
Sparsity Theory for Dense Graphs

Nikolas Mählmann

Sparsity - Graphs and Algorithms 01.02.2024

1 / 46



The Model Checking Problem

Problem: Given a graph G and a formula φ in a logic L ∈ {FO,MSO}, decide G |= φ.

Examples:

• FO: distance-r red blue independent/dominating set of size k

• MSO: 3-colorability, SAT

Runtime:

• FO: O(nq) (q = quantifier rank; assuming ETH)

• MSO: NP-hard

Question: On which classes graph is model checking fixed-parameter tractable, i.e.,
solvable in time f (φ) · nc?

2 / 46



The Model Checking Problem

Problem: Given a graph G and a formula φ in a logic L ∈ {FO,MSO}, decide G |= φ.

Examples:

• FO: distance-r red blue independent/dominating set of size k

• MSO: 3-colorability, SAT

Runtime:

• FO: O(nq) (q = quantifier rank; assuming ETH)

• MSO: NP-hard

Question: On which classes graph is model checking fixed-parameter tractable, i.e.,
solvable in time f (φ) · nc?

2 / 46



The Model Checking Problem

Problem: Given a graph G and a formula φ in a logic L ∈ {FO,MSO}, decide G |= φ.

Examples:

• FO: distance-r red blue independent/dominating set of size k

• MSO: 3-colorability, SAT

Runtime:

• FO: O(nq) (q = quantifier rank; assuming ETH)

• MSO: NP-hard

Question: On which classes graph is model checking fixed-parameter tractable, i.e.,
solvable in time f (φ) · nc?

2 / 46



Monadic Second-Order Logic

3 / 46



MSO Model Checking

Theorem [Courcelle, 1990]

Every class of bounded treewidth admits MSO model checking in time f (φ) · n.

The class of all cliques has unbounded treewidth but model checking is trivial.

Cliques are not monotone: closed under taking subgraphs.
(i.e. deleting vertices and edges)

But cliques are hereditary: closed under taking induced subgraphs.
(i.e. deleting vertices)

Treedepth, treewidth, minors, bounded expansion, nowhere denseness, etc.
are all measures for monotone graph classes.

To handle dense graphs we need complexity measures for hereditary graph classes!

4 / 46



MSO Model Checking

Theorem [Courcelle, 1990]

Every class of bounded treewidth admits MSO model checking in time f (φ) · n.

The class of all cliques has unbounded treewidth but model checking is trivial.

Cliques are not monotone: closed under taking subgraphs.
(i.e. deleting vertices and edges)

But cliques are hereditary: closed under taking induced subgraphs.
(i.e. deleting vertices)

Treedepth, treewidth, minors, bounded expansion, nowhere denseness, etc.
are all measures for monotone graph classes.

To handle dense graphs we need complexity measures for hereditary graph classes!

4 / 46



MSO Model Checking

Theorem [Courcelle, 1990]

Every class of bounded treewidth admits MSO model checking in time f (φ) · n.

The class of all cliques has unbounded treewidth but model checking is trivial.

Cliques are not monotone: closed under taking subgraphs.
(i.e. deleting vertices and edges)

But cliques are hereditary: closed under taking induced subgraphs.
(i.e. deleting vertices)

Treedepth, treewidth, minors, bounded expansion, nowhere denseness, etc.
are all measures for monotone graph classes.

To handle dense graphs we need complexity measures for hereditary graph classes!

4 / 46



MSO Model Checking

Theorem [Courcelle, 1990]

Every class of bounded treewidth admits MSO model checking in time f (φ) · n.

The class of all cliques has unbounded treewidth but model checking is trivial.

Cliques are not monotone: closed under taking subgraphs.
(i.e. deleting vertices and edges)

But cliques are hereditary: closed under taking induced subgraphs.
(i.e. deleting vertices)

Treedepth, treewidth, minors, bounded expansion, nowhere denseness, etc.
are all measures for monotone graph classes.

To handle dense graphs we need complexity measures for hereditary graph classes!

4 / 46



Classes of Bounded Cliquewidth

figure by David Eppstein under CC0

Labeled graphs of cliquewidth k are constructed
using the following operations:
1. Creating a vertex with label i ∈ [k].

2. Taking the disjoint union of two labeled graphs.
3. Connecting all vertices with label i to all

vertices with label j .
4. Relabeling all vertices with label i to label j .

The cliquewidth of a graph is the minimum number
of labels needed to construct it.

Examples: Cliques have cliquewidth 1. Half-graphs have cliquewidth ≤ 3.

Theorem [Courcelle, Makowsky, Rotics, 2000] [Oum, Seymour, 2006]

Every class of bounded cliquewidth admits MSO model checking in time f (φ) · n3.

5 / 46



Classes of Bounded Cliquewidth

figure by David Eppstein under CC0

Labeled graphs of cliquewidth k are constructed
using the following operations:
1. Creating a vertex with label i ∈ [k].
2. Taking the disjoint union of two labeled graphs.

3. Connecting all vertices with label i to all
vertices with label j .

4. Relabeling all vertices with label i to label j .
The cliquewidth of a graph is the minimum number
of labels needed to construct it.

Examples: Cliques have cliquewidth 1. Half-graphs have cliquewidth ≤ 3.

Theorem [Courcelle, Makowsky, Rotics, 2000] [Oum, Seymour, 2006]

Every class of bounded cliquewidth admits MSO model checking in time f (φ) · n3.

5 / 46



Classes of Bounded Cliquewidth

figure by David Eppstein under CC0

Labeled graphs of cliquewidth k are constructed
using the following operations:
1. Creating a vertex with label i ∈ [k].
2. Taking the disjoint union of two labeled graphs.
3. Connecting all vertices with label i to all

vertices with label j .

4. Relabeling all vertices with label i to label j .
The cliquewidth of a graph is the minimum number
of labels needed to construct it.

Examples: Cliques have cliquewidth 1. Half-graphs have cliquewidth ≤ 3.

Theorem [Courcelle, Makowsky, Rotics, 2000] [Oum, Seymour, 2006]

Every class of bounded cliquewidth admits MSO model checking in time f (φ) · n3.

5 / 46



Classes of Bounded Cliquewidth

figure by David Eppstein under CC0

Labeled graphs of cliquewidth k are constructed
using the following operations:
1. Creating a vertex with label i ∈ [k].
2. Taking the disjoint union of two labeled graphs.
3. Connecting all vertices with label i to all

vertices with label j .
4. Relabeling all vertices with label i to label j .

The cliquewidth of a graph is the minimum number
of labels needed to construct it.

Examples: Cliques have cliquewidth 1. Half-graphs have cliquewidth ≤ 3.

Theorem [Courcelle, Makowsky, Rotics, 2000] [Oum, Seymour, 2006]

Every class of bounded cliquewidth admits MSO model checking in time f (φ) · n3.

5 / 46



Classes of Bounded Cliquewidth

figure by David Eppstein under CC0

Labeled graphs of cliquewidth k are constructed
using the following operations:
1. Creating a vertex with label i ∈ [k].
2. Taking the disjoint union of two labeled graphs.
3. Connecting all vertices with label i to all

vertices with label j .
4. Relabeling all vertices with label i to label j .

The cliquewidth of a graph is the minimum number
of labels needed to construct it.

Examples: Cliques have cliquewidth 1. Half-graphs have cliquewidth ≤ 3.

Theorem [Courcelle, Makowsky, Rotics, 2000] [Oum, Seymour, 2006]

Every class of bounded cliquewidth admits MSO model checking in time f (φ) · n3.

