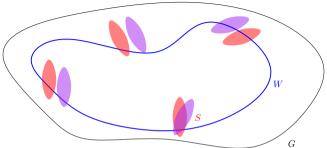
Towards Dense Graphs

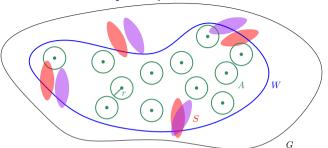
Denote by $G \oplus (P, Q)$ the graph obtained from G by complementing edges between pairs of vertices from $P \times Q$.







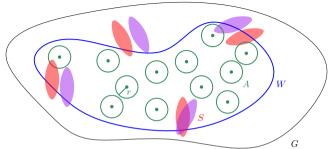






Flip-Flatness (slightly informal) [Gajarský, Kreutzer]

A class C is *flip-flat* if for every radius r, in every large set W we find a still large set A that is r-independent after performing a set S of constantly many flips.

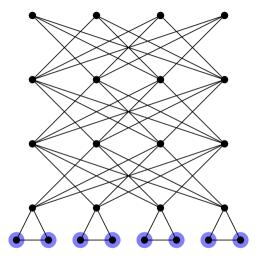


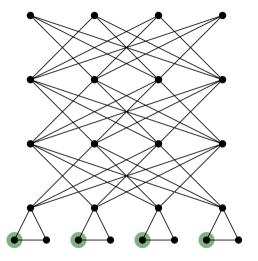
Flip-Flatness (slightly informal) [Gajarský, Kreutzer]

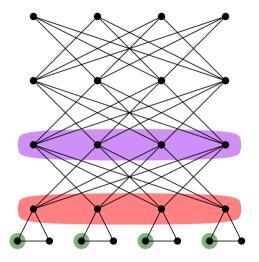
A class C is *flip-flat* if for every radius r, in every large set W we find a still large set A that is r-independent after performing a set S of constantly many flips.

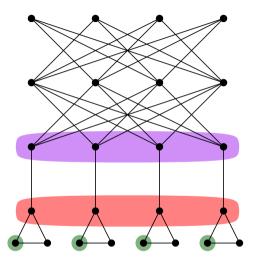
Theorem [Dreier, Mählmann, Siebertz, Toruńczyk, 2022]

A class ${\cal C}$ is flip-flat if and only if it is monadically stable.

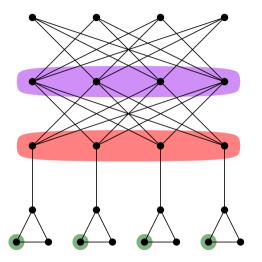




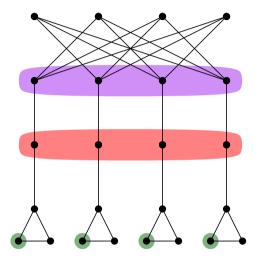




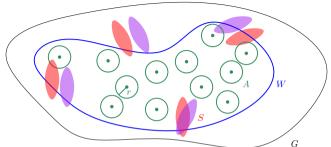
Flip-Flatness: Example



Flip-Flatness: Example



Characterizing Monadic Stability: Flip-Flatness

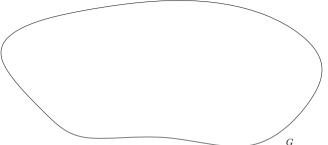


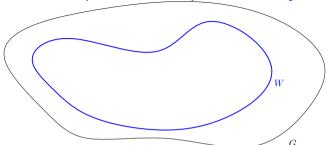
Flip-Flatness (slightly informal) [Gajarský, Kreutzer]

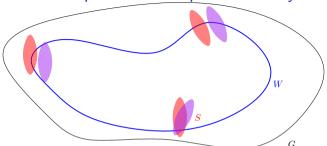
A class C is *flip-flat* if for every radius r, in every large set W we find a still large set A that is r-independent after performing a set S of constantly many flips.

