First-Order Model Checking on Structurally Sparse Graph Classes

Jan Dreier, Nikolas Mählmann, Sebastian Siebertz

STOC 2023

The FO Model Checking Problem

Problem: Given a graph G and an FO sentence φ , decide whether

$$G \models \varphi$$
.

Example: G contains a dominating set of size k iff.

$$G \models \exists x_1 \ldots \exists x_k \forall y : \bigvee_{i \in [k]} (y = x_i \vee y \sim x_i).$$

The FO Model Checking Problem

Problem: Given a graph G and an FO sentence φ , decide whether

$$G \models \varphi$$
.

Example: G contains a dominating set of size k iff.

$$G \models \exists x_1 \ldots \exists x_k \forall y : \bigvee_{i \in [k]} (y = x_i \vee y \sim x_i).$$

Runtime: Let q be the quantifier rank of φ . On the class of all graphs, the naive $\mathcal{O}(n^q)$ algorithm is best possible, assuming ETH.

The FO Model Checking Problem

Problem: Given a graph G and an FO sentence φ , decide whether

$$G \models \varphi$$
.

Example: G contains a dominating set of size k iff.

$$G \models \exists x_1 \ldots \exists x_k \forall y : \bigvee_{i \in [k]} (y = x_i \vee y \sim x_i).$$

Runtime: Let q be the quantifier rank of φ . On the class of all graphs, the naive $\mathcal{O}(n^q)$ algorithm is best possible, assuming ETH.

Question: On which classes is FO model checking fixed-parameter tractable, i.e., solvable in time $f(\varphi) \cdot n^c$?

Nowhere Dense Classes of Graphs

Definition [Něsetřil, Ossona de Mendez, 2011]

A class C is nowhere dense, if for every r there exists k such C that does not contain the r-subdivided clique of size k as a subgraph.

Figure: The 2-subdivided K_4 .

Nowhere Dense Classes of Graphs

Definition [Něsetřil, Ossona de Mendez, 2011]

A class C is nowhere dense, if for every r there exists k such C that does not contain the r-subdivided clique of size k as a subgraph.

Generalizes many notions of sparsity such as: bounded degree, bounded treewidth, planarity, excluding a minor, ...

Figure: The 2-subdivided K_4 .

Nowhere Dense Classes of Graphs

Definition [Něsetřil, Ossona de Mendez, 2011]

A class C is nowhere dense, if for every r there exists k such C that does not contain the r-subdivided clique of size k as a subgraph.

Generalizes many notions of sparsity such as: bounded degree, bounded treewidth, planarity, excluding a minor, ...

Figure: The 2-subdivided K_4 .

Theorem [Grohe, Kreutzer, Siebertz, 2014]

Let $\mathcal C$ be a *monotone* class of graphs. If $\mathcal C$ is nowhere dense, then FO model checking on $\mathcal C$ can be done in time $f(\varphi,\varepsilon)\cdot n^{1+\varepsilon}$ for every $\varepsilon>0$. Otherwise it is AW[*]-hard.

FO Transductions

To go beyond sparse classes, we need to shift from monotone to hereditary classes.

FO Transductions

To go beyond sparse classes, we need to shift from monotone to hereditary classes.

How to produce well behaved hereditary classes from sparse classes?

FO Transductions

To go beyond sparse classes, we need to shift from monotone to hereditary classes.

How to produce well behaved hereditary classes from sparse classes?

Transductions $\hat{=}$ coloring + interpreting + taking an induced subgraph

$$\varphi(x,y) := \operatorname{Red}(x) \wedge \operatorname{Red}(y) \wedge \operatorname{dist}(x,y) = 3$$

Structural Sparsity and Monadic Stability

Definition [Gajarský, Kreutzer, Něsetřil, Ossona de Mendez, Pilipczuk, Siebertz, Toruńczyk, 2018], [Něsetřil, Ossona de Mendez, 2016]

A class \mathcal{C} is *structurally nowhere dense*, if there exists a transduction \mathcal{T} and a nowhere dense class \mathcal{D} such that $\mathcal{C} \subseteq \mathcal{T}(\mathcal{D})$.

