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The SAT Problem

Input: a formula ϕ of propositional logic

Output: does there exists a satisfying assignment for ϕ?

Examples:

(x− ∨ y+) ∧ (x+ ∨ z+) is SAT

(x+ ∨ y+) ∧ (x−) ∧ (y−) is UNSAT
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Tractable Base Classes

There exist tractable base classes of formulas:

• 2CNF: each clause contains at most two literals

• Horn: each clause contains at most one positive literal

However real world instances are often less homogenous!

ϕ = (x1− ∨ x2− ∨ x3+ ∨ x4+) ∧ (x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

ϕ is not in 2CNF but very close to 2CNF.
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Backdoors for SAT

A backdoor B of ϕ to C is a set of variables that reduces ϕ to a

formula from C no matter which assignment is chosen.

Example:

ϕ = (x1− ∨ x2− ∨ x3+ ∨ x4+) ∧ (x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

{x1, x2} is a backdoor of ϕ to 2CNF.

ϕ[x1+ , x2+ ] =

(x3+ ∨ x4+) ∧ (x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

ϕ[x1− , x2+ ] =

(x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

ϕ[x1+ , x2− ] =

(x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

ϕ[x1− , x2− ] =

(x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...
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Using Backdoors to Solve SAT

Algorithm: Given a backdoor of ϕ of size k to some tractable class

C, test every of the 2k possible assignments.

Runtime complexity:

2k · poly(|ϕ|)

Fixed Parameter Tractability: Running times of the form:

O(f (k) · |ϕ|c)

are efficient for small k .

There exists fpt backdoor detection algorithms to 2CNF, Horn, ...
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Motivation for Recursive Backdoors

handlebars : {straight, riser, drops, wide}
frameset : {city, racing, mtb}
tire width : {21mm, 23mm, 28mm, 30mm, 35mm, 50mm}
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Recursive Backdoors

(x1+ ∨ x2−) ∧ (x1− ∨ x2+ ∨ x3−) ∧ (x3+ ∨ x4− ∨ x5+) ∧ (x4+ ∨ x5−)
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Recursive Backdoor Depth

Definition (Mählmann, Siebertz, Vigny)

rbdC(G ) =



if G ∈ C:

0

if G ̸∈ C and G is connected:

1 + minx∈var(G)max⋆∈{+,−} rbdC(G [x⋆])

otherwise:

max { rbdC(H) : H connected component of G }
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Measuring RBs

depth of a RB =̂ maximal number of variables on a path between

the root and a leaf

RBs with a limited depth can contain an unbounded number of

variables!

Given a RB of ϕ of depth k to a tractable class C we can decide

satisfiability of ϕ in time:

2k · poly(|ϕ|)
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RB Detection

Again we need an fpt detection algorithm for RBs:

Input: (ϕ, k)

Output:

• There exists no RB of depth at most k for ϕ, or

• a RB of depth g(k).

Base Class: C0 =̂ the class of edgeless incidence graphs

Theorem (Mählmann, Siebertz, Vigny)

RB detection to C0 is fixed parameter tractable.
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Bounded Diameter

RB to C0 of depth ≤ k implies diameter ≤ λk := 4 · 2k .
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Bounded Clause Degree

RB to C0 of depth ≤ k implies clause degree ≤ k .

(x1− ∨ x2− ∨ ... ∨ xk−)

c

x1

c empty

x2

c empty
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Obstruction-Trees: k = d

Given: an incidence graph G with maximal clause degree d ≤ k

A k-obstruction-tree is a subgraph that guarantees G to have RB

depth at least k.

For k = d :

d

d-OT

→ a d-clause in G is a d-obstruction-tree.
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Obstruction-Trees: k = d + 1

For k = d + 1:

d

d-OT

d

d-OT

≤λk

(d + 1)-OT

→ two conncected and variable disjoint d-clauses in G is form a

(d + 1)-obstruction-tree.
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Obstruction-Trees: k = i

For k = i + 1:

d

d-OT

d

d-OT

≤λk

(d + 1)-OT

≤λk (d + 2)-OT

d

d-OT

d

d-OT

≤λk

(d + 1)-OT

→ two conncected i-OTs with disjoint “neighborhoods” in G form

an (i + 1)-OT.

→ the neighborhood of an obstruction-tree contains at most f (k)

variables
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Searching for Obstruction-Trees

d

d-OT

d

d-OT

≤λk

(d + 1)-OT

≤λk (d + 2)-OT

d

d-OT

d

d-OT

≤λk

(d + 1)-OT

Given ϕ with maximal clause degree d , there exists an algorithm

SEARCHi that either:

• finds an i-obstruction-tree, or

• finds an RB with bounded depth to Cd−1, or

• concludes that no RB of depth ≤ k to C0 exists
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Summary

What we have seen:

• Backdoors classify tractable SAT instances

• RBs generalize SAT backdoors and extend their power

• RB detection to C0 is fixed parameter tractable

What’s next?

Theorem (Jan Dreier, Sebastian Ordyniak, Stefan Szeider)

RB detection to 2CNF is fixed parameter tractable.

• Further base classes are still open: Horn, Antihorn, Bounded

Treewidth

• RBs to heterogenous base classes

Thank you for listening!
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Using RBs to Solve SAT
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tractable class C

solve leaves

in poly(|ϕ|)

solve both children

in 2 · 2k−1 · poly(|ϕ|)

solve all children

using superadditivity:

f (n1 + n2 + ...) ≥
f (n1) + f (n2) + ...
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