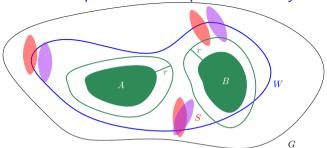
Theorem [Dreier, Mählmann, Siebertz, Toruńczyk, 2022]

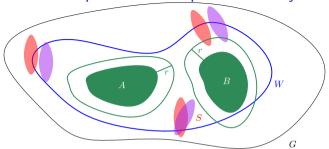
A class $\mathcal C$ is flip-flat if and only if it is monadically stable.





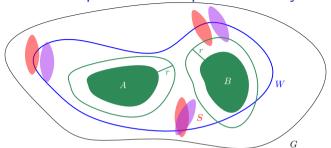






Flip-Breakability (slightly informal)

A class C is *flip-breakable* if for every radius r, in every large set W we find two large sets A and B that are at distance greater than 2r from each other after performing a set S of constantly many flips.

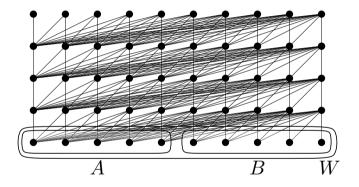


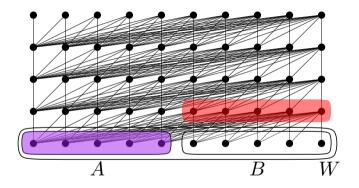
Flip-Breakability (slightly informal)

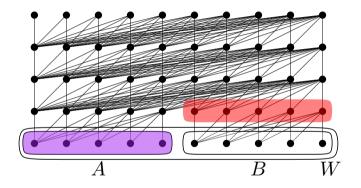
A class C is *flip-breakable* if for every radius r, in every large set W we find two large sets A and B that are at distance greater than 2r from each other after performing a set S of constantly many flips.

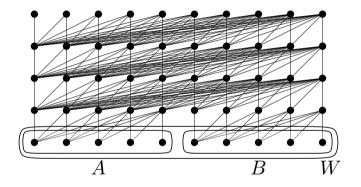
Theorem [Dreier, Mählmann, Toruńczyk]

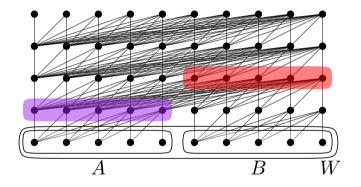
A class ${\mathcal C}$ is flip-breakable if and only if it is monadically dependent.

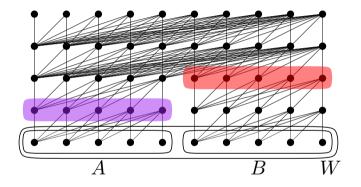


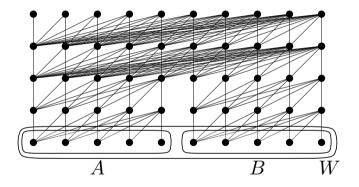


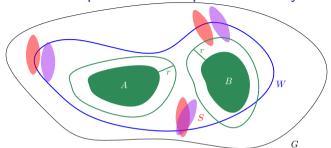












Flip-Breakability (slightly informal)

A class C is *flip-breakable* if for every radius r, in every large set W we find two large sets A and B that are at distance greater than 2r from each other after performing a set S of constantly many flips.

Theorem [Dreier, Mählmann, Toruńczyk]

A class ${\mathcal C}$ is flip-breakable if and only if it is monadically dependent.

1. We modify a graph using either flips or vertex deletions.

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

- 1. We modify a graph using either flips or vertex deletions.
- We demand our resulting set is either flat or broken.flat: pairwise separated; broken: separated into two large sets
- 3. Separation means either distance-r or distance- ∞ .