Structural Sparsity and Monadic Stability

Definition [Gajarský, Kreutzer, Něsetřil, Ossona de Mendez, Pilipczuk, Siebertz, Toruńczyk, 2018], [Něsetřil, Ossona de Mendez, 2016]

A class $\mathcal C$ is *structurally nowhere dense*, if there exists a transduction $\mathcal T$ and a nowhere dense class $\mathcal D$ such that $\mathcal C\subseteq \mathcal T(\mathcal D)$.

Definition [Baldwin, Shelah, 1985]

A class is monadically stable, if it does not transduce the class of all half graphs.

Structural Sparsity and Monadic Stability

Definition [Gajarský, Kreutzer, Něsetřil, Ossona de Mendez, Pilipczuk, Siebertz, Toruńczyk, 2018], [Něsetřil, Ossona de Mendez, 2016]

A class $\mathcal C$ is *structurally nowhere dense*, if there exists a transduction $\mathcal T$ and a nowhere dense class $\mathcal D$ such that $\mathcal C\subseteq \mathcal T(\mathcal D)$.

Definition [Baldwin, Shelah, 1985]

A class is monadically stable, if it does not transduce the class of all half graphs.

Every structurally nowhere dense class is monadically stable.

Conjecture: every monadically stable class is structurally nowhere dense.

Map of the Universe

Map of the Universe

Main Result

Theorem [Dreier, Mählmann, Siebertz]

Every structurally nowhere dense class admits FO model checking in time

$$f(\varphi) \cdot n^{11}$$
.

Main Result

Theorem [Dreier, Mählmann, Siebertz]

Every structurally nowhere dense class admits FO model checking in time

$$f(\varphi) \cdot n^{11}$$
.

Theorem [Dreier, Mählmann, Siebertz]

Every monadically stable class, that admits sparse neighborhood covers, admits FO model checking in time $f(\varphi) \cdot n^{11}$.

Map of the Universe

Map of the Universe

Denote by $G \oplus F$ the graph obtained from G by complementing edges between pairs of vertices from F.

Denote by $G \oplus F$ the graph obtained from G by complementing edges between pairs of vertices from F.

Denote by $G \oplus F$ the graph obtained from G by complementing edges between pairs of vertices from F.

Denote by $G \oplus F$ the graph obtained from G by complementing edges between pairs of vertices from F.

If we rewrite φ into $\hat{\varphi}$ such that

$$x \sim y$$
 is replaced with $x \sim y$ XOR $F(x) \wedge F(y)$

then there exists a coloring G^+ of G such that

$$G \models \varphi \iff G^+ \oplus F \models \hat{\varphi}.$$

The radius-r Flipper game is played on a graph G_1 . In round i

1. Flipper chooses a flip set F

The radius-r Flipper game is played on a graph G_1 . In round i

- 1. Flipper chooses a flip set F
- 2. Localizer chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

The radius-r Flipper game is played on a graph G_1 . In round i

- 1. Flipper chooses a flip set *F*
- 2. Localizer chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

The radius-r Flipper game is played on a graph G_1 . In round i

- 1. Flipper chooses a flip set *F*
- 2. Localizer chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

The radius-r Flipper game is played on a graph G_1 . In round i

- 1. Flipper chooses a flip set F
- 2. Localizer chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

The radius-r Flipper game is played on a graph G_1 . In round i

- 1. Flipper chooses a flip set F
- 2. Localizer chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

The radius-r Flipper game is played on a graph G_1 . In round i

- 1. Flipper chooses a flip set *F*
- 2. Localizer chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

The radius-r Flipper game is played on a graph G_1 . In round i

- 1. Flipper chooses a flip set *F*
- 2. Localizer chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

The radius-r Flipper game is played on a graph G_1 . In round i

- 1. Flipper chooses a flip set *F*
- 2. Localizer chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

