
First-Order Model Checking on
Structurally Sparse Graph Classes

Jan Dreier, Nikolas Mählmann, Sebastian Siebertz

STOC 2023

1 / 19

The FO Model Checking Problem

Problem: Given a graph G and an FO sentence φ, decide whether

G |= φ.

Example: G contains a dominating set of size k iff.

G |= ∃x1 . . . ∃xk∀y :
∨
i∈[k]

(y = xi ∨ y ∼ xi).

Runtime: Let q be the quantifier rank of φ. On the class of all graphs, the naive
O(nq) algorithm is best possible, assuming ETH.

Question: On which classes is FO model checking fixed-parameter tractable, i.e.,
solvable in time f (φ) · nc?

2 / 19

The FO Model Checking Problem

Problem: Given a graph G and an FO sentence φ, decide whether

G |= φ.

Example: G contains a dominating set of size k iff.

G |= ∃x1 . . . ∃xk∀y :
∨
i∈[k]

(y = xi ∨ y ∼ xi).

Runtime: Let q be the quantifier rank of φ. On the class of all graphs, the naive
O(nq) algorithm is best possible, assuming ETH.

Question: On which classes is FO model checking fixed-parameter tractable, i.e.,
solvable in time f (φ) · nc?

2 / 19

The FO Model Checking Problem

Problem: Given a graph G and an FO sentence φ, decide whether

G |= φ.

Example: G contains a dominating set of size k iff.

G |= ∃x1 . . . ∃xk∀y :
∨
i∈[k]

(y = xi ∨ y ∼ xi).

Runtime: Let q be the quantifier rank of φ. On the class of all graphs, the naive
O(nq) algorithm is best possible, assuming ETH.

Question: On which classes is FO model checking fixed-parameter tractable, i.e.,
solvable in time f (φ) · nc?

2 / 19

Nowhere Dense Classes of Graphs

Definition [Něseťril, Ossona de Mendez, 2011]

A class C is nowhere dense, if for every r there
exists k such C that does not contain the
r -subdivided clique of size k as a subgraph.

Generalizes many notions of sparsity such as:
bounded degree, bounded treewidth, planarity,
excluding a minor, ...

Figure: The 2-subdivided K4.

Theorem [Grohe, Kreutzer, Siebertz, 2014]

Let C be a monotone class of graphs. If C is nowhere dense, then FO model checking
on C can be done in time f (φ, ε) · n1+ε for every ε > 0. Otherwise it is AW[∗]-hard.

3 / 19

Nowhere Dense Classes of Graphs

Definition [Něseťril, Ossona de Mendez, 2011]

A class C is nowhere dense, if for every r there
exists k such C that does not contain the
r -subdivided clique of size k as a subgraph.

Generalizes many notions of sparsity such as:
bounded degree, bounded treewidth, planarity,
excluding a minor, ... Figure: The 2-subdivided K4.

Theorem [Grohe, Kreutzer, Siebertz, 2014]

Let C be a monotone class of graphs. If C is nowhere dense, then FO model checking
on C can be done in time f (φ, ε) · n1+ε for every ε > 0. Otherwise it is AW[∗]-hard.

3 / 19

Nowhere Dense Classes of Graphs

Definition [Něseťril, Ossona de Mendez, 2011]

A class C is nowhere dense, if for every r there
exists k such C that does not contain the
r -subdivided clique of size k as a subgraph.

Generalizes many notions of sparsity such as:
bounded degree, bounded treewidth, planarity,
excluding a minor, ... Figure: The 2-subdivided K4.

Theorem [Grohe, Kreutzer, Siebertz, 2014]

Let C be a monotone class of graphs. If C is nowhere dense, then FO model checking
on C can be done in time f (φ, ε) · n1+ε for every ε > 0. Otherwise it is AW[∗]-hard.

3 / 19

FO Transductions

To go beyond sparse classes, we need to shift from monotone to hereditary classes.

How to produce well behaved hereditary classes from sparse classes?

