
Recursive Backdoors for SAT

Nikolas Mählmann, Sebastian Siebertz, Alexandre Vigny

23.08.2021

The SAT Problem

Input: a formula ϕ of propositional logic

Output: does there exists a satisfying assignment for ϕ?

Examples:

(x− ∨ y+) ∧ (x+ ∨ z+) is SAT

(x+ ∨ y+) ∧ (x−) ∧ (y−) is UNSAT

1

The SAT Problem

Input: a formula ϕ of propositional logic

Output: does there exists a satisfying assignment for ϕ?

Examples:

(x− ∨ y+) ∧ (x+ ∨ z+)

is SAT

(x+ ∨ y+) ∧ (x−) ∧ (y−) is UNSAT

1

The SAT Problem

Input: a formula ϕ of propositional logic

Output: does there exists a satisfying assignment for ϕ?

Examples:

(x− ∨ y+) ∧ (x+ ∨ z+) is SAT

(x+ ∨ y+) ∧ (x−) ∧ (y−) is UNSAT

1

The SAT Problem

Input: a formula ϕ of propositional logic

Output: does there exists a satisfying assignment for ϕ?

Examples:

(x− ∨ y+) ∧ (x+ ∨ z+) is SAT

(x+ ∨ y+) ∧ (x−) ∧ (y−)

is UNSAT

1

The SAT Problem

Input: a formula ϕ of propositional logic

Output: does there exists a satisfying assignment for ϕ?

Examples:

(x− ∨ y+) ∧ (x+ ∨ z+) is SAT

(x+ ∨ y+) ∧ (x−) ∧ (y−) is UNSAT

1

Tractable Base Classes

There exist tractable base classes of formulas:

• 2CNF: each clause contains at most two literals

• Horn: each clause contains at most one positive literal

However real world instances are often less homogenous!

ϕ = (x1− ∨ x2− ∨ x3+ ∨ x4+) ∧ (x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

ϕ is not in 2CNF but very close to 2CNF.

2

Tractable Base Classes

There exist tractable base classes of formulas:

• 2CNF: each clause contains at most two literals

• Horn: each clause contains at most one positive literal

However real world instances are often less homogenous!

ϕ = (x1− ∨ x2− ∨ x3+ ∨ x4+) ∧ (x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

ϕ is not in 2CNF but very close to 2CNF.

2

Tractable Base Classes

There exist tractable base classes of formulas:

• 2CNF: each clause contains at most two literals

• Horn: each clause contains at most one positive literal

However real world instances are often less homogenous!

ϕ = (x1− ∨ x2− ∨ x3+ ∨ x4+) ∧ (x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

ϕ is not in 2CNF but very close to 2CNF.

2

Backdoors for SAT

A backdoor B of ϕ to C is a set of variables that reduces ϕ to a

formula from C no matter which assignment is chosen.

Example:

ϕ = (x1− ∨ x2− ∨ x3+ ∨ x4+) ∧ (x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

{x1, x2} is a backdoor of ϕ to 2CNF.

ϕ[x1+ , x2+] =

(x3+ ∨ x4+) ∧ (x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

ϕ[x1− , x2+] =

(x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

ϕ[x1+ , x2−] =

(x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

ϕ[x1− , x2−] =

(x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

3

Backdoors for SAT

A backdoor B of ϕ to C is a set of variables that reduces ϕ to a

formula from C no matter which assignment is chosen.

Example:

ϕ = (x1− ∨ x2− ∨ x3+ ∨ x4+) ∧ (x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

{x1, x2} is a backdoor of ϕ to 2CNF.

ϕ[x1+ , x2+] =

(x3+ ∨ x4+) ∧ (x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

ϕ[x1− , x2+] =

(x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

ϕ[x1+ , x2−] =

(x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

ϕ[x1− , x2−] =

(x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

3

Backdoors for SAT

A backdoor B of ϕ to C is a set of variables that reduces ϕ to a

formula from C no matter which assignment is chosen.