5 / 46



Classes of Bounded Cliquewidth

figure by David Eppstein under CC0

Labeled graphs of cliquewidth k are constructed
using the following operations:
1. Creating a vertex with label i ∈ [k].
2. Taking the disjoint union of two labeled graphs.
3. Connecting all vertices with label i to all

vertices with label j .
4. Relabeling all vertices with label i to label j .

The cliquewidth of a graph is the minimum number
of labels needed to construct it.

Examples: Cliques have cliquewidth 1. Half-graphs have cliquewidth ≤ 3.

Theorem [Courcelle, Makowsky, Rotics, 2000] [Oum, Seymour, 2006]

Every class of bounded cliquewidth admits MSO model checking in time f (φ) · n3.

5 / 46



Classes of Bounded Cliquewidth

figure by David Eppstein under CC0

Labeled graphs of cliquewidth k are constructed
using the following operations:
1. Creating a vertex with label i ∈ [k].
2. Taking the disjoint union of two labeled graphs.
3. Connecting all vertices with label i to all

vertices with label j .
4. Relabeling all vertices with label i to label j .

The cliquewidth of a graph is the minimum number
of labels needed to construct it.

Examples: Cliques have cliquewidth 1. Half-graphs have cliquewidth ≤ 3.

Theorem [Courcelle, Makowsky, Rotics, 2000] [Oum, Seymour, 2006]

Every class of bounded cliquewidth admits MSO model checking in time f (φ) · n3.

5 / 46



First-Order Logic

6 / 46



Nowhere Dense Classes of Graphs

Definition [Něseťril, Ossona de Mendez, 2011]

A class C is nowhere dense, if for every r there
exists k such C that does not contain the
r -subdivided clique of size k as a subgraph.

Generalizes many notions of sparsity such as:
bounded degree, bounded treewidth, planarity,
excluding a minor, ...

Figure: The 2-subdivided K4.

Theorem [Grohe, Kreutzer, Siebertz, 2014]

Let C be a monotone class of graphs. If C is nowhere dense, then FO model checking
on C can be done in time f (φ, ε) · n1+ε for every ε > 0. Otherwise it is AW[∗]-hard.

7 / 46



Nowhere Dense Classes of Graphs

Definition [Něseťril, Ossona de Mendez, 2011]

A class C is nowhere dense, if for every r there
exists k such C that does not contain the
r -subdivided clique of size k as a subgraph.

Generalizes many notions of sparsity such as:
bounded degree, bounded treewidth, planarity,
excluding a minor, ... Figure: The 2-subdivided K4.

Theorem [Grohe, Kreutzer, Siebertz, 2014]

Let C be a monotone class of graphs. If C is nowhere dense, then FO model checking
on C can be done in time f (φ, ε) · n1+ε for every ε > 0. Otherwise it is AW[∗]-hard.

7 / 46



Nowhere Dense Classes of Graphs

Definition [Něseťril, Ossona de Mendez, 2011]

A class C is nowhere dense, if for every r there
exists k such C that does not contain the
r -subdivided clique of size k as a subgraph.

Generalizes many notions of sparsity such as:
bounded degree, bounded treewidth, planarity,
excluding a minor, ... Figure: The 2-subdivided K4.

Theorem [Grohe, Kreutzer, Siebertz, 2014]

Let C be a monotone class of graphs. If C is nowhere dense, then FO model checking
on C can be done in time f (φ, ε) · n1+ε for every ε > 0. Otherwise it is AW[∗]-hard.

7 / 46



FO Transductions

To go beyond sparse classes, we need to shift from monotone to hereditary classes.

How to produce well behaved hereditary classes from sparse classes?

Transductions =̂ coloring + interpreting + taking an induced subgraph

Tφ

φ(x , y) := Red(x) ∧ Red(y) ∧ dist(x , y) = 3

8 / 46



FO Transductions

To go beyond sparse classes, we need to shift from monotone to hereditary classes.

How to produce well behaved hereditary classes from sparse classes?

Transductions =̂ coloring + interpreting + taking an induced subgraph

Tφ

φ(x , y) := Red(x) ∧ Red(y) ∧ dist(x , y) = 3

8 / 46



FO Transductions

To go beyond sparse classes, we need to shift from monotone to hereditary classes.

How to produce well behaved hereditary classes from sparse classes?

Transductions =̂ coloring + interpreting + taking an induced subgraph

Tφ

φ(x , y) := Red(x) ∧ Red(y) ∧ dist(x , y) = 3

8 / 46



Structural Sparsity and Monadic Stability

Definition

A class C is structurally nowhere dense, if there exists a transduction T and a nowhere
dense class D such that C ⊆ T (D).

Definition

A class is monadically stable, if it does not transduce the class of all half graphs.

a1

b1

a2

b2

a3

b3

ak

bk. . .

. . .

ai ∼ bj ⇔ i ≤ j

Definition

A class is monadically NIP, if it does not transduce the class of all graphs.

9 / 46



Structural Sparsity and Monadic Stability

Definition

A class C is structurally nowhere dense, if there exists a transduction T and a nowhere
dense class D such that C ⊆ T (D).

Definition

A class is monadically stable, if it does not transduce the class of all half graphs.

a1

b1

a2

b2

a3

b3

ak

bk. . .

. . .

ai ∼ bj ⇔ i ≤ j

Definition

A class is monadically NIP, if it does not transduce the class of all graphs.

9 / 46



Structural Sparsity and Monadic Stability

Definition

A class C is structurally nowhere dense, if there exists a transduction T and a nowhere
dense class D such that C ⊆ T (D).

Definition

A class is monadically stable, if it does not transduce the class of all half graphs.

a1

b1

a2

b2

a3

b3

ak

bk. . .

. . .

ai ∼ bj ⇔ i ≤ j

Definition

A class is monadically NIP, if it does not transduce the class of all graphs.

9 / 46



Map of the Universe

Nowhere Dense
Structurally

Nowhere Dense

Structurally
Bounded Expansion

Bounded Treewidth
Structurally

Bounded Treewidth

Bounded Pathwidth
Structurally

Bounded Pathwidth

Bounded Treedepth Bounded Shrubdepth

Monadically Stable Monadically NIP

=?

Bounded Sparse
Twinwidth

Bounded Stable
Twinwidth

Bounded Expansion

Bounded
Embedded
Shrubdepth

Bounded
Linear Cliquewidth

Bounded Cliquewidth

Bounded Twinwidth

Bounded Flipwidth

10 / 46



Map of the Universe

Nowhere Dense
Structurally

Nowhere Dense

Structurally
Bounded Expansion

Bounded Treewidth
Structurally

Bounded Treewidth

Bounded Pathwidth
Structurally

Bounded Pathwidth

Bounded Treedepth Bounded Shrubdepth

Monadically Stable Monadically NIP

=?

Bounded Sparse
Twinwidth

Bounded Stable
Twinwidth

Bounded Expansion

Bounded
Embedded
Shrubdepth

Bounded
Linear Cliquewidth

Bounded Cliquewidth

Bounded Twinwidth

Bounded Flipwidth

conditional [Bonnet, Kim, Thomassé, Watrigant, 2021]

[D
re
ie
r,

E
le
ft
h
er
ia
d
is
,
M
äh

lm
an

n
,
M
cC

ar
ty
,
P
il
ip
cz
u
k
,
T
or
u
ń
cz
y
k
,
20
23
]

[D
re
ie
r,

M
äh

lm
an

n
,
S
ie
b
er
tz
,
20
23
]

11 / 46



Tractable Classes

Theorem [Grohe, Kreutzer, Siebertz, 2014]

Let C be a monotone class of graphs.

C admits fpt FO model checking if and only if C is nowhere dense.

Theorem [Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023+]

Let C be a hereditary and orderless class of graphs.