The radius-r Flipper game is played on a graph G_1 . In round i

- 1. Flipper chooses a flip set *F*
- 2. Localizer chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

The radius-r Flipper game is played on a graph G_1 . In round i

- 1. Flipper chooses a flip set *F*
- 2. Localizer chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

The radius-r Flipper game is played on a graph G_1 . In round i

- 1. Flipper chooses a flip set *F*
- 2. Localizer chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

The radius-r Flipper game is played on a graph G_1 . In round i

- 1. Flipper chooses a flip set *F*
- 2. Localizer chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

The radius-r Flipper game is played on a graph G_1 . In round i

- 1. Flipper chooses a flip set *F*
- 2. Localizer chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

The radius-r Flipper game is played on a graph G_1 . In round i

- 1. Flipper chooses a flip set *F*
- 2. Localizer chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

The radius-r Flipper game is played on a graph G_1 . In round i

- 1. Flipper chooses a flip set *F*
- 2. Localizer chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

The radius-r Flipper game is played on a graph G_1 . In round i

- 1. Flipper chooses a flip set *F*
- 2. Localizer chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

Example play of the radius-2 Flipper game:

•

The radius-r Flipper game is played on a graph G_1 . In round i

- 1. Flipper chooses a flip set *F*
- 2. Localizer chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

Example play of the radius-2 Flipper game:

•

The radius-r Flipper game is played on a graph G_1 . In round i

- 1. Flipper chooses a flip set *F*
- 2. Localizer chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

The radius-r Flipper game is played on a graph G_1 . In round i

- 1. Flipper chooses a flip set *F*
- 2. Localizer chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

The radius-r Flipper game is played on a graph G_1 . In round i

- 1. Flipper chooses a flip set *F*
- 2. Localizer chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

The radius-r Flipper game is played on a graph G_1 . In round i

- 1. Flipper chooses a flip set *F*
- 2. Localizer chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

The radius-r Flipper game is played on a graph G_1 . In round i

- 1. Flipper chooses a flip set F
- 2. Localizer chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

Example play of the radius-2 Flipper game:

•

Flipper Game and Monadic Stability

Theorem [Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, Toruńczyk, 2023]

A class of graphs $\mathcal C$ is monadically stable \Leftrightarrow

 $\forall r \exists \ell$ such that Flipper wins the radius-r game on all graphs from \mathcal{C} in ℓ rounds.

Flipper Game and Monadic Stability

Theorem [Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, Toruńczyk, 2023]

A class of graphs ${\mathcal C}$ is monadically stable \Leftrightarrow

 $\forall r \exists \ell$ such that Flipper wins the radius-r game on all graphs from \mathcal{C} in ℓ rounds.

Moreover, Flippers moves can be computed in time $\mathcal{O}(n^2)$.

Goal: Decide whether $G \models \varphi$.

Goal: Decide whether $G \models \varphi$.

Idea: Recursion that works by induction on the length ℓ of the Flipper game.

- For every monadically stable class the recursion depth will be bounded.
- For $\ell = 1$ we have |V(G)| = 1 and can brute force.

Goal: Decide whether $G \models \varphi$.

Idea: Recursion that works by induction on the length ℓ of the Flipper game.

- For every monadically stable class the recursion depth will be bounded.
- For $\ell = 1$ we have |V(G)| = 1 and can brute force.

We make one round of progress by flipping and localizing.

Goal: Decide whether $G \models \varphi$.

Idea: Recursion that works by induction on the length ℓ of the Flipper game.

- For every monadically stable class the recursion depth will be bounded.
- For $\ell = 1$ we have |V(G)| = 1 and can brute force.

We make one round of progress by flipping and localizing.

Flipping is easy:

- Compute a progressing flip F using Flippers winning strategy
- Rewrite φ and color G such that $G \models \varphi \iff G^+ \oplus F \models \hat{\varphi}$.

Goal: Decide whether $G \models \varphi$.