Example:

ϕ = (x1− ∨ x2− ∨ x3+ ∨ x4+) ∧ (x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

{x1, x2} is a backdoor of ϕ to 2CNF.

ϕ[x1+ , x2+] =

(x3+ ∨ x4+) ∧ (x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

ϕ[x1− , x2+] =

(x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

ϕ[x1+ , x2−] =

(x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

ϕ[x1− , x2−] =

(x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

3

Backdoors for SAT

A backdoor B of ϕ to C is a set of variables that reduces ϕ to a

formula from C no matter which assignment is chosen.

Example:

ϕ = (x1− ∨ x2− ∨ x3+ ∨ x4+) ∧ (x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

{x1, x2} is a backdoor of ϕ to 2CNF.

ϕ[x1+ , x2+] = (x3+ ∨ x4+) ∧ (x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

ϕ[x1− , x2+] =

(x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

ϕ[x1+ , x2−] =

(x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

ϕ[x1− , x2−] =

(x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

3

Backdoors for SAT

A backdoor B of ϕ to C is a set of variables that reduces ϕ to a

formula from C no matter which assignment is chosen.

Example:

ϕ = (x1− ∨ x2− ∨ x3+ ∨ x4+) ∧ (x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

{x1, x2} is a backdoor of ϕ to 2CNF.

ϕ[x1+ , x2+] = (x3+ ∨ x4+) ∧ (x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

ϕ[x1− , x2+] = (x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

ϕ[x1+ , x2−] = (x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

ϕ[x1− , x2−] = (x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

3

Using Backdoors to Solve SAT

Algorithm: Given a backdoor of ϕ of size k to some tractable class

C, test every of the 2k possible assignments.

Runtime complexity:

2k · poly(|ϕ|)

Fixed Parameter Tractability: Running times of the form:

O(f (k) · |ϕ|c)

are efficient for small k .

There exists fpt backdoor detection algorithms to 2CNF, Horn, ...

4

Using Backdoors to Solve SAT

Algorithm: Given a backdoor of ϕ of size k to some tractable class

C, test every of the 2k possible assignments.

Runtime complexity:

2k · poly(|ϕ|)

Fixed Parameter Tractability: Running times of the form:

O(f (k) · |ϕ|c)

are efficient for small k .

There exists fpt backdoor detection algorithms to 2CNF, Horn, ...

4

Using Backdoors to Solve SAT

Algorithm: Given a backdoor of ϕ of size k to some tractable class

C, test every of the 2k possible assignments.

Runtime complexity:

2k · poly(|ϕ|)

Fixed Parameter Tractability: Running times of the form:

O(f (k) · |ϕ|c)

are efficient for small k .

There exists fpt backdoor detection algorithms to 2CNF, Horn, ...

4

Motivation for Recursive Backdoors

handlebars : {straight, riser, drops, wide}
frameset : {city, racing, mtb}
tire width : {21mm, 23mm, 28mm, 30mm, 35mm, 50mm}

5

Motivation for Recursive Backdoors

handlebars : {straight, riser, drops, wide}
frameset : {city, racing, mtb}
tire width : {21mm, 23mm, 28mm, 30mm, 35mm, 50mm}

5

Motivation for Recursive Backdoors

handlebars : {straight, riser, drops}
frameset : racing

tire width : {21mm, 23mm, 28mm}

5

Recursive Backdoors

(x1+ ∨ x2−) ∧ (x1− ∨ x2+ ∨ x3−) ∧ (x3+ ∨ x4− ∨ x5+) ∧ (x4+ ∨ x5−)

x3

c2 c3

x4

c4

x5x2

c1

x1

x3

c2

x4

c4

x5x2

c1

x1

c3

x4

c4

x5x2

c1

x1

c2

x2

c1

x1 x4

c4

x5 x2

c1

x1

c3

x4

c4

x5

tractable class C

6

Recursive Backdoors

(x1+ ∨ x2−) ∧ (x1− ∨ x2+ ∨ x3−) ∧ (x3+ ∨ x4− ∨ x5+) ∧ (x4+ ∨ x5−)

