First-Order Model Checking on
Structurally Sparse Graph Classes

Jan Dreier, Nikolas Mahlmann, Sebastian Siebertz

STOC 2023

1/19

The FO Model Checking Problem
Problem: Given a graph G and an FO sentence ¢, decide whether

G E .

Example: G contains a dominating set of size k iff.

Gl 3x...3IxVy \/(y:x,-\/ywx;).
i€[K]

2/19

The FO Model Checking Problem
Problem: Given a graph G and an FO sentence ¢, decide whether

G E .

Example: G contains a dominating set of size k iff.

Gl 3x...3IxVy \/(y:x,-\/ywx;).
i€[K]

Runtime: Let g be the quantifier rank of . On the class of all graphs, the naive
O(n9) algorithm is best possible, assuming ETH.

2/19

The FO Model Checking Problem
Problem: Given a graph G and an FO sentence ¢, decide whether

G E .

Example: G contains a dominating set of size k iff.
G E3xg...3xVy : \/(y:x,-\/ywx;).
ielk]

Runtime: Let g be the quantifier rank of . On the class of all graphs, the naive
O(n9) algorithm is best possible, assuming ETH.
Question: On which classes is FO model checking fixed-parameter tractable, i.e.,

solvable in time f(¢) - n?

2/19

Nowhere Dense Classes of Graphs

Definition [N&set¥il, Ossona de Mendez, 2011]

A class C is nowhere dense, if for every r there
exists k such C that does not contain the
r-subdivided clique of size k as a subgraph.

Figure: The 2-subdivided Kj.

3/19

Nowhere Dense Classes of Graphs

Definition [N&set¥il, Ossona de Mendez, 2011]

A class C is nowhere dense, if for every r there
exists k such C that does not contain the
r-subdivided clique of size k as a subgraph.

Generalizes many notions of sparsity such as:
bounded degree, bounded treewidth, planarity,
excluding a minor, ...

Figure: The 2-subdivided Kj.

3/19

Nowhere Dense Classes of Graphs

Definition [N&set¥il, Ossona de Mendez, 2011]

A class C is nowhere dense, if for every r there
exists k such C that does not contain the
r-subdivided clique of size k as a subgraph. o °

Generalizes many notions of sparsity such as:
bounded degree, bounded treewidth, planarity,
excluding a minor, ...

Figure: The 2-subdivided Kj.

Theorem [Grohe, Kreutzer, Siebertz, 2014]

Let C be a monotone class of graphs. If C is nowhere dense, then FO model checking
on C can be done in time f(p,) - n'*¢ for every € > 0. Otherwise it is AW[*]-hard.

3/19

FO Transductions

To go beyond sparse classes, we need to shift from monotone to hereditary classes.

4/19

FO Transductions

To go beyond sparse classes, we need to shift from monotone to hereditary classes.

How to produce well behaved hereditary classes from sparse classes?

4/19

FO Transductions

To go beyond sparse classes, we need to shift from monotone to hereditary classes.
How to produce well behaved hereditary classes from sparse classes?

Transductions = coloring + interpreting + taking an induced subgraph

©(x,y) := Red(x) A Red(y) Adist(x,y) =3

4/19

Structural Sparsity and Monadic Stability

Def|n |t|0n [Gajarsky, Kreutzer, N&set¥il, Ossona de Mendez, Pilipczuk, Siebertz, Torunczyk, 2018], [Né&setfil, Ossona de Mendez, 2016]

A class C is structurally nowhere dense, if there exists a transduction T and a nowhere
dense class D such that C C T(D).

5/19

Structural Sparsity and Monadic Stability

Deﬂ n |t|0n [Gajarsky, Kreutzer, N&set¥il, Ossona de Mendez, Pilipczuk, Siebertz, Torunczyk, 2018], [Né&setfil, Ossona de Mendez, 2016]

A class C is structurally nowhere dense, if there exists a transduction T and a nowhere
dense class D such that C C T(D).