C admits fpt FO model checking if and only if C is monadically stable.

Theorem [Bonnet, Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk, 2022]

Let C be a hereditary and ordered class of graphs.

C admits fpt FO model checking if and only if C has bounded twin-width.

12 / 46



Tractable Classes

Theorem [Grohe, Kreutzer, Siebertz, 2014]

Let C be a monotone class of graphs.

C admits fpt FO model checking if and only if C is monadically NIP.

Theorem [Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023+]

Let C be a hereditary and orderless class of graphs.

C admits fpt FO model checking if and only if C is monadically NIP.

Theorem [Bonnet, Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk, 2022]

Let C be a hereditary and ordered class of graphs.

C admits fpt FO model checking if and only if C is monadically NIP.

12 / 46



Agenda

I will present some of our research results:

1. Characterizations of monadically stable and monadically NIP classes.

2. A game for monadically stable graph classes.

3. FO model checking for monadically stable graph classes.

13 / 46



Characterizing Nowhere Denseness: Uniform Quasi-Wideness

G

Uniform Quasi-Wideness slightly informal)

A class C is uniformly quasi-wide if for every radius r , in every large set A we find a still
large set B that is r -independent after removing a set S of constantly many vertices.

Formally:
∀r ∃sr ∈ N,Nr : N → N s.t. ∀G ∈ C,A ⊆ V (G ) with |A| ≥ Nr (m)
∃B ⊆ A,S ⊆ V (G ) with |B| ≥ m, |S | ≤ sr s.t. B is r -independent in G − S .

14 / 46



Characterizing Nowhere Denseness: Uniform Quasi-Wideness

G

A

Uniform Quasi-Wideness slightly informal)

A class C is uniformly quasi-wide if for every radius r , in every large set A we find a still
large set B that is r -independent after removing a set S of constantly many vertices.

Formally:
∀r ∃sr ∈ N,Nr : N → N s.t. ∀G ∈ C,A ⊆ V (G ) with |A| ≥ Nr (m)
∃B ⊆ A,S ⊆ V (G ) with |B| ≥ m, |S | ≤ sr s.t. B is r -independent in G − S .

14 / 46



Characterizing Nowhere Denseness: Uniform Quasi-Wideness

G

A

S

Uniform Quasi-Wideness slightly informal)

A class C is uniformly quasi-wide if for every radius r , in every large set A we find a still
large set B that is r -independent after removing a set S of constantly many vertices.

Formally:
∀r ∃sr ∈ N,Nr : N → N s.t. ∀G ∈ C,A ⊆ V (G ) with |A| ≥ Nr (m)
∃B ⊆ A,S ⊆ V (G ) with |B| ≥ m, |S | ≤ sr s.t. B is r -independent in G − S .

14 / 46



Characterizing Nowhere Denseness: Uniform Quasi-Wideness

G

A

S

B
r

Uniform Quasi-Wideness slightly informal)

A class C is uniformly quasi-wide if for every radius r , in every large set A we find a still
large set B that is r -independent after removing a set S of constantly many vertices.

Formally:
∀r ∃sr ∈ N,Nr : N → N s.t. ∀G ∈ C,A ⊆ V (G ) with |A| ≥ Nr (m)
∃B ⊆ A,S ⊆ V (G ) with |B| ≥ m, |S | ≤ sr s.t. B is r -independent in G − S .

14 / 46



Characterizing Nowhere Denseness: Uniform Quasi-Wideness

G

A

S

B
r

Uniform Quasi-Wideness slightly informal)

A class C is uniformly quasi-wide if for every radius r , in every large set A we find a still
large set B that is r -independent after removing a set S of constantly many vertices.

Formally:
∀r ∃sr ∈ N,Nr : N → N s.t. ∀G ∈ C,A ⊆ V (G ) with |A| ≥ Nr (m)
∃B ⊆ A,S ⊆ V (G ) with |B| ≥ m, |S | ≤ sr s.t. B is r -independent in G − S .

14 / 46



Characterizing Nowhere Denseness: Uniform Quasi-Wideness

G

A

S

B
r

Uniform Quasi-Wideness slightly informal)

A class C is uniformly quasi-wide if for every radius r , in every large set A we find a still
large set B that is r -independent after removing a set S of constantly many vertices.

Formally:
∀r ∃sr ∈ N,Nr : N → N s.t. ∀G ∈ C,A ⊆ V (G ) with |A| ≥ Nr (m)
∃B ⊆ A,S ⊆ V (G ) with |B| ≥ m, |S | ≤ sr s.t. B is r -independent in G − S .

14 / 46



Characterizing Nowhere Denseness: Uniform Quasi-Wideness

G

A

S

B
r

Theorem [Něseťril, Ossona de Mendez, 2011]

A class C is uniformly quasi-wide if and only if it is nowhere dense.

15 / 46



Uniform Quasi-Wideness: Example

16 / 46



Uniform Quasi-Wideness: Example

r < 1

16 / 46



Uniform Quasi-Wideness: Example

16 / 46



Uniform Quasi-Wideness: Example

r < 4

16 / 46



Uniform Quasi-Wideness: Example

16 / 46



Uniform Quasi-Wideness: Example

16 / 46



Uniform Quasi-Wideness: Example

r < 6

16 / 46



Uniform Quasi-Wideness: Example

16 / 46



Flips

Theorem [Něseťril, Ossona de Mendez, 2011]

A class C is uniformly quasi-wide if and only if it is nowhere dense.

Question: Similar combinatorial characterizations for monadic stability/NIP?

Denote by G ⊕ (P,Q) the graph obtained from G by complementing edges between
pairs of vertices from P × Q.

17 / 46



Flips

Theorem [Něseťril, Ossona de Mendez, 2011]

A class C is uniformly quasi-wide if and only if it is nowhere dense.

Question: Similar combinatorial characterizations for monadic stability/NIP?

Denote by G ⊕ (P,Q) the graph obtained from G by complementing edges between
pairs of vertices from P × Q.

P

G

Q

17 / 46



Flips

Theorem [Něseťril, Ossona de Mendez, 2011]

A class C is uniformly quasi-wide if and only if it is nowhere dense.

Question: Similar combinatorial characterizations for monadic stability/NIP?

Denote by G ⊕ (P,Q) the graph obtained from G by complementing edges between
pairs of vertices from P × Q.

P

G G⊕ (P,Q)

flip (P,Q)

Q P Q

17 / 46



Flips
Theorem [Něseťril, Ossona de Mendez, 2011]

A class C is uniformly quasi-wide if and only if it is nowhere dense.

Question: Similar combinatorial characterizations for monadic stability/NIP?

Denote by G ⊕ (P,Q) the graph obtained from G by complementing edges between
pairs of vertices from P × Q.

P

G G⊕ (P,Q)

flip (P,Q)

Q P Q

G |= E (u, v) ⇔ G ⊕ (P,Q) |= E (u, v) XOR
(
P(u) ∧ Q(v) ∨ P(v) ∧ Q(u)

)
17 / 46



Characterizing Monadic Stability: Flip-Flatness

G

Flip-Flatness (slightly informal) [Gajarský, Kreutzer]

A class C is flip-flat if for every radius r , in every large set S we find a still large set A
that is r -independent after performing a set F of constantly many flips.

Theorem [Dreier, Mählmann, Siebertz, Toruńczyk, 2022]

A class C is flip-flat if and only if it is monadically stable.

18 / 46



Characterizing Monadic Stability: Flip-Flatness

G

A

Flip-Flatness (slightly informal) [Gajarský, Kreutzer]

A class C is flip-flat if for every radius r , in every large set S we find a still large set A
that is r -independent after performing a set F of constantly many flips.