x3

c2 c3

x4

c4

x5x2

c1

x1

x3

c2

x4

c4

x5x2

c1

x1

c3

x4

c4

x5x2

c1

x1

c2

x2

c1

x1 x4

c4

x5 x2

c1

x1

c3

x4

c4

x5

tractable class C

6

Recursive Backdoors

(x1+ ∨ x2−) ∧ (x1− ∨ x2+ ∨ x3−) ∧ (x3+ ∨ x4− ∨ x5+) ∧ (x4+ ∨ x5−)

x3

c2 c3

x4

c4

x5x2

c1

x1

x3

c2

x4

c4

x5x2

c1

x1

c3

x4

c4

x5x2

c1

x1

c2

x2

c1

x1 x4

c4

x5 x2

c1

x1

c3

x4

c4

x5

tractable class C

6

Recursive Backdoors

(x1+ ∨ x2−) ∧ (x1− ∨ x2+ ∨ x3−) ∧ (x3+ ∨ x4− ∨ x5+) ∧ (x4+ ∨ x5−)

x3

c2 c3

x4

c4

x5x2

c1

x1

x3

c2

x4

c4

x5x2

c1

x1

c3

x4

c4

x5x2

c1

x1

c2

x2

c1

x1 x4

c4

x5 x2

c1

x1

c3

x4

c4

x5

tractable class C
6

Recursive Backdoor Depth

Definition (Mählmann, Siebertz, Vigny)

rbdC(G) =



if G ∈ C:

0

if G ̸∈ C and G is connected:

1 + minx∈var(G)max⋆∈{+,−} rbdC(G [x⋆])

otherwise:

max { rbdC(H) : H connected component of G }

7

Recursive Backdoor Depth

Definition (Mählmann, Siebertz, Vigny)

rbdC(G) =



if G ∈ C:

0

if G ̸∈ C and G is connected:

1 + minx∈var(G)max⋆∈{+,−} rbdC(G [x⋆])

otherwise:

max { rbdC(H) : H connected component of G }

7

Recursive Backdoor Depth

Definition (Mählmann, Siebertz, Vigny)

rbdC(G) =



if G ∈ C:

0

if G ̸∈ C and G is connected:

1 + minx∈var(G)max⋆∈{+,−} rbdC(G [x⋆])

otherwise:

max { rbdC(H) : H connected component of G }

7

Measuring RBs

depth of a RB =̂ maximal number of variables on a path between

the root and a leaf

RBs with a limited depth can contain an unbounded number of

variables!

Given a RB of ϕ of depth k to a tractable class C we can decide

satisfiability of ϕ in time:

2k · poly(|ϕ|)

8

Measuring RBs

depth of a RB =̂ maximal number of variables on a path between

the root and a leaf

RBs with a limited depth can contain an unbounded number of

variables!

Given a RB of ϕ of depth k to a tractable class C we can decide

satisfiability of ϕ in time:

2k · poly(|ϕ|)

8

Measuring RBs

depth of a RB =̂ maximal number of variables on a path between

the root and a leaf

RBs with a limited depth can contain an unbounded number of

variables!

Given a RB of ϕ of depth k to a tractable class C we can decide

satisfiability of ϕ in time:

2k · poly(|ϕ|)

8

RB Detection

Again we need an fpt detection algorithm for RBs:

Input: (ϕ, k)

Output:

• There exists no RB of depth at most k for ϕ, or

• a RB of depth g(k).

Base Class: C0 =̂ the class of edgeless incidence graphs

Theorem (Mählmann, Siebertz, Vigny)

RB detection to C0 is fixed parameter tractable.