Idea: Recursion that works by induction on the length ℓ of the Flipper game.

- For every monadically stable class the recursion depth will be bounded.
- For $\ell = 1$ we have |V(G)| = 1 and can brute force.

We make one round of progress by flipping and localizing.

Flipping is easy:

- Compute a progressing flip F using Flippers winning strategy
- Rewrite φ and color G such that $G \models \varphi \iff G^+ \oplus F \models \hat{\varphi}$.

How do we localize? What radius r do we play the Flipper game with?

 ψ is \mathcal{U} -guarded, if each quantifier is of the form $\exists x \in U$ or $\forall x \in U$ for some $U \in \mathcal{U}$.

 ψ is \mathcal{U} -guarded, if each quantifier is of the form $\exists x \in U$ or $\forall x \in U$ for some $U \in \mathcal{U}$.

Observation

For every graph G and $\{U_1,\ldots,U_t\}$ -guarded formula ψ we have

$$G \models \psi \iff G[U_1 \cup \ldots \cup U_t] \models \psi.$$

 ψ is \mathcal{U} -guarded, if each quantifier is of the form $\exists x \in U$ or $\forall x \in U$ for some $U \in \mathcal{U}$.

Observation

For every graph G and $\{U_1,\ldots,U_t\}$ -guarded formula ψ we have

$$G \models \psi \iff G[U_1 \cup \ldots \cup U_t] \models \psi.$$

 ψ is \mathcal{U} -guarded, if each quantifier is of the form $\exists x \in U$ or $\forall x \in U$ for some $U \in \mathcal{U}$.

Observation

For every graph G and $\{U_1,\ldots,U_t\}$ -guarded formula ψ we have

$$G \models \psi \iff G[U_1 \cup \ldots \cup U_t] \models \psi.$$

Goal: efficiently compute ψ s.t.

- 1. ψ is equivalent to φ on G.
- 2. ψ is a BC of formulas, each guarded by a family of bounded radius in G.

 $\mathsf{Assume}\ \mathsf{tp}_q(\bullet) = \mathsf{tp}_q(\bullet). \qquad \mathsf{tp}_q(\mathsf{G}) := \{ \psi : \psi \ \mathsf{has}\ \mathsf{quantifier}\ \mathsf{rank} \leq q \ \mathsf{and}\ \mathsf{G} \models \psi \}$

$$\mathsf{Assume}\ \mathsf{tp}_q(\bullet) = \mathsf{tp}_q(\bullet). \qquad \mathsf{tp}_q(G) := \{ \psi : \psi \ \mathsf{has}\ \mathsf{quantifier}\ \mathsf{rank} \le q \ \mathsf{and}\ G \models \psi \}$$

Let $\psi(x)$ be a formula of quantifier rank q-1.

 $\text{Assume tp}_q(\bullet) = \operatorname{tp}_q(\bullet). \qquad \operatorname{tp}_q(G) := \{ \psi : \psi \text{ has quantifier rank} \leq q \text{ and } G \models \psi \}$

Let $\psi(x)$ be a formula of quantifier rank q-1.

There exists $u \in A$ with $G \models \psi(u)$ iff. there exists $v \in B$ with $G \models \psi(v)$.

Assume $\operatorname{tp}_q(ullet) = \operatorname{tp}_q(ullet)$. $\operatorname{tp}_q(G) := \{\psi : \psi \text{ has quantifier rank } \leq q \text{ and } G \models \psi\}$

Let $\psi(x)$ be a formula of quantifier rank q-1.

There exists $u \in A$ with $G \models \psi(u)$ iff. there exists $v \in B$ with $G \models \psi(v)$.

The proof uses a local variant of Ehrenfeucht-Fraïssé games.