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

		flatness	breakability
dist-r	flip-	monadic stability	monadic dependence
	deletion-	nowhere denseness	
$dist ext{-}\infty$	flip-		
	deletion-		

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

		flatness	breakability
dist-r	flip-	monadic stability	monadic dependence
	deletion-	nowhere denseness	nowhere denseness
$dist ext{-}\infty$	flip-		
	deletion-		

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

		flatness	breakability
dist-r	flip-	monadic stability	monadic dependence
	deletion-	nowhere denseness	nowhere denseness
$dist ext{-}\infty$	flip-	bd. shrubdepth	bd. cliquewidth
	deletion-		

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken.

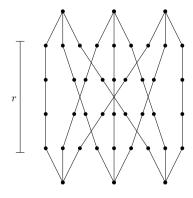
flat: pairwise separated; broken: separated into two large sets

		flatness	breakability
dist-r	flip-	monadic stability	monadic dependence
	deletion-	nowhere denseness	nowhere denseness
$dist\text{-}\infty$	flip-	bd. shrubdepth	bd. cliquewidth
	deletion-	bd. treedepth	bd. treewidth

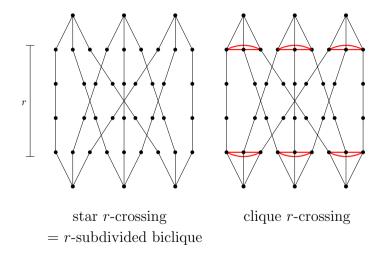
Wanted: Combinatorial Characterizations

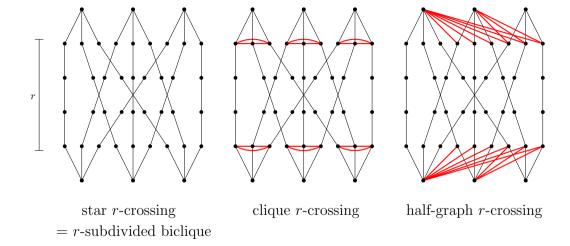
In this talk we will present:

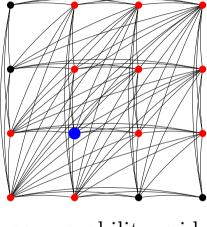
- a combinatorial structure characterization: flip-breakability
- a combinatorial non-structure characterization: forbidden induced subgraphs



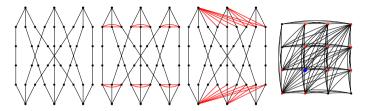
 $\begin{array}{l} {\rm star} \ r{\rm -crossing} \\ = r{\rm -subdivided} \ {\rm biclique} \end{array}$







comparability grid

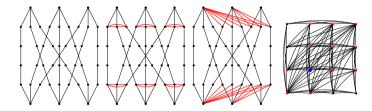


Theorem [Dreier, Mählmann, Toruńczyk]

Let $\mathcal C$ be a graph class. Then $\mathcal C$ is monadically dependent if and only if for every $r\geq 1$ there exists $k\in\mathbb N$ such $\mathcal C$ excludes as induced subgraphs

- all layerwise flipped star r-crossings of order k, and
- all layerwise flipped clique r-crossings of order k, and
- all layerwise flipped half-graph r-crossings of order k, and
- the comparability grid of order *k*.

Forbidden Induced Subgraphs: Applications

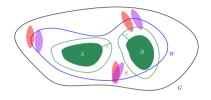


Theorem [Dreier, Mählmann, Toruńczyk]

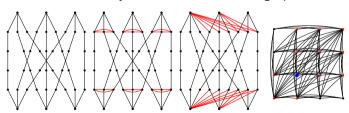
FO Model checking is $\mathrm{AW}[\ast]\text{-hard}$ on every hereditary, mon. independent class.

Summary: We give two combinatorial characterizations of mon. dependent graph classes.

A structure characterization called flip-breakability:



A non-structure characterization by forbidden induced subgraphs:



FO model checking is $\mathrm{AW}[*]$ -hard on hereditary monadically independent graph classes.