9

RB Detection

Again we need an fpt detection algorithm for RBs:

Input: (ϕ, k)

Output:

• There exists no RB of depth at most k for ϕ, or

• a RB of depth g(k).

Base Class: C0 =̂ the class of edgeless incidence graphs

Theorem (Mählmann, Siebertz, Vigny)

RB detection to C0 is fixed parameter tractable.

9

RB Detection

Again we need an fpt detection algorithm for RBs:

Input: (ϕ, k)

Output:

• There exists no RB of depth at most k for ϕ, or

• a RB of depth g(k).

Base Class: C0 =̂ the class of edgeless incidence graphs

Theorem (Mählmann, Siebertz, Vigny)

RB detection to C0 is fixed parameter tractable.

9

Bounded Diameter

RB to C0 of depth ≤ k implies diameter ≤ λk := 4 · 2k .

10

Bounded Diameter

RB to C0 of depth ≤ k implies diameter ≤ λk := 4 · 2k .

10

Bounded Diameter

RB to C0 of depth ≤ k implies diameter ≤ λk := 4 · 2k .

10

Bounded Diameter

RB to C0 of depth ≤ k implies diameter ≤ λk := 4 · 2k .

10

Bounded Clause Degree

RB to C0 of depth ≤ k implies clause degree ≤ k .

(x1− ∨ x2− ∨ ... ∨ xk−)

c

x1

c empty

x2

c empty

11

Bounded Clause Degree

RB to C0 of depth ≤ k implies clause degree ≤ k .

(x1− ∨ x2− ∨ ... ∨ xk−)

c

x1

c empty

x2

c empty

11

Obstruction-Trees: k = d

Given: an incidence graph G with maximal clause degree d ≤ k

A k-obstruction-tree is a subgraph that guarantees G to have RB

depth at least k.

For k = d :

d

d-OT

→ a d-clause in G is a d-obstruction-tree.

12

Obstruction-Trees: k = d

Given: an incidence graph G with maximal clause degree d ≤ k

A k-obstruction-tree is a subgraph that guarantees G to have RB

depth at least k.

For k = d :

d

d-OT

→ a d-clause in G is a d-obstruction-tree.

12

Obstruction-Trees: k = d

Given: an incidence graph G with maximal clause degree d ≤ k

A k-obstruction-tree is a subgraph that guarantees G to have RB

depth at least k.

For k = d :

d

d-OT

→ a d-clause in G is a d-obstruction-tree.

12

Obstruction-Trees: k = d + 1

For k = d + 1:

d

d-OT

d

d-OT

≤λk

(d + 1)-OT

→ two conncected and variable disjoint d-clauses in G is form a

(d + 1)-obstruction-tree.

13

Obstruction-Trees: k = i

For k = i + 1:

d

d-OT

d

d-OT

≤λk

(d + 1)-OT

≤λk (d + 2)-OT

d

d-OT

d

d-OT

≤λk

(d + 1)-OT

→ two conncected i-OTs with disjoint “neighborhoods” in G form

an (i + 1)-OT.

→ the neighborhood of an obstruction-tree contains at most f (k)

variables

14

Obstruction-Trees: k = i

For k = i + 1:

d

d-OT

d

d-OT

≤λk

(d + 1)-OT

≤λk (d + 2)-OT

d

d-OT

d

d-OT

≤λk

(d + 1)-OT

→ two conncected i-OTs with disjoint “neighborhoods” in G form

an (i + 1)-OT.