Theorem [Dreier, Mählmann, Siebertz, Toruńczyk, 2022]

A class C is flip-flat if and only if it is monadically stable.

18 / 46



Characterizing Monadic Stability: Flip-Flatness

G

A

F

Flip-Flatness (slightly informal) [Gajarský, Kreutzer]

A class C is flip-flat if for every radius r , in every large set S we find a still large set A
that is r -independent after performing a set F of constantly many flips.

Theorem [Dreier, Mählmann, Siebertz, Toruńczyk, 2022]

A class C is flip-flat if and only if it is monadically stable.

18 / 46



Characterizing Monadic Stability: Flip-Flatness

G

A

F

B
r

Flip-Flatness (slightly informal) [Gajarský, Kreutzer]

A class C is flip-flat if for every radius r , in every large set S we find a still large set A
that is r -independent after performing a set F of constantly many flips.

Theorem [Dreier, Mählmann, Siebertz, Toruńczyk, 2022]

A class C is flip-flat if and only if it is monadically stable.

18 / 46



Characterizing Monadic Stability: Flip-Flatness

G

A

F

B
r

Flip-Flatness (slightly informal) [Gajarský, Kreutzer]

A class C is flip-flat if for every radius r , in every large set S we find a still large set A
that is r -independent after performing a set F of constantly many flips.

Theorem [Dreier, Mählmann, Siebertz, Toruńczyk, 2022]

A class C is flip-flat if and only if it is monadically stable.

18 / 46



Characterizing Monadic Stability: Flip-Flatness

G

A

F

B
r

Flip-Flatness (slightly informal) [Gajarský, Kreutzer]

A class C is flip-flat if for every radius r , in every large set S we find a still large set A
that is r -independent after performing a set F of constantly many flips.

Theorem [Dreier, Mählmann, Siebertz, Toruńczyk, 2022]

A class C is flip-flat if and only if it is monadically stable.

18 / 46



Flip-Flatness: Example

19 / 46



Flip-Flatness: Example

19 / 46



Flip-Flatness: Example

19 / 46



Flip-Flatness: Example

19 / 46



Flip-Flatness: Example

19 / 46



Flip-Flatness: Example

19 / 46



Characterizing Monadic NIP: Flip-Breakability

G

Flip-Breakability (slightly informal)

A class C is flip-breakable if for every radius r , in every large set S we find two large
sets A and B that and a flip F of bounded size such that N r

G⊕F (A) ∩ N r
G⊕F (B) = ∅.

Theorem [Dreier, Mählmann, Toruńczyk]

A class C is flip-breakable if and only if it is monadically NIP.

20 / 46



Characterizing Monadic NIP: Flip-Breakability

G

S

Flip-Breakability (slightly informal)

A class C is flip-breakable if for every radius r , in every large set S we find two large
sets A and B that and a flip F of bounded size such that N r

G⊕F (A) ∩ N r
G⊕F (B) = ∅.

Theorem [Dreier, Mählmann, Toruńczyk]

A class C is flip-breakable if and only if it is monadically NIP.

20 / 46



Characterizing Monadic NIP: Flip-Breakability

G

S

F

Flip-Breakability (slightly informal)

A class C is flip-breakable if for every radius r , in every large set S we find two large
sets A and B that and a flip F of bounded size such that N r

G⊕F (A) ∩ N r
G⊕F (B) = ∅.

Theorem [Dreier, Mählmann, Toruńczyk]

A class C is flip-breakable if and only if it is monadically NIP.

20 / 46



Characterizing Monadic NIP: Flip-Breakability

G

S

F

A

r
B

r

Flip-Breakability (slightly informal)

A class C is flip-breakable if for every radius r , in every large set S we find two large
sets A and B that and a flip F of bounded size such that N r

G⊕F (A) ∩ N r
G⊕F (B) = ∅.

Theorem [Dreier, Mählmann, Toruńczyk]

A class C is flip-breakable if and only if it is monadically NIP.

20 / 46



Characterizing Monadic NIP: Flip-Breakability

G

S

F

A

r
B

r

Flip-Breakability (slightly informal)

A class C is flip-breakable if for every radius r , in every large set S we find two large
sets A and B that and a flip F of bounded size such that N r

G⊕F (A) ∩ N r
G⊕F (B) = ∅.

Theorem [Dreier, Mählmann, Toruńczyk]

A class C is flip-breakable if and only if it is monadically NIP.

20 / 46



Characterizing Monadic NIP: Flip-Breakability

G

S

F

A

r
B

r

Flip-Breakability (slightly informal)

A class C is flip-breakable if for every radius r , in every large set S we find two large
sets A and B that and a flip F of bounded size such that N r

G⊕F (A) ∩ N r
G⊕F (B) = ∅.

Theorem [Dreier, Mählmann, Toruńczyk]

A class C is flip-breakable if and only if it is monadically NIP.

20 / 46



Flip-Breakability: Example

A B S

21 / 46



Flip-Breakability: Example

A B S

21 / 46



Flip-Breakability: Example

A B S

21 / 46



Flip-Breakability: Example

A B S

21 / 46



Flip-Breakability: Example

A B S

21 / 46



Flip-Breakability: Example

A B S

21 / 46



Flip-Breakability: Example

A B S

21 / 46



Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.

2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

3. Separation means either distance-r or distance-∞.

flatness breakability

dist-r
flip- monadic stability monadic NIP

deletion- nowhere denseness

dist-∞ flip-
deletion-

22 / 46



Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.

2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

3. Separation means either distance-r or distance-∞.

flatness breakability

dist-r
flip- monadic stability monadic NIP

deletion- nowhere denseness

dist-∞ flip-
deletion-

22 / 46



Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.

2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

3. Separation means either distance-r or distance-∞.

flatness breakability

dist-r
flip- monadic stability monadic NIP

deletion- nowhere denseness

dist-∞ flip-
deletion-

22 / 46



Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.

2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

3. Separation means either distance-r or distance-∞.

flatness breakability

dist-r
flip- monadic stability monadic NIP

deletion- nowhere denseness

dist-∞ flip-
deletion-

22 / 46



Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.

2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

3. Separation means either distance-r or distance-∞.

flatness breakability

dist-r
flip- monadic stability monadic NIP

deletion- nowhere denseness nowhere denseness

dist-∞ flip-
deletion-

22 / 46



Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.

2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

3. Separation means either distance-r or distance-∞.

flatness breakability

dist-r
flip- monadic stability monadic NIP

deletion- nowhere denseness nowhere denseness

dist-∞ flip- bd. shrubdepth bd. cliquewidth
deletion-

22 / 46



Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.

2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

3. Separation means either distance-r or distance-∞.

flatness breakability

dist-r
flip- monadic stability monadic NIP

deletion- nowhere denseness nowhere denseness

dist-∞ flip- bd. shrubdepth bd. cliquewidth
deletion- bd. treedepth bd. treewidth

22 / 46



Roadmap: FO Model Checking for Monadically Stable Classes

flip-flatness → flipper game → model checking

23 / 46



Monadic Stability ⇒ Flip-Flatness: r = 1

We prove flip-flatness by induction on r . For r = 1 we use Ramsey’s theorem.

Case 1: A contains a large independent set.

AB

→ B is distance-1 independent without performing any flips.

Case 2: A contains a large clique.

AB

→ flip (B,B). This is the same as complementing the edges in B.

24 / 46



Monadic Stability ⇒ Flip-Flatness: r = 1

We prove flip-flatness by induction on r . For r = 1 we use Ramsey’s theorem.

Case 1: A contains a large independent set.

AB

→ B is distance-1 independent without performing any flips.

Case 2: A contains a large clique.

