Recursive Backdoors for SAT

Nikolas Mahlmann, Sebastian Siebertz, Alexandre Vigny
23.08.2021

University
of Bremen

The SAT Problem

Input: a formula ¢ of propositional logic
Output: does there exists a satisfying assignment for ¢?

The SAT Problem

Input: a formula ¢ of propositional logic
Output: does there exists a satisfying assignment for ¢?

Examples:

(X Vyp) A (xe V zy)

The SAT Problem

Input: a formula ¢ of propositional logic
Output: does there exists a satisfying assignment for ¢?

Examples:

(x= Vys) A(xg Vzy) is SAT

The SAT Problem

Input: a formula ¢ of propositional logic
Output: does there exists a satisfying assignment for ¢?

Examples:
(x= Vys) A(xg Vzy) is SAT
(x4 Vys) A (x=) A (y-)

The SAT Problem

Input: a formula ¢ of propositional logic
Output: does there exists a satisfying assignment for ¢?

Examples:

(x= Vys) A (x4 Vzy) is SAT
(xt Vys) A(x2)A(y=) is UNSAT

Tractable Base Classes

There exist tractable base classes of formulas:

e 2CNF: each clause contains at most two literals

e Horn: each clause contains at most one positive literal

However real world instances are often less homogenous!

Tractable Base Classes

There exist tractable base classes of formulas:

e 2CNF: each clause contains at most two literals

e Horn: each clause contains at most one positive literal

However real world instances are often less homogenous!

p=(x1_Vxo Vx3, Vxa,)A(xa, Vx5,)A (X5, VX6,)N ...

Tractable Base Classes

There exist tractable base classes of formulas:

e 2CNF: each clause contains at most two literals

e Horn: each clause contains at most one positive literal

However real world instances are often less homogenous!
p=(x1_Vxo Vx3, Vxa,)A(xa, Vx5,)A (X5, VX6,)N ...

¢ is not in 2CNF but very close to 2CNF.

Backdoors for SAT

A backdoor B of ¢ to C is a set of variables that reduces ¢ to a
formula from C no matter which assignment is chosen.

Backdoors for SAT

A backdoor B of ¢ to C is a set of variables that reduces ¢ to a
formula from C no matter which assignment is chosen.

Example:
p=(x1_Vxo Vx3, Vx4,)A(xa, Vx5,) N (X5, VX6,)N ...

{x1,x2} is a backdoor of ¢ to 2CNF.

Backdoors for SAT

A backdoor B of ¢ to C is a set of variables that reduces ¢ to a
formula from C no matter which assignment is chosen.

Example:

p=(x1_Vxo Vx3, Vx4,)A(xa, Vx5,) N (X5, VX6,)N ...
{x1,x2} is a backdoor of ¢ to 2CNF.
Olxi,, x| =
dlxi_,x0,] =
Plx1,, x| =

dlxi_,x_| =

Backdoors for SAT

A backdoor B of ¢ to C is a set of variables that reduces ¢ to a
formula from C no matter which assignment is chosen.

Example:
p=(x1_Vxo Vx3, Vx4,)A(xa, Vx5,) N (X5, VX6,)N ...
{x1,x2} is a backdoor of ¢ to 2CNF.
o, x,.] = (6, Vxa,) A (xa Vs,) A (X5, VX6,) A
P, xe,] =

o, x]=

dlxi_,x_| =

Backdoors for SAT

A backdoor B of ¢ to C is a set of variables that reduces ¢ to a
formula from C no matter which assignment is chosen.

Example:
p=(x1_Vxo Vx3, Vx4,)A(xa, Vx5,) N (X5, VX6,)N ...

{x1,x2} is a backdoor of ¢ to 2CNF.

Plx,x,] = (x3, Vxa) A(xa, Vs) A (X6, Vxe,) A
P, xe] = (xa, Vxs,) A(xs, VX6,) A
dlxi, x] = (xa, Vx5,) A (x5, V X6,) A ...
dlxi_,xo_] = (Xa, Vx5,) AN (X5, V X6,) A ...

Using Backdoors to Solve SAT

Algorithm: Given a backdoor of ¢ of size k to some tractable class
C, test every of the 2¥ possible assignments.

Runtime complexity:
2 poly(|¢])

Using Backdoors to Solve SAT

Algorithm: Given a backdoor of ¢ of size k to some tractable class
C, test every of the 2¥ possible assignments.