Definition [Baldwin, Shelah, 1985]

A class is monadically stable, if it does not transduce the class of all half graphs.

ajy as as e (433
alelﬁ’LS]

b1 b2 b3 e b/«

5/19

Structural Sparsity and Monadic Stability

Deﬂ n |t|0n [Gajarsky, Kreutzer, N&set¥il, Ossona de Mendez, Pilipczuk, Siebertz, Torunczyk, 2018], [Né&setfil, Ossona de Mendez, 2016]

A class C is structurally nowhere dense, if there exists a transduction T and a nowhere
dense class D such that C C T(D).

Definition [Baldwin, Shelah, 1985]

A class is monadically stable, if it does not transduce the class of all half graphs.
a1 a2 as cee Qg
al~b1®z§]

b1 b2 b3 e bl«

Every structurally nowhere dense class is monadically stable.

Conjecture: every monadically stable class is structurally nowhere dense.

5/19

Map of the Universe

Monadically Stable

Nowhere Dense

=

Bounded Expansion

Bounded Sparse
Twinwidth

Bounded Treewidth

Bounded Pathwidth

Bounded Treedepth

Structurally
Nowhere Dense

Structurally
Bounded Expansion

Bounded Stable
Twinwidth

Structurally
Bounded Treewidth

Structurally
Bounded Pathwidth

Bounded Shrubdepth

Monadically NTP

Bounded Flipwidth

Bounded Twinwidth

Bounded Cliquewidth

Bounded
Linear Cliquewidth

Bounded
Embedded
Shrubdepth

6/19

Map of the Universe

Monadically Stable

[Grohe, Kreutzer, Siebertz, 2014]

Nowhere Dense

=

Bounded Expansion

Structurally
Nowhere Dense

Structurally
Bounded Expansion

Monadically NTP

Bounded Flipwidth

Bounded Sparse
Twinwidth

Bounded Treewidth

Bounded Pathwidth

Bounded Treedepth

Bounded Stable
Twinwidth

Structurally
Bounded Treewidth

Structurally
Bounded Pathwidth

Bounded Shrubdepth

Bounded Twinwidth

Bounded Cliquewidth

Bounded
Linear Cliquewidth

Bounded
Embedded
Shrubdepth

conditional [Bonnet, Kim, Thomassé, Watrigant, 2021]

6/19

Main Result

Every structurally nowhere dense class admits FO model checking in time

f(p) - n't.

7/19

Main Result

Theorem [Dreier, Mahimann, Siebertz]

Every structurally nowhere dense class admits FO model checking in time

f(p) - n't.

Theorem [Dreier, Mahlmann, Siebertz]

Every monadically stable class, that admits sparse neighborhood covers, admits FO
model checking in time f(¢) - n'l.

7/19

Map of the Universe

Monadically Stable

[Grohe, Kreutzer, Siebertz, 2014]

Nowhere Dense

=

Bounded Expansion

Structurally
Nowhere Dense

Structurally
Bounded Expansion

Monadically NTP

Bounded Flipwidth

Bounded Sparse
Twinwidth

Bounded Treewidth

Bounded Pathwidth

Bounded Treedepth

Bounded Stable
Twinwidth

Structurally
Bounded Treewidth

Structurally
Bounded Pathwidth

Bounded Shrubdepth

Bounded Twinwidth

Bounded Cliquewidth

Bounded
Linear Cliquewidth

Bounded
Embedded
Shrubdepth

conditional [Bonnet, Kim, Thomassé, Watrigant, 2021]

8/19

Map of the Universe

Monadically Stable

A

[Dreier, Méhlmann, Siebertz]

Nowhere Dense

Bounded Expansion

Structurally
Nowhere Dense

Structurally
Bounded Expansion

Monadically NTP

Bounded Flipwidth

Bounded Sparse
Twinwidth

Bounded Treewidth

Bounded Pathwidth

Bounded Treedepth

Bounded Stable
Twinwidth

Structurally
Bounded Treewidth

Structurally
Bounded Pathwidth

Bounded Shrubdepth

Bounded Twinwidth

Bounded Cliquewidth

Bounded
Linear Cliquewidth

Bounded
Embedded
Shrubdepth

conditional [Bonnet, Kim, Thomassé, Watrigant, 2021]

8/19

Flips

Denote by G & F the graph obtained from G by complementing edges between pairs of
vertices from F.