AB

→ flip (B,B). This is the same as complementing the edges in B.

24 / 46



Indiscernibles
Every long sequence of vertices contains a still long subsequence that is indiscernible.
In a monadically NIP class every vertex is connected to an indiscernible sequence in
one of the following patterns:

monadically NIP

homogenous single exception single alternation

[Blumensath, 2011], [Dreier, Mählmann, Toruńczyk, Siebertz, 2023]

25 / 46



Indiscernibles
Every long sequence of vertices contains a still long subsequence that is indiscernible.
In a monadically NIP class every vertex is connected to an indiscernible sequence in
one of the following patterns:

monadically stable
monadically NIP

homogenous single exception single alternation

[Blumensath, 2011], [Dreier, Mählmann, Toruńczyk, Siebertz, 2023]

25 / 46



Monadic Stability ⇒ Flip-Flatness: r = 2

deg 0 deg 1 deg |A| − 1 deg |A|

A

26 / 46



Monadic Stability ⇒ Flip-Flatness: r = 2

deg 0 deg 1 deg |A| − 1 deg |A|

A

26 / 46



Monadic Stability ⇒ Flip-Flatness: r = 2

deg 0 deg 1 deg |A|deg 1

A

26 / 46



Monadic Stability ⇒ Flip-Flatness: r = 2

deg 0 deg 1 deg |A|deg 1

A

26 / 46



Monadic Stability ⇒ Flip-Flatness: r = 2

deg 0 deg 1 deg |A|deg 1

A

26 / 46



Monadic Stability ⇒ Flip-Flatness: r = 2

deg 0 deg 1 deg 1 deg 0

A

26 / 46



Monadic Stability ⇒ Flip-Flatness: r = 2

deg 0 deg 1 deg 1 deg 0

A

26 / 46



Monadic Stability ⇒ Flip-Flatness: r ≥ 3

If C is monadically stable, then every large sequence of disjoint r -balls contains a large
subsequence that can be colored by a bounded number of colors such that the
neighborhood of every vertex is described by a single colors as follows:

r r r r r

?

v

27 / 46



Roadmap: FO Model Checking for Monadically Stable Classes

flip-flatness ✓→ flipper game → model checking

28 / 46



Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Connector chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

29 / 46



Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Connector chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

29 / 46



Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Connector chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

29 / 46



Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Connector chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

29 / 46



Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Connector chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

29 / 46



Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Connector chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

29 / 46



Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Connector chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

29 / 46



Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Connector chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

29 / 46



Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Connector chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

29 / 46



Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Connector chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

29 / 46



Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Connector chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

29 / 46



Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Connector chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

29 / 46



Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Connector chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

29 / 46



Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Connector chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

29 / 46



The Splitter Game in Nowhere Dense Classes

Theorem [Grohe, Kreutzer, Siebertz, 2013]

A class of graphs C is nowhere dense ⇔

∀r∃ℓ such that Splitter wins the radius-r game on all graphs from C in ℓ rounds.

Splitters strategy is efficiently computable and a main ingredient of the nowhere dense
model checking.

Question: Can we find a similar game characterization for monadic stability?

30 / 46



The Splitter Game in Nowhere Dense Classes

Theorem [Grohe, Kreutzer, Siebertz, 2013]

A class of graphs C is nowhere dense ⇔

∀r∃ℓ such that Splitter wins the radius-r game on all graphs from C in ℓ rounds.

Splitters strategy is efficiently computable and a main ingredient of the nowhere dense
model checking.

Question: Can we find a similar game characterization for monadic stability?

30 / 46



The Splitter Game in Nowhere Dense Classes

Theorem [Grohe, Kreutzer, Siebertz, 2013]

A class of graphs C is nowhere dense ⇔

∀r∃ℓ such that Splitter wins the radius-r game on all graphs from C in ℓ rounds.

Splitters strategy is efficiently computable and a main ingredient of the nowhere dense
model checking.

Question: Can we find a similar game characterization for monadic stability?

30 / 46



Flipper Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v

2. Connector chooses Gi+1 as a radius-r ball in G − v .

Splitter wins once Gi has size 1.

31 / 46



Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

31 / 46



Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

31 / 46



Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

31 / 46



Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

31 / 46



Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

31 / 46



Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

31 / 46



Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

31 / 46



Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

31 / 46



Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

31 / 46



Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

31 / 46



Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

31 / 46



Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

31 / 46



Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

31 / 46



Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

31 / 46



The Flipper Game in Monadically Stable Classes

Theorem [Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Soko lowski, Toruńczyk, 2023]

A class of graphs C is monadically stable ⇔

∀r∃ℓ such that Flipper wins the radius-r game on all graphs from C in ℓ rounds.

Flippers moves are computable in time OC,r (n
2).

32 / 46



Flip-Flatness

G

A

F

B
r

Definition (slightly informal) [Gajarský, Kreutzer]

A class C is flip-flat if for every radius r , in every large set A we find a still large set B
that is r -independent after performing a constant number of flips.

Theorem [Dreier, Mählmann, Siebertz, Toruńczyk, 2023]

A class C is flip-flat if and only if it is monadically stable.

33 / 46



Monadic Stability ⇒ Flipper Wins - Proof Idea

Let A = a1, a2, a3, . . . be the vertices played by Connector.

If the game continues long enough, we can apply flip-flatness to find a set B ⊆ A
which is 2r -independent after applying constantly many flips F .

34 / 46



Monadic Stability ⇒ Flipper Wins - Proof Idea

Let A = a1, a2, a3, . . . be the vertices played by Connector.

If the game continues long enough, we can apply flip-flatness to find a set B ⊆ A
which is 2r -independent after applying constantly many flips F .

34 / 46



Monadic Stability ⇒ Flipper Wins - Proof Idea

Let A = a1, a2, a3, . . . be the vertices played by Connector.

If the game continues long enough, we can apply flip-flatness to find a set B ⊆ A
which is 2r -independent after applying constantly many flips F .

34 / 46



Monadic Stability ⇒ Flipper Wins - Proof Idea

Let A = a1, a2, a3, . . . be the vertices played by Connector.

If the game continues long enough, we can apply flip-flatness to find a set B ⊆ A
which is 2r -independent after applying constantly many flips F .

34 / 46



Monadic Stability ⇒ Flipper Wins - Proof Idea

Let A = a1, a2, a3, . . . be the vertices played by Connector.

If the game continues long enough, we can apply flip-flatness to find a set B ⊆ A
which is 2r -independent after applying constantly many flips F .

34 / 46



Monadic Stability ⇒ Flipper Wins - Proof Idea

Let A = a1, a2, a3, . . . be the vertices played by Connector.

If the game continues long enough, we can apply flip-flatness to find a set B ⊆ A
which is 2r -independent after applying constantly many flips F .

34 / 46



Monadic Stability ⇒ Flipper Wins - Proof Idea

Let A = a1, a2, a3, . . . be the vertices played by Connector.

If the game continues long enough, we can apply flip-flatness to find a set B ⊆ A
which is 2r -independent after applying constantly many flips F .

34 / 46



Monadic Stability ⇒ Flipper Wins - Proof Idea

Let A = a1, a2, a3, . . . be the vertices played by Connector.

If the game continues long enough, we can apply flip-flatness to find a set B ⊆ A
which is 2r -independent after applying constantly many flips F .

A

34 / 46



Monadic Stability ⇒ Flipper Wins - Proof Idea

Let A = a1, a2, a3, . . . be the vertices played by Connector.

If the game continues long enough, we can apply flip-flatness to find a set B ⊆ A
which is 2r -independent after applying constantly many flips F .