Let $S = \{N_{2^q}[v] : v \in V(G)\}$ be the set of 2^q -neighborhoods in G. We have

$$G \models \exists x \ \psi(x) \iff G \models \bigvee_{S \in S} \exists x \in S \ \psi(x).$$

Let $S = \{N_{2q}[v] : v \in V(G)\}$ be the set of 2^q -neighborhoods in G. We have

$$G \models \exists x \ \psi(x) \iff G \models \bigvee_{S \in S} \exists x \in S \ \psi(x).$$

Every set S is local, but |S| depends on |V(G)|!

Let $S = \{N_{2q}[v] : v \in V(G)\}$ be the set of 2^q -neighborhoods in G. We have

$$G \models \exists x \ \psi(x) \iff G \models \bigvee_{S \in S} \exists x \in S \ \psi(x).$$

Every set S is local, but |S| depends on |V(G)|!

Idea: Let $S^* \subseteq S$ contain exactly one 2^q -neighborhood for every possible q-type.

By the Local Type Theorem:
$$G \models \exists x \ \psi(x) \iff G \models \bigvee_{S \in \mathcal{S}^*} \exists x \in S \ \psi(x).$$

Let $S = \{N_{2q}[v] : v \in V(G)\}$ be the set of 2^q -neighborhoods in G. We have

$$G \models \exists x \ \psi(x) \iff G \models \bigvee_{S \in S} \exists x \in S \ \psi(x).$$

Every set S is local, but |S| depends on |V(G)|!

Idea: Let $S^* \subseteq S$ contain exactly one 2^q -neighborhood for every possible q-type.

By the Local Type Theorem:
$$G \models \exists x \ \psi(x) \iff G \models \bigvee_{S \in \mathcal{S}^*} \exists x \in S \ \psi(x).$$

 $|\mathcal{S}^{\star}|$ depends only on $q \checkmark$

Let $S = \{N_{2q}[v] : v \in V(G)\}$ be the set of 2^q -neighborhoods in G. We have

$$G \models \exists x \ \psi(x) \iff G \models \bigvee_{S \in S} \exists x \in S \ \psi(x).$$

Every set S is local, but |S| depends on |V(G)|!

Idea: Let $S^* \subseteq S$ contain exactly one 2^q -neighborhood for every possible q-type.

By the Local Type Theorem:
$$G \models \exists x \ \psi(x) \iff G \models \bigvee_{S \in \mathcal{S}^*} \exists x \in S \ \psi(x).$$

 $|\mathcal{S}^{\star}|$ depends only on $q \checkmark$

When computing $\operatorname{tp}_a(G[S])$, we make progress in the radius-2^q Flipper game \checkmark

Let $S = \{N_{2^q}[v] : v \in V(G)\}$ be the set of 2^q -neighborhoods in G. We have

$$G \models \exists x \ \psi(x) \iff G \models \bigvee_{S \in S} \exists x \in S \ \psi(x).$$

Every set S is local, but |S| depends on |V(G)|!

Idea: Let $S^* \subseteq S$ contain exactly one 2^q -neighborhood for every possible q-type.

By the Local Type Theorem:
$$G \models \exists x \ \psi(x) \iff G \models \bigvee_{S \in \mathcal{S}^*} \exists x \in S \ \psi(x).$$

 $|\mathcal{S}^{\star}|$ depends only on $q \checkmark$

When computing $\operatorname{tp}_q(G[S])$, we make progress in the radius-2^q Flipper game \checkmark

For multiple quantifiers: extend to parameters and argue by induction ✓

Recursion Tree

We can now play the Flipper game for radius 2^q :

- 1. Flip by rewriting φ and coloring G.
- 2. Localize by computing the q-type of every 2^q -neighborhood.

Recursion Tree

We can now play the Flipper game for radius 2^q :

- 1. Flip by rewriting φ and coloring G.
- 2. Localize by computing the q-type of every 2^q -neighborhood.

By monadic stability the depth of the recursion tree is bounded by f(q).

Recursion Tree

We can now play the Flipper game for radius 2^q :

- 1. Flip by rewriting φ and coloring G.
- 2. Localize by computing the q-type of every 2^q -neighborhood.

By monadic stability the depth of the recursion tree is bounded by f(q).