Runtime complexity:
2 poly(|¢])

Fixed Parameter Tractability: Running times of the form:

O(f(k) - 1)

are efficient for small k.

Using Backdoors to Solve SAT

Algorithm: Given a backdoor of ¢ of size k to some tractable class
C, test every of the 2¥ possible assignments.

Runtime complexity:
2 poly(|¢])

Fixed Parameter Tractability: Running times of the form:
O(f (k) - [4]°)

are efficient for small k.

There exists fpt backdoor detection algorithms to 2CNF, Horn, ...

Motivation for Recursive Backdoors

handlebars : {straight, riser, drops, wide}
frameset : {city, racing, mtb}
tire width : {2imm, 23mm, 28mm, 30mm, 35mm, 50mm}

Motivation for Recursive Backdoors

handlebars : {straight, riser, drops, wide}
frameset : {city, racing, mtb}
tire width : {2imm, 23mm, 28mm, 30mm, 35mm, 50mm}

&

Motivation for Recursive Backdoors

handlebars : {straight, riser, drops}
frameset : racing
tire width : {21imm, 23mm, 28mm}

Recursive Backdoors

(Xl+ \/X27)/\(X17 \/X2+ \/X37)/\(X3+ V Xq \/X5+)/\(X4_Jr \/X57)

& QQ
DE

Recursive Backdoors

(Xl+ \/X27)/\(X17 \/X2+ \/X37)/\(X3+ V Xq \/X5+)/\(X4_Jr \/X57)

L SR

()]
P
o
o
°
~
3]
5
a1]
)
=
(1]
S
s
o
9]
(04

(Xl+ \/X27)/\(X17 \/X2+ \/X37)/\(X3+ V Xq \/X5+)/\(X4_Jr \/X57)

00,
()

o8 B (&

52
H)

Recursive Backdoors

(Xl+ \/X27)/\(X17 \/X2+ \/X37)/\(X3+ V Xq \/X5+)/\(X4_Jr \/X57)

REL S
010101616

|

:@ (&)

CHe) [GH®)
% 0,0
0.000:0

) [EHD

tractable class C

Recursive Backdoor Depth

Definition (Mahlmann, Siebertz, Vigny)

if G eC:
0

rbde(G) =

Recursive Backdoor Depth

Definition (Mahlmann, Siebertz, Vigny)

if G eC:
0

if G ¢ C and G is connected:

rbde(G) =
1+ mianvar(G) MmaXue{+,-} I‘bdc(G[X*])

Recursive Backdoor Depth

Definition (Mahlmann, Siebertz, Vigny)

if G eC:
0

if G ¢ C and G is connected:

rbde(G) =
1+ mianvar(G) MmaXue{+,-} I‘bdc(G[X*])

otherwise:

max {rbd¢(H) : H connected component of G }

Measuring RBs

depth of a RB = maximal number of variables on a path between
the root and a leaf

Measuring RBs

depth of a RB = maximal number of variables on a path between

the root and a leaf

RBs with a limited depth can contain an unbounded number of

variables!

Measuring RBs

depth of a RB = maximal number of variables on a path between

the root and a leaf

RBs with a limited depth can contain an unbounded number of

variables!

Given a RB of ¢ of depth k to a tractable class C we can decide
satisfiability of ¢ in time:

2K poly(|¢|)

Again we need an fpt detection algorithm for RBs:

Input: (¢, k)
Output:

e There exists no RB of depth at most k for ¢, or
e a RB of depth g(k).

Again we need an fpt detection algorithm for RBs:

Input: (¢, k)
Output:

e There exists no RB of depth at most k for ¢, or
e a RB of depth g(k).

Base Class: Cy = the class of edgeless incidence graphs

Again we need an fpt detection algorithm for RBs:
Input: (¢, k)
Output:
e There exists no RB of depth at most k for ¢, or
e a RB of depth g(k).

Base Class: Cy = the class of edgeless incidence graphs

Theorem (Mahlmann, Siebertz, Vigny)

RB detection to Cqy is fixed parameter tractable.

Bounded Diameter
RB to Cy of depth < k implies diameter < \, := 4 - 2.

%@OW

Bounded Diameter
RB to Cy of depth < k implies diameter < \, := 4 - 2.

%@OW

0,0,0,0,0, 0.0l 0.0,0,0:0,0,0.

Bounded Diameter
RB to Cy of depth < k implies diameter < \, := 4 - 2.