Ab1 b2

distG⊕F (b1, b2) > 2r

34 / 46



Monadic Stability ⇒ Flipper Wins - Proof Idea

Let A = a1, a2, a3, . . . be the vertices played by Connector.

If the game continues long enough, we can apply flip-flatness to find a set B ⊆ A
which is 2r -independent after applying constantly many flips F .

Ab1 b2

distG⊕F (b1, b2) > 2r

t

34 / 46



Monadic Stability ⇒ Flipper Wins - Proof Idea

Let A = a1, a2, a3, . . . be the vertices played by Connector.

If the game continues long enough, we can apply flip-flatness to find a set B ⊆ A
which is 2r -independent after applying constantly many flips F .

Ab1 b2

distG⊕F (b1, b2) > 2r

t

If Flipper had played the flip F at time t then only one of b1 and b2 could have
survived in the graph.

34 / 46



Monadic Stability ⇒ Flipper Wins - Proof Idea

Let A = a1, a2, a3, . . . be the vertices played by Connector.

If the game continues long enough, we can apply flip-flatness to find a set B ⊆ A
which is 2r -independent after applying constantly many flips F .

Ab1 b2

distG⊕F (b1, b2) > 2r

t

If Flipper had played the flip F at time t then only one of b1 and b2 could have
survived in the graph.

Problem: Flipper does not know A at time t.
34 / 46



Predictable Flip-Flatness

A1

B1

G

ff(A1) = (B1,F1)

ff(A2) = (B2,F2)

|B1 ∩ B2| ≥ 5 ⇒ F1 = F2

F1 = F2 are computable from a five-element subset of B1 ∩ B2 in time O(n2).

35 / 46



Predictable Flip-Flatness

A1

B1 A2

B2

G

ff(A1) = (B1,F1)

ff(A2) = (B2,F2)

|B1 ∩ B2| ≥ 5 ⇒ F1 = F2

F1 = F2 are computable from a five-element subset of B1 ∩ B2 in time O(n2).

35 / 46



Predictable Flip-Flatness

A1

B1 A2

B2

G

ff(A1) = (B1,F1)

ff(A2) = (B2,F2)

|B1 ∩ B2| ≥ 5 ⇒ F1 = F2

F1 = F2 are computable from a five-element subset of B1 ∩ B2 in time O(n2).

35 / 46



Flippers Winning Strategy

For every 5 element subset P of Connectors previous moves:

1. apply the flips predict(P) for radius 2r

2. let Connector localize to an r -ball

3. undo predict(P)

Assume Connector can play enough rounds to apply size 7 flip-flatness

t

A

B

︸ ︷︷ ︸
P

︷ ︸︸ ︷
b1 b2

At time t, P was considered as a subset of Connectors previous moves.

B was flipped 2r -independent and only one of b1, b2 survived. Contradiction!

36 / 46



Flippers Winning Strategy

For every 5 element subset P of Connectors previous moves:

1. apply the flips predict(P) for radius 2r

2. let Connector localize to an r -ball

3. undo predict(P)

Assume Connector can play enough rounds to apply size 7 flip-flatness

t

A

B

︸ ︷︷ ︸
P

︷ ︸︸ ︷
b1 b2

At time t, P was considered as a subset of Connectors previous moves.

B was flipped 2r -independent and only one of b1, b2 survived. Contradiction!

36 / 46



Flippers Winning Strategy

For every 5 element subset P of Connectors previous moves:

1. apply the flips predict(P) for radius 2r

2. let Connector localize to an r -ball

3. undo predict(P)

Assume Connector can play enough rounds to apply size 7 flip-flatness

t

A

B

︸ ︷︷ ︸
P

︷ ︸︸ ︷
b1 b2

At time t, P was considered as a subset of Connectors previous moves.

B was flipped 2r -independent and only one of b1, b2 survived. Contradiction!

36 / 46



Roadmap: FO Model Checking for Monadically Stable Classes

flip-flatness ✓→ flipper game ✓→ model checking

37 / 46



Towards a Recursive Model Checking Algorithm

Goal: Decide whether G |= φ.

Idea: Recursion that works by induction on the length ℓ of the Flipper game.

• For every monadically stable class the recursion depth will be bounded.

• For ℓ = 1 we have |V (G )| = 1 and can brute force.

We make one round of progress by flipping and localizing.

Flipping is easy:

• Compute a progressing flip F using Flippers winning strategy

• Rewrite φ and color G such that G |= φ ⇐⇒ G+ ⊕ F |= φ̂.

How do we localize? What radius r do we play the Flipper game with?

38 / 46



Towards a Recursive Model Checking Algorithm

Goal: Decide whether G |= φ.

Idea: Recursion that works by induction on the length ℓ of the Flipper game.

• For every monadically stable class the recursion depth will be bounded.

• For ℓ = 1 we have |V (G )| = 1 and can brute force.

We make one round of progress by flipping and localizing.

Flipping is easy:

• Compute a progressing flip F using Flippers winning strategy

• Rewrite φ and color G such that G |= φ ⇐⇒ G+ ⊕ F |= φ̂.

How do we localize? What radius r do we play the Flipper game with?

38 / 46



Towards a Recursive Model Checking Algorithm

Goal: Decide whether G |= φ.

Idea: Recursion that works by induction on the length ℓ of the Flipper game.

• For every monadically stable class the recursion depth will be bounded.

• For ℓ = 1 we have |V (G )| = 1 and can brute force.

We make one round of progress by flipping and localizing.

Flipping is easy:

• Compute a progressing flip F using Flippers winning strategy

• Rewrite φ and color G such that G |= φ ⇐⇒ G+ ⊕ F |= φ̂.

How do we localize? What radius r do we play the Flipper game with?

38 / 46



Towards a Recursive Model Checking Algorithm

Goal: Decide whether G |= φ.

Idea: Recursion that works by induction on the length ℓ of the Flipper game.

• For every monadically stable class the recursion depth will be bounded.

• For ℓ = 1 we have |V (G )| = 1 and can brute force.

We make one round of progress by flipping and localizing.

Flipping is easy:

• Compute a progressing flip F using Flippers winning strategy

• Rewrite φ and color G such that G |= φ ⇐⇒ G+ ⊕ F |= φ̂.

How do we localize? What radius r do we play the Flipper game with?

38 / 46



Towards a Recursive Model Checking Algorithm

Goal: Decide whether G |= φ.

Idea: Recursion that works by induction on the length ℓ of the Flipper game.

• For every monadically stable class the recursion depth will be bounded.

• For ℓ = 1 we have |V (G )| = 1 and can brute force.

We make one round of progress by flipping and localizing.

Flipping is easy:

• Compute a progressing flip F using Flippers winning strategy

• Rewrite φ and color G such that G |= φ ⇐⇒ G+ ⊕ F |= φ̂.

How do we localize? What radius r do we play the Flipper game with?

38 / 46



Guarded Formulas
ψ is U-guarded, if each quantifier is of the form ∃x ∈ U or ∀x ∈ U for some U ∈ U .

Observation

For every graph G and {U1, . . . ,Ut}-guarded formula ψ we have

G |= ψ ⇐⇒ G [U1 ∪ . . . ∪ Ut ] |= ψ.

U1
U2

U3

r

G

Goal: efficiently compute ψ s.t.
1. ψ is equivalent to φ on G .
2. ψ is a BC of formulas, each guarded

by a family of bounded radius in G .

39 / 46



Guarded Formulas
ψ is U-guarded, if each quantifier is of the form ∃x ∈ U or ∀x ∈ U for some U ∈ U .

Observation

For every graph G and {U1, . . . ,Ut}-guarded formula ψ we have

G |= ψ ⇐⇒ G [U1 ∪ . . . ∪ Ut ] |= ψ.