However the branching degree is n. This gives an $\mathcal{O}(n^{f(q)})$ algorithm.

This is worse than the naive $\mathcal{O}(n^q)$ algorithm!

Recursing into each 2^q -neighborhood is too expensive!

Idea: group neighborhoods that are close to each other into clusters.

Recursing into each 2^q -neighborhood is too expensive!

Idea: group neighborhoods that are close to each other into clusters.

Definition

A family of sets \mathcal{X} is a *neighborhood cover* with radius r, spread s, and degree d if

- each r-neighborhood of G is fully contained in one cluster $X \in \mathcal{X}$,
- each cluster is contained in an s-neighborhood of G,
- each vertex appears in at most *d* clusters.

Recursing into each 2^q -neighborhood is too expensive!

Idea: group neighborhoods that are close to each other into clusters.

Definition

A family of sets \mathcal{X} is a *neighborhood cover* with radius r, spread s, and degree d if

- each r-neighborhood of G is fully contained in one cluster $X \in \mathcal{X}$,
- each cluster is contained in an s-neighborhood of G,
- each vertex appears in at most d clusters.

A class admits sparse neighborhood covers if we can set $d = g(r, \varepsilon) \cdot n^{\varepsilon}$ for every $\varepsilon > 0$.

Recursing into each 2^q -neighborhood is too expensive!

Idea: group neighborhoods that are close to each other into clusters.

Definition

A family of sets \mathcal{X} is a *neighborhood cover* with radius r, spread s, and degree d if

- each r-neighborhood of G is fully contained in one cluster $X \in \mathcal{X}$,
- each cluster is contained in an s-neighborhood of G,
- each vertex appears in at most d clusters.

A class admits sparse neighborhood covers if we can set $d = g(r, \varepsilon) \cdot n^{\varepsilon}$ for every $\varepsilon > 0$.

The size of the clusters of a sparse neighborhood cover sum up to $g(r, \varepsilon) \cdot n^{1+\varepsilon}$.

Resulting size of the recursion tree: $n^{((1+\varepsilon)^{f(q)})}$; by choosing ε small enough: $n^{1+\varepsilon'}$.

Approximating Sparse Neighborhood Covers

Theorem [Dreier, Mählmann, Siebertz]

Every structurally nowhere dense class admits sparse neighborhood covers.

Proof utilizes a treelike decomposition from [Dreier, Gajarský, Kiefer, Pilipczuk, Toruńczyk, 2022].

Approximating Sparse Neighborhood Covers

Theorem [Dreier, Mählmann, Siebertz]

Every structurally nowhere dense class admits sparse neighborhood covers.

Proof utilizes a treelike decomposition from [Dreier, Gajarský, Kiefer, Pilipczuk, Toruńczyk, 2022].

Theorem [Dreier, Mählmann, Siebertz]

Given a graph that admits a sparse neighborhood cover with radius r, spread s, and degree d. We can calculate a cover with radius r, spread s and degree $\mathcal{O}(\log(n)^2 \cdot d)$ in polynomial time.

Proof uses randomized rounding on an LP solution.

Main Result

Theorem [Dreier, Mählmann, Siebertz]

Every structurally nowhere dense class admits FO model checking in time

$$f(\varphi)\cdot |V(G)|^{11}$$
.

Theorem [Dreier, Mählmann, Siebertz]

Every monadically stable class, that admits sparse neighborhood covers, admits FO model checking in time $f(\varphi) \cdot |V(G)|^{11}$.

Main Result

Theorem [Dreier, Mählmann, Siebertz]

Every structurally nowhere dense class admits FO model checking in time

$$f(\varphi)\cdot |V(G)|^{11}$$
.

Theorem [Dreier, Mählmann, Siebertz]

Every monadically stable class, that admits sparse neighborhood covers, admits FO model checking in time $f(\varphi) \cdot |V(G)|^{11}$.

Conjecture

Every monadically stable class admits sparse neighborhood covers.