Transductions =̂ coloring + interpreting + taking an induced subgraph

Tφ

φ(x , y) := Red(x) ∧ Red(y) ∧ dist(x , y) = 3

4 / 19

FO Transductions

To go beyond sparse classes, we need to shift from monotone to hereditary classes.

How to produce well behaved hereditary classes from sparse classes?

Transductions =̂ coloring + interpreting + taking an induced subgraph

Tφ

φ(x , y) := Red(x) ∧ Red(y) ∧ dist(x , y) = 3

4 / 19

FO Transductions

To go beyond sparse classes, we need to shift from monotone to hereditary classes.

How to produce well behaved hereditary classes from sparse classes?

Transductions =̂ coloring + interpreting + taking an induced subgraph

Tφ

φ(x , y) := Red(x) ∧ Red(y) ∧ dist(x , y) = 3

4 / 19

Structural Sparsity and Monadic Stability

Definition [Gajarský, Kreutzer, Něseťril, Ossona de Mendez, Pilipczuk, Siebertz, Toruńczyk, 2018], [Něseťril, Ossona de Mendez, 2016]

A class C is structurally nowhere dense, if there exists a transduction T and a nowhere
dense class D such that C ⊆ T (D).

Definition [Baldwin, Shelah, 1985]

A class is monadically stable, if it does not transduce the class of all half graphs.

a1

b1

a2

b2

a3

b3

ak

bk. . .

. . .

ai ∼ bj ⇔ i ≤ j

Every structurally nowhere dense class is monadically stable.

Conjecture: every monadically stable class is structurally nowhere dense.

5 / 19

Structural Sparsity and Monadic Stability

Definition [Gajarský, Kreutzer, Něseťril, Ossona de Mendez, Pilipczuk, Siebertz, Toruńczyk, 2018], [Něseťril, Ossona de Mendez, 2016]

A class C is structurally nowhere dense, if there exists a transduction T and a nowhere
dense class D such that C ⊆ T (D).

Definition [Baldwin, Shelah, 1985]

A class is monadically stable, if it does not transduce the class of all half graphs.

a1

b1

a2

b2

a3

b3

ak

bk. . .

. . .

ai ∼ bj ⇔ i ≤ j

Every structurally nowhere dense class is monadically stable.

Conjecture: every monadically stable class is structurally nowhere dense.

5 / 19

Structural Sparsity and Monadic Stability

Definition [Gajarský, Kreutzer, Něseťril, Ossona de Mendez, Pilipczuk, Siebertz, Toruńczyk, 2018], [Něseťril, Ossona de Mendez, 2016]

A class C is structurally nowhere dense, if there exists a transduction T and a nowhere
dense class D such that C ⊆ T (D).

Definition [Baldwin, Shelah, 1985]

A class is monadically stable, if it does not transduce the class of all half graphs.

a1

b1

a2

b2

a3

b3

ak

bk. . .

. . .

ai ∼ bj ⇔ i ≤ j

Every structurally nowhere dense class is monadically stable.

Conjecture: every monadically stable class is structurally nowhere dense.

5 / 19

Map of the Universe

Nowhere Dense
Structurally

Nowhere Dense

Structurally
Bounded Expansion

Bounded Treewidth
Structurally

Bounded Treewidth

Bounded Pathwidth
Structurally

Bounded Pathwidth

Bounded Treedepth Bounded Shrubdepth

Monadically Stable Monadically NIP

=?

Bounded Sparse
Twinwidth

Bounded Stable
Twinwidth

Bounded Expansion

Bounded
Embedded
Shrubdepth

Bounded
Linear Cliquewidth

Bounded Cliquewidth

Bounded Twinwidth

Bounded Flipwidth

6 / 19

Map of the Universe

Nowhere Dense
Structurally

Nowhere Dense

Structurally
Bounded Expansion

Bounded Treewidth
Structurally

Bounded Treewidth

Bounded Pathwidth
Structurally

Bounded Pathwidth

Bounded Treedepth Bounded Shrubdepth

Monadically Stable Monadically NIP

=?