U1
U2

U3

r

G

Goal: efficiently compute ψ s.t.
1. ψ is equivalent to φ on G .
2. ψ is a BC of formulas, each guarded

by a family of bounded radius in G .

39 / 46



Guarded Formulas
ψ is U-guarded, if each quantifier is of the form ∃x ∈ U or ∀x ∈ U for some U ∈ U .

Observation

For every graph G and {U1, . . . ,Ut}-guarded formula ψ we have

G |= ψ ⇐⇒ G [U1 ∪ . . . ∪ Ut ] |= ψ.

U1
U2

U3

r

G

Goal: efficiently compute ψ s.t.
1. ψ is equivalent to φ on G .
2. ψ is a BC of formulas, each guarded

by a family of bounded radius in G .

39 / 46



Guarded Formulas
ψ is U-guarded, if each quantifier is of the form ∃x ∈ U or ∀x ∈ U for some U ∈ U .

Observation

For every graph G and {U1, . . . ,Ut}-guarded formula ψ we have

G |= ψ ⇐⇒ G [U1 ∪ . . . ∪ Ut ] |= ψ.

U1
U2

U3

r

G

Goal: efficiently compute ψ s.t.
1. ψ is equivalent to φ on G .
2. ψ is a BC of formulas, each guarded

by a family of bounded radius in G .

39 / 46



Local Types

A

G

B

Assume tpq(•) = tpq(•). tpq(G ) := {ψ : ψ has quantifier rank ≤ q and G |= ψ}

Let ψ(x) be a formula of quantifier rank q − 1.

There exists u ∈ A with G |= ψ(u) iff. there exists v ∈ B with G |= ψ(v).

The proof uses a local variant of Ehrenfeucht-Fräıssé games.

40 / 46



Local Types

A

G

B> 2q

Assume tpq(•) = tpq(•). tpq(G ) := {ψ : ψ has quantifier rank ≤ q and G |= ψ}

Let ψ(x) be a formula of quantifier rank q − 1.

There exists u ∈ A with G |= ψ(u) iff. there exists v ∈ B with G |= ψ(v).

The proof uses a local variant of Ehrenfeucht-Fräıssé games.

40 / 46



Local Types

A

G

2q−1

B 2q−1
> 2q

Assume tpq(•) = tpq(•). tpq(G ) := {ψ : ψ has quantifier rank ≤ q and G |= ψ}

Let ψ(x) be a formula of quantifier rank q − 1.

There exists u ∈ A with G |= ψ(u) iff. there exists v ∈ B with G |= ψ(v).

The proof uses a local variant of Ehrenfeucht-Fräıssé games.

40 / 46



Local Types

A

G

2q−1

B 2q−1
> 2q

Assume tpq(•) = tpq(•). tpq(G ) := {ψ : ψ has quantifier rank ≤ q and G |= ψ}

Let ψ(x) be a formula of quantifier rank q − 1.

There exists u ∈ A with G |= ψ(u) iff. there exists v ∈ B with G |= ψ(v).

The proof uses a local variant of Ehrenfeucht-Fräıssé games.

40 / 46



Local Types

A

G

2q−1

B 2q−1
> 2q

Assume tpq(•) = tpq(•). tpq(G ) := {ψ : ψ has quantifier rank ≤ q and G |= ψ}

Let ψ(x) be a formula of quantifier rank q − 1.

There exists u ∈ A with G |= ψ(u) iff. there exists v ∈ B with G |= ψ(v).

The proof uses a local variant of Ehrenfeucht-Fräıssé games.

40 / 46



Local Types

A

G

2q−1

B 2q−1
> 2q

Assume tpq(•) = tpq(•). tpq(G ) := {ψ : ψ has quantifier rank ≤ q and G |= ψ}

Let ψ(x) be a formula of quantifier rank q − 1.

There exists u ∈ A with G |= ψ(u) iff. there exists v ∈ B with G |= ψ(v).

The proof uses a local variant of Ehrenfeucht-Fräıssé games.

40 / 46



Local Types

A

G

2q−1

B 2q−1
> 2q

Assume tpq(•) = tpq(•). tpq(G ) := {ψ : ψ has quantifier rank ≤ q and G |= ψ}

Let ψ(x) be a formula of quantifier rank q − 1.

There exists u ∈ A with G |= ψ(u) iff. there exists v ∈ B with G |= ψ(v).

The proof uses a local variant of Ehrenfeucht-Fräıssé games.
40 / 46



Localizing a Single Quantifier

Let S = {N2q [v ] : v ∈ V (G )} be the set of 2q-neighborhoods in G . We have

G |= ∃x ψ(x) ⇐⇒ G |=
∨
S∈S

∃x ∈ S ψ(x).

Every set S is local, but |S| depends on |V (G )|!

Idea: Let S⋆ ⊆ S contain exactly one 2q-neighborhood for every possible q-type.

By the Local Type Theorem: G |= ∃x ψ(x) ⇐⇒ G |=
∨

S∈S⋆

∃x ∈ S ψ(x).

|S⋆| depends only on q ✓

When computing tpq(G [S ]), we make progress in the radius-2q Flipper game ✓

For multiple quantifiers: extend to parameters and argue by induction ✓

41 / 46



Localizing a Single Quantifier

Let S = {N2q [v ] : v ∈ V (G )} be the set of 2q-neighborhoods in G . We have

G |= ∃x ψ(x) ⇐⇒ G |=
∨
S∈S

∃x ∈ S ψ(x).

Every set S is local, but |S| depends on |V (G )|!

Idea: Let S⋆ ⊆ S contain exactly one 2q-neighborhood for every possible q-type.

By the Local Type Theorem: G |= ∃x ψ(x) ⇐⇒ G |=
∨

S∈S⋆

∃x ∈ S ψ(x).

|S⋆| depends only on q ✓

When computing tpq(G [S ]), we make progress in the radius-2q Flipper game ✓

For multiple quantifiers: extend to parameters and argue by induction ✓

41 / 46



Localizing a Single Quantifier

Let S = {N2q [v ] : v ∈ V (G )} be the set of 2q-neighborhoods in G . We have

G |= ∃x ψ(x) ⇐⇒ G |=
∨
S∈S

∃x ∈ S ψ(x).

Every set S is local, but |S| depends on |V (G )|!

Idea: Let S⋆ ⊆ S contain exactly one 2q-neighborhood for every possible q-type.

By the Local Type Theorem: G |= ∃x ψ(x) ⇐⇒ G |=
∨

S∈S⋆

∃x ∈ S ψ(x).

|S⋆| depends only on q ✓

When computing tpq(G [S ]), we make progress in the radius-2q Flipper game ✓

For multiple quantifiers: extend to parameters and argue by induction ✓

41 / 46



Localizing a Single Quantifier

Let S = {N2q [v ] : v ∈ V (G )} be the set of 2q-neighborhoods in G . We have

G |= ∃x ψ(x) ⇐⇒ G |=
∨
S∈S

∃x ∈ S ψ(x).

Every set S is local, but |S| depends on |V (G )|!

Idea: Let S⋆ ⊆ S contain exactly one 2q-neighborhood for every possible q-type.

By the Local Type Theorem: G |= ∃x ψ(x) ⇐⇒ G |=
∨

S∈S⋆

∃x ∈ S ψ(x).

|S⋆| depends only on q ✓

When computing tpq(G [S ]), we make progress in the radius-2q Flipper game ✓

For multiple quantifiers: extend to parameters and argue by induction ✓

41 / 46



Localizing a Single Quantifier

Let S = {N2q [v ] : v ∈ V (G )} be the set of 2q-neighborhoods in G . We have

G |= ∃x ψ(x) ⇐⇒ G |=
∨
S∈S

∃x ∈ S ψ(x).