9/19

Flips

Denote by G @ F the graph obtained from G by complementing edges between pairs of
vertices from F.

9/19

Flips

Denote by G @ F the graph obtained from G by complementing edges between pairs of
vertices from F.

flip F

G GoF

9/19

Flips

Denote by G @ F the graph obtained from G by complementing edges between pairs of
vertices from F.

flip F

G GoF

If we rewrite ¢ into (such that
x ~y isreplaced with x ~y XOR F(x)A F(y)
then there exists a coloring G* of G such that
GEy < GToFE.

9/19

Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F

10/19

Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F

2. Localizer chooses Gjy1 as a radius-r ball in G; & F.

10/19

Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.

Flipper wins once G; has size 1.

10/19

Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

10/19

Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

10/19

Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

10/19

Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

10/19

Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

10/19

Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

10/19

Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

[]

10/19

Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

10/19

Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

10/19

Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

10/19

Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

10/19

Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

10/19

Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

10/19

Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

10/19

Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

10/19

Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

10/19

Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

10/19

Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

10/19

Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

10/19

Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

10/19

Flipper Game and Monadic Stability

Theorem [Gajarsky, Mahlmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokotowski, Toruriczyk, 2023]
A class of graphs C is monadically stable <

Vr3l such that Flipper wins the radius-r game on all graphs from C in £ rounds.

11/19

Flipper Game and Monadic Stability

Theorem [Gajarsky, Mahlmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokotowski, Toruriczyk, 2023]
A class of graphs C is monadically stable <

Vr3l such that Flipper wins the radius-r game on all graphs from C in £ rounds.

Moreover, Flippers moves can be computed in time O(n?).

11/19

Towards a Recursive Model Checking Algorithm

Goal: Decide whether G = .

12/19

Towards a Recursive Model Checking Algorithm

Goal: Decide whether G = .

Idea: Recursion that works by induction on the length ¢ of the Flipper game.
e For every monadically stable class the recursion depth will be bounded.

e For / =1 we have |V(G)| =1 and can brute force.

12/19

Towards a Recursive Model Checking Algorithm

Goal: Decide whether G = .

Idea: Recursion that works by induction on the length ¢ of the Flipper game.

e For every monadically stable class the recursion depth will be bounded.
e For / =1 we have |V(G)| =1 and can brute force.

We make one round of progress by flipping and localizing.

12/19

Towards a Recursive Model Checking Algorithm

Goal: Decide whether G = .

Idea: Recursion that works by induction on the length ¢ of the Flipper game.

e For every monadically stable class the recursion depth will be bounded.
e For / =1 we have |V(G)| =1 and can brute force.

We make one round of progress by flipping and localizing.

Flipping is easy:
e Compute a progressing flip F using Flippers winning strategy

e Rewrite ¢ and color G suchthat G = < GT @ F | .

12/19

Towards a Recursive Model Checking Algorithm

Goal: Decide whether G = .

Idea: Recursion that works by induction on the length ¢ of the Flipper game.
e For every monadically stable class the recursion depth will be bounded.
e For / =1 we have |V(G)| =1 and can brute force.

We make one round of progress by flipping and localizing.

Flipping is easy:
e Compute a progressing flip F using Flippers winning strategy
e Rewrite ¢ and color G suchthat G = < GT @ F | .

How do we localize? What radius r do we play the Flipper game with?

12/19

Guarded Formulas
Y is U-guarded, if each quantifier is of the form dx € U or Vx € U for some U € U.

13/19

Guarded Formulas
Y is U-guarded, if each quantifier is of the form dx € U or Vx € U for some U € U.

Observation
For every graph G and {U;,..., U;}-guarded formula ¢ we have

G):ﬂ) <~ G[UlU...UUt]):Q,b.

13/19

Guarded Formulas
1 is U-guarded, if each quantifier is of the form dx € U or Vx € U for some U € U.

For every graph G and {Ui, ..., U;:}-guarded formula ¢ we have

GEY < G[UU...UU] .

13/19

Guarded Formulas
Y is U-guarded, if each quantifier is of the form dx € U or Vx € U for some U € U.