Bounded Sparse
Twinwidth

Bounded Stable
Twinwidth

Bounded Expansion

Bounded
Embedded
Shrubdepth

Bounded
Linear Cliquewidth

Bounded Cliquewidth

Bounded Twinwidth

Bounded Flipwidth
[G

ro
h
e,

K
re
u
tz
er
,
S
ie
b
er
tz
,
2
01
4]

conditional [Bonnet, Kim, Thomassé, Watrigant, 2021]

6 / 19

Main Result

Theorem [Dreier, Mählmann, Siebertz]

Every structurally nowhere dense class admits FO model checking in time

f (φ) · n11.

Theorem [Dreier, Mählmann, Siebertz]

Every monadically stable class, that admits sparse neighborhood covers, admits FO
model checking in time f (φ) · n11.

7 / 19

Main Result

Theorem [Dreier, Mählmann, Siebertz]

Every structurally nowhere dense class admits FO model checking in time

f (φ) · n11.

Theorem [Dreier, Mählmann, Siebertz]

Every monadically stable class, that admits sparse neighborhood covers, admits FO
model checking in time f (φ) · n11.

7 / 19

Map of the Universe

Nowhere Dense
Structurally

Nowhere Dense

Structurally
Bounded Expansion

Bounded Treewidth
Structurally

Bounded Treewidth

Bounded Pathwidth
Structurally

Bounded Pathwidth

Bounded Treedepth Bounded Shrubdepth

Monadically Stable Monadically NIP

=?

Bounded Sparse
Twinwidth

Bounded Stable
Twinwidth

Bounded Expansion

Bounded
Embedded
Shrubdepth

Bounded
Linear Cliquewidth

Bounded Cliquewidth

Bounded Twinwidth

Bounded Flipwidth
[G

ro
h
e,

K
re
u
tz
er
,
S
ie
b
er
tz
,
2
01
4]

conditional [Bonnet, Kim, Thomassé, Watrigant, 2021]

8 / 19

Map of the Universe

Nowhere Dense
Structurally

Nowhere Dense

Structurally
Bounded Expansion

Bounded Treewidth
Structurally

Bounded Treewidth

Bounded Pathwidth
Structurally

Bounded Pathwidth

Bounded Treedepth Bounded Shrubdepth

Monadically Stable Monadically NIP

=?

Bounded Sparse
Twinwidth

Bounded Stable
Twinwidth

Bounded Expansion

Bounded
Embedded
Shrubdepth

Bounded
Linear Cliquewidth

Bounded Cliquewidth

Bounded Twinwidth

Bounded Flipwidth

conditional [Bonnet, Kim, Thomassé, Watrigant, 2021]

[D
re
ie
r,

M
äh

lm
a
n
n
,
S
ie
b
er
tz
]

8 / 19

Flips

Denote by G ⊕ F the graph obtained from G by complementing edges between pairs of
vertices from F .

If we rewrite φ into φ̂ such that

x ∼ y is replaced with x ∼ y XOR F (x) ∧ F (y)

then there exists a coloring G+ of G such that

G |= φ ⇐⇒ G+ ⊕ F |= φ̂.

9 / 19

Flips

Denote by G ⊕ F the graph obtained from G by complementing edges between pairs of
vertices from F .

F

G

If we rewrite φ into φ̂ such that

x ∼ y is replaced with x ∼ y XOR F (x) ∧ F (y)

then there exists a coloring G+ of G such that

G |= φ ⇐⇒ G+ ⊕ F |= φ̂.

9 / 19

Flips

Denote by G ⊕ F the graph obtained from G by complementing edges between pairs of
vertices from F .

F

G G⊕ F

flip F

F

If we rewrite φ into φ̂ such that

x ∼ y is replaced with x ∼ y XOR F (x) ∧ F (y)

then there exists a coloring G+ of G such that

G |= φ ⇐⇒ G+ ⊕ F |= φ̂.

9 / 19

Flips

Denote by G ⊕ F the graph obtained from G by complementing edges between pairs of
vertices from F .