%@OW

0,0,0,0,0, 0.0l 0.0,0,0:0,0,0.
oo oo o0 00

Bounded Diameter
RB to Cy of depth < k implies diameter < \, := 4 - 2.

%@OW

0,0,0:0,0,0: 0, 0,0,0.0,0,0: 0,
SO SO SO o0
O O O O

10

Bounded Clause Degree

RB to Cp of depth < k implies clause degree < k.
(X17 VXxo V..V Xk_)

11

Bounded Clause Degree

RB to Cp of depth < k implies clause degree < k.
(X17 VXxo V..V Xk_)

—

empty

o

\

11

Obstruction-Trees: k = d

Given: an incidence graph G with maximal clause degree d < k

12

Obstruction-Trees: k = d

Given: an incidence graph G with maximal clause degree d < k

A k-obstruction-tree is a subgraph that guarantees G to have RB
depth at least k.

12

Obstruction-Trees: kK =d

Given: an incidence graph G with maximal clause degree d < k

A k-obstruction-tree is a subgraph that guarantees G to have RB
depth at least k.

For k = d:

Q.

— a d-clause in G is a d-obstruction-tree.

12

Obstruction-Trees: k=d +1

For k =d + 1:

— two conncected and variable disjoint d-clauses in G is form a
(d + 1)-obstruction-tree.

13

Obstruction-Trees: kK =/

For k =i+ 1:

— two conncected i-OTs with disjoint “neighborhoods” in G form
an (i +1)-OT.

14

Obstruction-Trees: kK =/

For k =i+ 1:

— two conncected i-OTs with disjoint “neighborhoods” in G form
an (i +1)-OT.
— the neighborhood of an obstruction-tree contains at most (k)

variables
14

Searching for Obstruction-Trees

<Ak (d +2)-0T

<Ak

Given ¢ with maximal clause degree d, there exists an algorithm
SEARCH; that either:

e finds an /-obstruction-tree, or

5

Searching for Obstruction-Trees

Given ¢ with maximal clause degree d, there exists an algorithm
SEARCH; that either:

e finds an /-obstruction-tree, or
e finds an RB with bounded depth to Cy_1, or

5

Searching for Obstruction-Trees

Given ¢ with maximal clause degree d, there exists an algorithm
SEARCH; that either:

e finds an /-obstruction-tree, or
e finds an RB with bounded depth to Cy_1, or

e concludes that no RB of depth < k to Cy exists
15

What we have seen:

e Backdoors classify tractable SAT instances
e RBs generalize SAT backdoors and extend their power

e RB detection to Cy is fixed parameter tractable

16

What we have seen:

e Backdoors classify tractable SAT instances
e RBs generalize SAT backdoors and extend their power

e RB detection to Cy is fixed parameter tractable

What's next?
Theorem (Jan Dreier, Sebastian Ordyniak, Stefan Szeider)
RB detection to 2CNF is fixed parameter tractable.

e Further base classes are still open: Horn, Antihorn, Bounded
Treewidth

e RBs to heterogenous base classes

16

What we have seen:

e Backdoors classify tractable SAT instances
e RBs generalize SAT backdoors and extend their power

e RB detection to Cy is fixed parameter tractable

What's next?
Theorem (Jan Dreier, Sebastian Ordyniak, Stefan Szeider)
RB detection to 2CNF is fixed parameter tractable.

e Further base classes are still open: Horn, Antihorn, Bounded
Treewidth
e RBs to heterogenous base classes
Thank you for listening!

16

=
<
n
[
=
o
n
]
e
(2}
2]
(a4
00
c
‘»
>

000008
(| |EHD

(%) ”@
EHD)] |[EH)
00, Gﬁ

O/ RO,
OO 008
)] |

tractable class C

=
<
n
[
=
o
n
]
e
(2}
2]
(a4
00
c
‘»
>

000008
(| |EHD

(%) ”@
EHD)] |[EH)
00, .“@@

O/ RO,
OO 008
)] |

solve leaves
in poly(|¢[)

tractable class C

Using RBs to Solve SAT

solve both children
in 2-2k71 - poly(|¢])

5/ (e

0:.010:0
ON©O.
0:080:0

solve leaves
in poly(|¢[)

tractable class C

Using RBs to Solve

0:.010:0

tractable class C

solve both children
in 2-2k71 - poly(|¢])

solve all children
using superadditivity:
f(lm+m+..)>
f(n)+f(n) + ...

solve leaves
in poly(|¢[)

	Appendix