Observation
For every graph G and {Ui, ..., U;:}-guarded formula ¢ we have

GEY < G[UU...UU] .

Goal: efficiently compute) s.t.

1. ¢ is equivalent to ¢ on G.
2. 1 is a BC of formulas, each guarded
by a family of bounded radius in G.

13/19

Local Types

14/19

Local Types

Q .

Q

14/19

Local Types

)

14 /19

Local Types

G

Assume tp,(e) = tp,(e). tpy(G) := {9 : ¢ has quantifier rank < g and G = ¢}

14 /19

Local Types

G

Assume tp,(e) = tp,(e). tpy(G) := {9 : ¢ has quantifier rank < g and G = ¢}

Let ¢(x) be a formula of quantifier rank g — 1.

14 /19

Local Types

G

Assume tp,(e) = tp,(e). tpy(G) := {9 : ¢ has quantifier rank < g and G = ¢}
Let ¢(x) be a formula of quantifier rank g — 1.
There exists u € A with G = 1(u) iff. there exists v € B with G = (v).

14 /19

Local Types

G

Assume tp,(e) = tp,(e). tpy(G) := {9 : ¢ has quantifier rank < g and G = ¢}
Let ¢(x) be a formula of quantifier rank g — 1.
There exists u € A with G = 1(u) iff. there exists v € B with G = (v).

The proof uses a local variant of Ehrenfeucht-Fraissé games.

14 /19

Localizing a Single Quantifier

Let S = {Na¢[v] : v € V(G)} be the set of 29-neighborhoods in G. We have

GEIxv(x) <« GE\/ IxeSyk).

Ses

15/19

Localizing a Single Quantifier

Let S = {Na¢[v] : v € V(G)} be the set of 29-neighborhoods in G. We have

GEIxv(x) <« GE\/ IxeSyk).

Ses

Every set S is local, but |S| depends on |V(G)|!

15/19

Localizing a Single Quantifier

Let S = {Na¢[v] : v € V(G)} be the set of 29-neighborhoods in G. We have

GEIxv(x) <« GE\/ IxeSyk).

Ses
Every set S is local, but |S| depends on |V(G)|!

Idea: Let S* C S contain exactly one 29-neighborhood for every possible g-type.

By the Local Type Theorem: G = 3x (x) <= Gk \/ dx € S Y(x).
Ses*

15/19

Localizing a Single Quantifier

Let S = {Na¢[v] : v € V(G)} be the set of 29-neighborhoods in G. We have

GEIxv(x) <« GE\/ IxeSyk).

Ses
Every set S is local, but |S| depends on |V(G)|!

Idea: Let S* C S contain exactly one 29-neighborhood for every possible g-type.

By the Local Type Theorem: G = 3x (x) <= Gk \/ dx € S Y(x).
Ses*

|S*| depends only on g v/

15/19

Localizing a Single Quantifier

Let S = {Na¢[v] : v € V(G)} be the set of 29-neighborhoods in G. We have
GEIxv(x) <« GE\/ IxeSyk).
Ses
Every set S is local, but |S| depends on |V(G)|!

Idea: Let S* C S contain exactly one 29-neighborhood for every possible g-type.

By the Local Type Theorem: G = 3x (x) <= Gk \/ dx € S Y(x).
Ses*

|S*| depends only on g v/
When computing tp,(G[S]), we make progress in the radius-29 Flipper game v/

15/19

Localizing a Single Quantifier

Let S = {Na¢[v] : v € V(G)} be the set of 29-neighborhoods in G. We have

GEIxv(x) <« GE\/ IxeSyk).
Ses

Every set S is local, but |S| depends on |V(G)|!

Idea: Let S* C S contain exactly one 29-neighborhood for every possible g-type.

By the Local Type Theorem: G = 3x (x) <= Gk \/ dx € S Y(x).
Ses*

|S*| depends only on g v/
When computing tp,(G[S]), we make progress in the radius-29 Flipper game v/

For multiple quantifiers: extend to parameters and argue by induction v

15/19

Recursion Tree

We can now play the Flipper game for radius 29:
1. Flip by rewriting ¢ and coloring G.