F

G G⊕ F

flip F

F

If we rewrite φ into φ̂ such that

x ∼ y is replaced with x ∼ y XOR F (x) ∧ F (y)

then there exists a coloring G+ of G such that

G |= φ ⇐⇒ G+ ⊕ F |= φ̂.

9 / 19

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

10 / 19

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

10 / 19

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

10 / 19

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

10 / 19

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

10 / 19

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

10 / 19

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

10 / 19

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

10 / 19

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

10 / 19

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

10 / 19

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

10 / 19

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

10 / 19

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

10 / 19

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

10 / 19

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

10 / 19

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

10 / 19

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

10 / 19

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

10 / 19

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

10 / 19

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

10 / 19

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

10 / 19

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

10 / 19

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

10 / 19

Flipper Game and Monadic Stability

Theorem [Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Soko lowski, Toruńczyk, 2023]

A class of graphs C is monadically stable ⇔

∀r∃ℓ such that Flipper wins the radius-r game on all graphs from C in ℓ rounds.

Moreover, Flippers moves can be computed in time O(n2).

11 / 19

Flipper Game and Monadic Stability

Theorem [Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Soko lowski, Toruńczyk, 2023]

A class of graphs C is monadically stable ⇔

∀r∃ℓ such that Flipper wins the radius-r game on all graphs from C in ℓ rounds.

Moreover, Flippers moves can be computed in time O(n2).

11 / 19

Towards a Recursive Model Checking Algorithm

Goal: Decide whether G |= φ.

Idea: Recursion that works by induction on the length ℓ of the Flipper game.

• For every monadically stable class the recursion depth will be bounded.

• For ℓ = 1 we have |V (G)| = 1 and can brute force.

We make one round of progress by flipping and localizing.

Flipping is easy:

• Compute a progressing flip F using Flippers winning strategy

• Rewrite φ and color G such that G |= φ ⇐⇒ G+ ⊕ F |= φ̂.

How do we localize? What radius r do we play the Flipper game with?

12 / 19

Towards a Recursive Model Checking Algorithm

Goal: Decide whether G |= φ.

Idea: Recursion that works by induction on the length ℓ of the Flipper game.

• For every monadically stable class the recursion depth will be bounded.

• For ℓ = 1 we have |V (G)| = 1 and can brute force.

We make one round of progress by flipping and localizing.

Flipping is easy:

• Compute a progressing flip F using Flippers winning strategy

• Rewrite φ and color G such that G |= φ ⇐⇒ G+ ⊕ F |= φ̂.

How do we localize? What radius r do we play the Flipper game with?

12 / 19

Towards a Recursive Model Checking Algorithm

Goal: Decide whether G |= φ.

Idea: Recursion that works by induction on the length ℓ of the Flipper game.

• For every monadically stable class the recursion depth will be bounded.

• For ℓ = 1 we have |V (G)| = 1 and can brute force.

We make one round of progress by flipping and localizing.

Flipping is easy:

• Compute a progressing flip F using Flippers winning strategy

• Rewrite φ and color G such that G |= φ ⇐⇒ G+ ⊕ F |= φ̂.

How do we localize? What radius r do we play the Flipper game with?

12 / 19

Towards a Recursive Model Checking Algorithm

Goal: Decide whether G |= φ.

Idea: Recursion that works by induction on the length ℓ of the Flipper game.

• For every monadically stable class the recursion depth will be bounded.

• For ℓ = 1 we have |V (G)| = 1 and can brute force.

We make one round of progress by flipping and localizing.

Flipping is easy:

• Compute a progressing flip F using Flippers winning strategy

• Rewrite φ and color G such that G |= φ ⇐⇒ G+ ⊕ F |= φ̂.

How do we localize? What radius r do we play the Flipper game with?

12 / 19

Towards a Recursive Model Checking Algorithm

Goal: Decide whether G |= φ.

Idea: Recursion that works by induction on the length ℓ of the Flipper game.

• For every monadically stable class the recursion depth will be bounded.

• For ℓ = 1 we have |V (G)| = 1 and can brute force.

We make one round of progress by flipping and localizing.