Every set S is local, but |S| depends on |V (G )|!

Idea: Let S⋆ ⊆ S contain exactly one 2q-neighborhood for every possible q-type.

By the Local Type Theorem: G |= ∃x ψ(x) ⇐⇒ G |=
∨

S∈S⋆

∃x ∈ S ψ(x).

|S⋆| depends only on q ✓

When computing tpq(G [S ]), we make progress in the radius-2q Flipper game ✓

For multiple quantifiers: extend to parameters and argue by induction ✓

41 / 46



Localizing a Single Quantifier

Let S = {N2q [v ] : v ∈ V (G )} be the set of 2q-neighborhoods in G . We have

G |= ∃x ψ(x) ⇐⇒ G |=
∨
S∈S

∃x ∈ S ψ(x).

Every set S is local, but |S| depends on |V (G )|!

Idea: Let S⋆ ⊆ S contain exactly one 2q-neighborhood for every possible q-type.

By the Local Type Theorem: G |= ∃x ψ(x) ⇐⇒ G |=
∨

S∈S⋆

∃x ∈ S ψ(x).

|S⋆| depends only on q ✓

When computing tpq(G [S ]), we make progress in the radius-2q Flipper game ✓

For multiple quantifiers: extend to parameters and argue by induction ✓

41 / 46



Recursion Tree

We can now play the Flipper game for radius 2q:

1. Flip by rewriting φ and coloring G .

2. Localize by computing the q-type of every 2q-neighborhood.

By monadic stability the depth of the recursion tree is bounded by f (q).

However the branching degree is n. This gives an O(nf (q)) algorithm.

This is worse than the naive O(nq) algorithm!

42 / 46



Recursion Tree

We can now play the Flipper game for radius 2q:

1. Flip by rewriting φ and coloring G .

2. Localize by computing the q-type of every 2q-neighborhood.

By monadic stability the depth of the recursion tree is bounded by f (q).

However the branching degree is n. This gives an O(nf (q)) algorithm.

This is worse than the naive O(nq) algorithm!

42 / 46



Recursion Tree

We can now play the Flipper game for radius 2q:

1. Flip by rewriting φ and coloring G .

2. Localize by computing the q-type of every 2q-neighborhood.

By monadic stability the depth of the recursion tree is bounded by f (q).

However the branching degree is n. This gives an O(nf (q)) algorithm.

This is worse than the naive O(nq) algorithm!

42 / 46



Neighborhood Covers
Recursing into each 2q-neighborhood is too expensive!

Idea: group neighborhoods that are close to each other into clusters.

Definition

A family of sets X is a neighborhood cover with radius r , spread s, and degree d if
• each r -neighborhood of G is fully contained in one cluster X ∈ X ,
• each cluster is contained in an s-neighborhood of G ,
• each vertex appears in at most d clusters.

A class admits sparse neighborhood covers if we can set d = g(r , ε) · nε for every ε > 0.

The size of the clusters of a sparse neighborhood cover sum up to g(r , ε) · n1+ε.

Resulting size of the recursion tree: n((1+ε)f (q)); by choosing ε small enough: n1+ε′ .

43 / 46



Neighborhood Covers
Recursing into each 2q-neighborhood is too expensive!

Idea: group neighborhoods that are close to each other into clusters.

Definition

A family of sets X is a neighborhood cover with radius r , spread s, and degree d if
• each r -neighborhood of G is fully contained in one cluster X ∈ X ,
• each cluster is contained in an s-neighborhood of G ,
• each vertex appears in at most d clusters.

A class admits sparse neighborhood covers if we can set d = g(r , ε) · nε for every ε > 0.

The size of the clusters of a sparse neighborhood cover sum up to g(r , ε) · n1+ε.

Resulting size of the recursion tree: n((1+ε)f (q)); by choosing ε small enough: n1+ε′ .

43 / 46



Neighborhood Covers
Recursing into each 2q-neighborhood is too expensive!

Idea: group neighborhoods that are close to each other into clusters.

Definition

A family of sets X is a neighborhood cover with radius r , spread s, and degree d if
• each r -neighborhood of G is fully contained in one cluster X ∈ X ,
• each cluster is contained in an s-neighborhood of G ,
• each vertex appears in at most d clusters.

A class admits sparse neighborhood covers if we can set d = g(r , ε) · nε for every ε > 0.

The size of the clusters of a sparse neighborhood cover sum up to g(r , ε) · n1+ε.

Resulting size of the recursion tree: n((1+ε)f (q)); by choosing ε small enough: n1+ε′ .

43 / 46



Neighborhood Covers
Recursing into each 2q-neighborhood is too expensive!

Idea: group neighborhoods that are close to each other into clusters.

Definition

A family of sets X is a neighborhood cover with radius r , spread s, and degree d if
• each r -neighborhood of G is fully contained in one cluster X ∈ X ,
• each cluster is contained in an s-neighborhood of G ,
• each vertex appears in at most d clusters.

A class admits sparse neighborhood covers if we can set d = g(r , ε) · nε for every ε > 0.

The size of the clusters of a sparse neighborhood cover sum up to g(r , ε) · n1+ε.

Resulting size of the recursion tree: n((1+ε)f (q)); by choosing ε small enough: n1+ε′ .

43 / 46



Model Checking in Monadically Stable Classes

Theorem [Dreier, Mählmann, Siebertz, 2023]

Every monadically stable class, that admits sparse neighborhood covers, admits FO
model checking in time f (φ) · |V (G )|11.

Theorem [Dreier, Mählmann, Siebertz, 2023]

Every structurally nowhere dense class admits sparse neighborhood covers.

Theorem [Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023]

Every monadically stable class admits sparse neighborhood covers.

Theorem

Every monadically stable class admits FO model checking in time f (φ, ε) · |V (G )|5+ε.

44 / 46



Model Checking in Monadically Stable Classes

Theorem [Dreier, Mählmann, Siebertz, 2023]

Every monadically stable class, that admits sparse neighborhood covers, admits FO
model checking in time f (φ) · |V (G )|11.

Theorem [Dreier, Mählmann, Siebertz, 2023]

Every structurally nowhere dense class admits sparse neighborhood covers.

Theorem [Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023]

Every monadically stable class admits sparse neighborhood covers.

Theorem

Every monadically stable class admits FO model checking in time f (φ, ε) · |V (G )|5+ε.

44 / 46



Roadmap: FO Model Checking for Monadically Stable Classes

flip-flatness ✓→ flipper game ✓→ model checking ✓

45 / 46



Map of the Universe

Nowhere Dense
Structurally

Nowhere Dense

Structurally
Bounded Expansion

Bounded Treewidth
Structurally

Bounded Treewidth

Bounded Pathwidth
Structurally

Bounded Pathwidth

Bounded Treedepth Bounded Shrubdepth

Monadically Stable Monadically NIP

=?

Bounded Sparse
Twinwidth

Bounded Stable
Twinwidth

Bounded Expansion

Bounded
Embedded
Shrubdepth

Bounded
Linear Cliquewidth

Bounded Cliquewidth

Bounded Twinwidth

Bounded Flipwidth

conditional [Bonnet, Kim, Thomassé, Watrigant, 2021]

[D
re
ie
r,

E
le
ft
h
er
ia
d
is
,
M
äh

lm
an

n
,
M
cC

ar
ty
,
P
il
ip
cz
u
k
,
T
or
u
ń
cz
y
k
,
20
23
]

[D
re
ie
r,

M
äh

lm
an

n
,
S
ie
b
er
tz
,
20
23
]

46 / 46