2. Localize by computing the g-type of every 29-neighborhood.

16/19

Recursion Tree

We can now play the Flipper game for radius 29:
1. Flip by rewriting ¢ and coloring G.

2. Localize by computing the g-type of every 29-neighborhood.

By monadic stability the depth of the recursion tree is bounded by f(q).

16/19

Recursion Tree

We can now play the Flipper game for radius 29:
1. Flip by rewriting ¢ and coloring G.

2. Localize by computing the g-type of every 29-neighborhood.

By monadic stability the depth of the recursion tree is bounded by f(q).
However the branching degree is n. This gives an O(n(9)) algorithm.

This is worse than the naive O(n?) algorithm!

16/19

Neighborhood Covers

Recursing into each 29-neighborhood is too expensive!

Idea: group neighborhoods that are close to each other into clusters.

17/19

Neighborhood Covers

Recursing into each 29-neighborhood is too expensive!

Idea: group neighborhoods that are close to each other into clusters.

Definition

A family of sets X is a neighborhood cover with radius r, spread s, and degree d if
e each r-neighborhood of G is fully contained in one cluster X € X,
e each cluster is contained in an s-neighborhood of G,
e each vertex appears in at most d clusters.

17/19

Neighborhood Covers

Recursing into each 29-neighborhood is too expensive!

Idea: group neighborhoods that are close to each other into clusters.

Definition

A family of sets X is a neighborhood cover with radius r, spread s, and degree d if
e each r-neighborhood of G is fully contained in one cluster X € X,
e each cluster is contained in an s-neighborhood of G,
e each vertex appears in at most d clusters.

A class admits sparse neighborhood covers if we can set d = g(r,¢) - n® for every € > 0.

17/19

Neighborhood Covers

Recursing into each 29-neighborhood is too expensive!

Idea: group neighborhoods that are close to each other into clusters.

Definition

A family of sets X is a neighborhood cover with radius r, spread s, and degree d if
e each r-neighborhood of G is fully contained in one cluster X € X,
e each cluster is contained in an s-neighborhood of G,
e each vertex appears in at most d clusters.

A class admits sparse neighborhood covers if we can set d = g(r,¢) - n® for every € > 0.
The size of the clusters of a sparse neighborhood cover sum up to g(r, =) - n'*=.

/

Resulting size of the recursion tree: n((HS)M); by choosing & small enough: n'*<.

17/19

Approximating Sparse Neighborhood Covers

Theorem [Dreier, Mshimann, Siebertz]
Every structurally nowhere dense class admits sparse neighborhood covers.

Proof utilizes a treelike decomposition from [Dreier, Gajarsky, Kiefer, Pilipczuk, Toruriczyk, 2022].

18/19

Approximating Sparse Neighborhood Covers

Theorem [Dreier, Mshimann, Siebertz]

Every structurally nowhere dense class admits sparse neighborhood covers.

Proof utilizes a treelike decomposition from [Dreier, Gajarsky, Kiefer, Pilipczuk, Toruriczyk, 2022].
Theorem [Dreier, Mahimann, Siebertz]

Given a graph that admits a sparse neighborhood cover with radius r, spread s, and
degree d. We can calculate a cover with radius r, spread s and degree O(log(n)? - d)
in polynomial time.

Proof uses randomized rounding on an LP solution.

18/19

Main Result

Theorem [Dreier, Mahlmann, Siebertz]

Every structurally nowhere dense class admits FO model checking in time

f(e) - V()™

Theorem [Dreier, Mahlmann, Siebertz]

Every monadically stable class, that admits sparse neighborhood covers, admits FO
model checking in time f(y) - |V(G)['!.

19/19

Main Result

Theorem [Dreier, Mahlmann, Siebertz]

Every structurally nowhere dense class admits FO model checking in time

f(e) - V()™

Theorem [Dreier, Mahlmann, Siebertz]

Every monadically stable class, that admits sparse neighborhood covers, admits FO
model checking in time f(y) - |V(G)['!.

Conjecture

Every monadically stable class admits sparse neighborhood covers.

19/19