Flipping is easy:

• Compute a progressing flip F using Flippers winning strategy

• Rewrite φ and color G such that G |= φ ⇐⇒ G+ ⊕ F |= φ̂.

How do we localize? What radius r do we play the Flipper game with?

12 / 19

Guarded Formulas
ψ is U-guarded, if each quantifier is of the form ∃x ∈ U or ∀x ∈ U for some U ∈ U .

Observation

For every graph G and {U1, . . . ,Ut}-guarded formula ψ we have

G |= ψ ⇐⇒ G [U1 ∪ . . . ∪ Ut] |= ψ.

U1
U2

U3

r

G

Goal: efficiently compute ψ s.t.
1. ψ is equivalent to φ on G .
2. ψ is a BC of formulas, each guarded

by a family of bounded radius in G .

13 / 19

Guarded Formulas
ψ is U-guarded, if each quantifier is of the form ∃x ∈ U or ∀x ∈ U for some U ∈ U .

Observation

For every graph G and {U1, . . . ,Ut}-guarded formula ψ we have

G |= ψ ⇐⇒ G [U1 ∪ . . . ∪ Ut] |= ψ.

U1
U2

U3

r

G

Goal: efficiently compute ψ s.t.
1. ψ is equivalent to φ on G .
2. ψ is a BC of formulas, each guarded

by a family of bounded radius in G .

13 / 19

Guarded Formulas
ψ is U-guarded, if each quantifier is of the form ∃x ∈ U or ∀x ∈ U for some U ∈ U .

Observation

For every graph G and {U1, . . . ,Ut}-guarded formula ψ we have

G |= ψ ⇐⇒ G [U1 ∪ . . . ∪ Ut] |= ψ.

U1
U2

U3

r

G

Goal: efficiently compute ψ s.t.
1. ψ is equivalent to φ on G .
2. ψ is a BC of formulas, each guarded

by a family of bounded radius in G .

13 / 19

Guarded Formulas
ψ is U-guarded, if each quantifier is of the form ∃x ∈ U or ∀x ∈ U for some U ∈ U .

Observation

For every graph G and {U1, . . . ,Ut}-guarded formula ψ we have

G |= ψ ⇐⇒ G [U1 ∪ . . . ∪ Ut] |= ψ.

U1
U2

U3

r

G

Goal: efficiently compute ψ s.t.
1. ψ is equivalent to φ on G .
2. ψ is a BC of formulas, each guarded

by a family of bounded radius in G .

13 / 19

Local Types

A

G

B

Assume tpq(•) = tpq(•). tpq(G) := {ψ : ψ has quantifier rank ≤ q and G |= ψ}

Let ψ(x) be a formula of quantifier rank q − 1.

There exists u ∈ A with G |= ψ(u) iff. there exists v ∈ B with G |= ψ(v).

The proof uses a local variant of Ehrenfeucht-Fräıssé games.

14 / 19

Local Types

A

G

B> 2q

Assume tpq(•) = tpq(•). tpq(G) := {ψ : ψ has quantifier rank ≤ q and G |= ψ}

Let ψ(x) be a formula of quantifier rank q − 1.

There exists u ∈ A with G |= ψ(u) iff. there exists v ∈ B with G |= ψ(v).

The proof uses a local variant of Ehrenfeucht-Fräıssé games.

14 / 19

Local Types

A

G

2q−1

B 2q−1
> 2q

Assume tpq(•) = tpq(•). tpq(G) := {ψ : ψ has quantifier rank ≤ q and G |= ψ}

Let ψ(x) be a formula of quantifier rank q − 1.

There exists u ∈ A with G |= ψ(u) iff. there exists v ∈ B with G |= ψ(v).

The proof uses a local variant of Ehrenfeucht-Fräıssé games.

14 / 19

Local Types

A

G

2q−1

B 2q−1
> 2q

Assume tpq(•) = tpq(•). tpq(G) := {ψ : ψ has quantifier rank ≤ q and G |= ψ}

Let ψ(x) be a formula of quantifier rank q − 1.

There exists u ∈ A with G |= ψ(u) iff. there exists v ∈ B with G |= ψ(v).

The proof uses a local variant of Ehrenfeucht-Fräıssé games.

14 / 19

Local Types

A

G

2q−1

B 2q−1
> 2q

Assume tpq(•) = tpq(•). tpq(G) := {ψ : ψ has quantifier rank ≤ q and G |= ψ}

Let ψ(x) be a formula of quantifier rank q − 1.

There exists u ∈ A with G |= ψ(u) iff. there exists v ∈ B with G |= ψ(v).

The proof uses a local variant of Ehrenfeucht-Fräıssé games.

14 / 19

Local Types

A

G

2q−1

B 2q−1
> 2q

Assume tpq(•) = tpq(•). tpq(G) := {ψ : ψ has quantifier rank ≤ q and G |= ψ}

Let ψ(x) be a formula of quantifier rank q − 1.

There exists u ∈ A with G |= ψ(u) iff. there exists v ∈ B with G |= ψ(v).

The proof uses a local variant of Ehrenfeucht-Fräıssé games.

14 / 19

Local Types

A

G

2q−1

B 2q−1
> 2q

Assume tpq(•) = tpq(•). tpq(G) := {ψ : ψ has quantifier rank ≤ q and G |= ψ}

Let ψ(x) be a formula of quantifier rank q − 1.

There exists u ∈ A with G |= ψ(u) iff. there exists v ∈ B with G |= ψ(v).

The proof uses a local variant of Ehrenfeucht-Fräıssé games.
14 / 19

Localizing a Single Quantifier

Let S = {N2q [v] : v ∈ V (G)} be the set of 2q-neighborhoods in G . We have

G |= ∃x ψ(x) ⇐⇒ G |=
∨
S∈S

∃x ∈ S ψ(x).

Every set S is local, but |S| depends on |V (G)|!

Idea: Let S⋆ ⊆ S contain exactly one 2q-neighborhood for every possible q-type.

By the Local Type Theorem: G |= ∃x ψ(x) ⇐⇒ G |=
∨

S∈S⋆

∃x ∈ S ψ(x).

|S⋆| depends only on q ✓

When computing tpq(G [S]), we make progress in the radius-2q Flipper game ✓

For multiple quantifiers: extend to parameters and argue by induction ✓

15 / 19

Localizing a Single Quantifier

Let S = {N2q [v] : v ∈ V (G)} be the set of 2q-neighborhoods in G . We have

G |= ∃x ψ(x) ⇐⇒ G |=
∨
S∈S

∃x ∈ S ψ(x).

Every set S is local, but |S| depends on |V (G)|!

Idea: Let S⋆ ⊆ S contain exactly one 2q-neighborhood for every possible q-type.

By the Local Type Theorem: G |= ∃x ψ(x) ⇐⇒ G |=
∨

S∈S⋆

∃x ∈ S ψ(x).

|S⋆| depends only on q ✓

When computing tpq(G [S]), we make progress in the radius-2q Flipper game ✓

For multiple quantifiers: extend to parameters and argue by induction ✓

15 / 19

Localizing a Single Quantifier

Let S = {N2q [v] : v ∈ V (G)} be the set of 2q-neighborhoods in G . We have

G |= ∃x ψ(x) ⇐⇒ G |=
∨
S∈S

∃x ∈ S ψ(x).

Every set S is local, but |S| depends on |V (G)|!

Idea: Let S⋆ ⊆ S contain exactly one 2q-neighborhood for every possible q-type.

By the Local Type Theorem: G |= ∃x ψ(x) ⇐⇒ G |=
∨

S∈S⋆

∃x ∈ S ψ(x).

|S⋆| depends only on q ✓

When computing tpq(G [S]), we make progress in the radius-2q Flipper game ✓

For multiple quantifiers: extend to parameters and argue by induction ✓

15 / 19

Localizing a Single Quantifier

Let S = {N2q [v] : v ∈ V (G)} be the set of 2q-neighborhoods in G . We have

G |= ∃x ψ(x) ⇐⇒ G |=
∨
S∈S

∃x ∈ S ψ(x).

Every set S is local, but |S| depends on |V (G)|!

Idea: Let S⋆ ⊆ S contain exactly one 2q-neighborhood for every possible q-type.

By the Local Type Theorem: G |= ∃x ψ(x) ⇐⇒ G |=
∨

S∈S⋆

∃x ∈ S ψ(x).

|S⋆| depends only on q ✓

When computing tpq(G [S]), we make progress in the radius-2q Flipper game ✓

For multiple quantifiers: extend to parameters and argue by induction ✓

15 / 19

Localizing a Single Quantifier

Let S = {N2q [v] : v ∈ V (G)} be the set of 2q-neighborhoods in G . We have

G |= ∃x ψ(x) ⇐⇒ G |=
∨
S∈S

∃x ∈ S ψ(x).

Every set S is local, but |S| depends on |V (G)|!

Idea: Let S⋆ ⊆ S contain exactly one 2q-neighborhood for every possible q-type.

By the Local Type Theorem: G |= ∃x ψ(x) ⇐⇒ G |=
∨

S∈S⋆

∃x ∈ S ψ(x).

|S⋆| depends only on q ✓

When computing tpq(G [S]), we make progress in the radius-2q Flipper game ✓

For multiple quantifiers: extend to parameters and argue by induction ✓

15 / 19

Localizing a Single Quantifier

Let S = {N2q [v] : v ∈ V (G)} be the set of 2q-neighborhoods in G . We have

G |= ∃x ψ(x) ⇐⇒ G |=
∨
S∈S

∃x ∈ S ψ(x).

Every set S is local, but |S| depends on |V (G)|!

Idea: Let S⋆ ⊆ S contain exactly one 2q-neighborhood for every possible q-type.

By the Local Type Theorem: G |= ∃x ψ(x) ⇐⇒ G |=
∨

S∈S⋆

∃x ∈ S ψ(x).

|S⋆| depends only on q ✓

When computing tpq(G [S]), we make progress in the radius-2q Flipper game ✓

For multiple quantifiers: extend to parameters and argue by induction ✓

15 / 19

Recursion Tree

We can now play the Flipper game for radius 2q:

1. Flip by rewriting φ and coloring G .

2. Localize by computing the q-type of every 2q-neighborhood.

By monadic stability the depth of the recursion tree is bounded by f (q).

However the branching degree is n. This gives an O(nf (q)) algorithm.

This is worse than the naive O(nq) algorithm!

16 / 19

Recursion Tree

We can now play the Flipper game for radius 2q:

1. Flip by rewriting φ and coloring G .

2. Localize by computing the q-type of every 2q-neighborhood.

By monadic stability the depth of the recursion tree is bounded by f (q).

However the branching degree is n. This gives an O(nf (q)) algorithm.

This is worse than the naive O(nq) algorithm!

16 / 19

Recursion Tree

We can now play the Flipper game for radius 2q:

1. Flip by rewriting φ and coloring G .

2. Localize by computing the q-type of every 2q-neighborhood.

By monadic stability the depth of the recursion tree is bounded by f (q).

However the branching degree is n. This gives an O(nf (q)) algorithm.

This is worse than the naive O(nq) algorithm!

16 / 19

Neighborhood Covers
Recursing into each 2q-neighborhood is too expensive!

Idea: group neighborhoods that are close to each other into clusters.

Definition

A family of sets X is a neighborhood cover with radius r , spread s, and degree d if
• each r -neighborhood of G is fully contained in one cluster X ∈ X ,
• each cluster is contained in an s-neighborhood of G ,
• each vertex appears in at most d clusters.

A class admits sparse neighborhood covers if we can set d = g(r , ε) · nε for every ε > 0.

The size of the clusters of a sparse neighborhood cover sum up to g(r , ε) · n1+ε.

Resulting size of the recursion tree: n((1+ε)f (q)); by choosing ε small enough: n1+ε′ .

17 / 19

Neighborhood Covers
Recursing into each 2q-neighborhood is too expensive!

Idea: group neighborhoods that are close to each other into clusters.

Definition

A family of sets X is a neighborhood cover with radius r , spread s, and degree d if
• each r -neighborhood of G is fully contained in one cluster X ∈ X ,
• each cluster is contained in an s-neighborhood of G ,
• each vertex appears in at most d clusters.

A class admits sparse neighborhood covers if we can set d = g(r , ε) · nε for every ε > 0.

The size of the clusters of a sparse neighborhood cover sum up to g(r , ε) · n1+ε.

Resulting size of the recursion tree: n((1+ε)f (q)); by choosing ε small enough: n1+ε′ .

17 / 19

Neighborhood Covers
Recursing into each 2q-neighborhood is too expensive!

Idea: group neighborhoods that are close to each other into clusters.

Definition

A family of sets X is a neighborhood cover with radius r , spread s, and degree d if
• each r -neighborhood of G is fully contained in one cluster X ∈ X ,
• each cluster is contained in an s-neighborhood of G ,
• each vertex appears in at most d clusters.

A class admits sparse neighborhood covers if we can set d = g(r , ε) · nε for every ε > 0.

The size of the clusters of a sparse neighborhood cover sum up to g(r , ε) · n1+ε.

Resulting size of the recursion tree: n((1+ε)f (q)); by choosing ε small enough: n1+ε′ .

17 / 19

Neighborhood Covers
Recursing into each 2q-neighborhood is too expensive!

Idea: group neighborhoods that are close to each other into clusters.

Definition

A family of sets X is a neighborhood cover with radius r , spread s, and degree d if
• each r -neighborhood of G is fully contained in one cluster X ∈ X ,
• each cluster is contained in an s-neighborhood of G ,
• each vertex appears in at most d clusters.

A class admits sparse neighborhood covers if we can set d = g(r , ε) · nε for every ε > 0.

The size of the clusters of a sparse neighborhood cover sum up to g(r , ε) · n1+ε.

Resulting size of the recursion tree: n((1+ε)f (q)); by choosing ε small enough: n1+ε′ .

17 / 19

Approximating Sparse Neighborhood Covers

Theorem [Dreier, Mählmann, Siebertz]

Every structurally nowhere dense class admits sparse neighborhood covers.

Proof utilizes a treelike decomposition from [Dreier, Gajarský, Kiefer, Pilipczuk, Toruńczyk, 2022].

Theorem [Dreier, Mählmann, Siebertz]

Given a graph that admits a sparse neighborhood cover with radius r , spread s, and
degree d . We can calculate a cover with radius r , spread s and degree O(log(n)2 · d)
in polynomial time.

Proof uses randomized rounding on an LP solution.

18 / 19

Approximating Sparse Neighborhood Covers

Theorem [Dreier, Mählmann, Siebertz]

Every structurally nowhere dense class admits sparse neighborhood covers.

Proof utilizes a treelike decomposition from [Dreier, Gajarský, Kiefer, Pilipczuk, Toruńczyk, 2022].

Theorem [Dreier, Mählmann, Siebertz]

Given a graph that admits a sparse neighborhood cover with radius r , spread s, and
degree d . We can calculate a cover with radius r , spread s and degree O(log(n)2 · d)
in polynomial time.

Proof uses randomized rounding on an LP solution.

18 / 19

Main Result

Theorem [Dreier, Mählmann, Siebertz]

Every structurally nowhere dense class admits FO model checking in time

f (φ) · |V (G)|11.

Theorem [Dreier, Mählmann, Siebertz]

Every monadically stable class, that admits sparse neighborhood covers, admits FO
model checking in time f (φ) · |V (G)|11.

Conjecture

Every monadically stable class admits sparse neighborhood covers.

19 / 19

Main Result

Theorem [Dreier, Mählmann, Siebertz]

Every structurally nowhere dense class admits FO model checking in time

f (φ) · |V (G)|11.

Theorem [Dreier, Mählmann, Siebertz]

Every monadically stable class, that admits sparse neighborhood covers, admits FO
model checking in time f (φ) · |V (G)|11.

Conjecture

Every monadically stable class admits sparse neighborhood covers.

19 / 19