→ the neighborhood of an obstruction-tree contains at most f (k)

variables
14

Searching for Obstruction-Trees

d

d-OT

d

d-OT

≤λk

(d + 1)-OT

≤λk (d + 2)-OT

d

d-OT

d

d-OT

≤λk

(d + 1)-OT

Given ϕ with maximal clause degree d , there exists an algorithm

SEARCHi that either:

• finds an i-obstruction-tree, or

• finds an RB with bounded depth to Cd−1, or

• concludes that no RB of depth ≤ k to C0 exists

15

Searching for Obstruction-Trees

d

d-OT

d

d-OT

≤λk

(d + 1)-OT

≤λk (d + 2)-OT

d

d-OT

d

d-OT

≤λk

(d + 1)-OT

Given ϕ with maximal clause degree d , there exists an algorithm

SEARCHi that either:

• finds an i-obstruction-tree, or

• finds an RB with bounded depth to Cd−1, or

• concludes that no RB of depth ≤ k to C0 exists

15

Searching for Obstruction-Trees

d

d-OT

d

d-OT

≤λk

(d + 1)-OT

≤λk (d + 2)-OT

d

d-OT

d

d-OT

≤λk

(d + 1)-OT

Given ϕ with maximal clause degree d , there exists an algorithm

SEARCHi that either:

• finds an i-obstruction-tree, or

• finds an RB with bounded depth to Cd−1, or

• concludes that no RB of depth ≤ k to C0 exists
15

Summary

What we have seen:

• Backdoors classify tractable SAT instances

• RBs generalize SAT backdoors and extend their power

• RB detection to C0 is fixed parameter tractable

What’s next?

Theorem (Jan Dreier, Sebastian Ordyniak, Stefan Szeider)

RB detection to 2CNF is fixed parameter tractable.

• Further base classes are still open: Horn, Antihorn, Bounded

Treewidth

• RBs to heterogenous base classes

Thank you for listening!

16

Summary

What we have seen:

• Backdoors classify tractable SAT instances

• RBs generalize SAT backdoors and extend their power

• RB detection to C0 is fixed parameter tractable

What’s next?

Theorem (Jan Dreier, Sebastian Ordyniak, Stefan Szeider)

RB detection to 2CNF is fixed parameter tractable.

• Further base classes are still open: Horn, Antihorn, Bounded

Treewidth

• RBs to heterogenous base classes

Thank you for listening!

16

Summary

What we have seen:

• Backdoors classify tractable SAT instances

• RBs generalize SAT backdoors and extend their power

• RB detection to C0 is fixed parameter tractable

What’s next?

Theorem (Jan Dreier, Sebastian Ordyniak, Stefan Szeider)

RB detection to 2CNF is fixed parameter tractable.

• Further base classes are still open: Horn, Antihorn, Bounded

Treewidth

• RBs to heterogenous base classes

Thank you for listening!

16

Using RBs to Solve SAT

x3

c2 c3

x4

c4

x5x2

c1

x1

x3

c2

x4

c4

x5x2

c1

x1

c3

x4

c4

x5x2

c1

x1

c2

x2

c1

x1 x4

c4

x5 x2

c1

x1

c3

x4

c4

x5

tractable class C

solve leaves

in poly(|ϕ|)

solve both children

in 2 · 2k−1 · poly(|ϕ|)

solve all children

using superadditivity:

f (n1 + n2 + ...) ≥
f (n1) + f (n2) + ...

Using RBs to Solve SAT

x3

c2 c3

x4

c4

x5x2

c1

x1

x3

c2

x4

c4

x5x2

c1

x1

c3

x4

c4

x5x2

c1

x1

c2

x2

c1

x1 x4

c4

x5 x2

c1

x1

c3

x4

c4

x5

tractable class C
solve leaves

in poly(|ϕ|)

solve both children

in 2 · 2k−1 · poly(|ϕ|)

solve all children

using superadditivity:

f (n1 + n2 + ...) ≥
f (n1) + f (n2) + ...

Using RBs to Solve SAT

x3

c2 c3

x4

c4

x5x2

c1

x1

x3

c2

x4

c4

x5x2

c1

x1

c3

x4

c4

x5x2

c1

x1

c2

x2

c1

x1 x4

c4

x5 x2

c1

x1

c3

x4

c4

x5

tractable class C
solve leaves

in poly(|ϕ|)

solve both children

in 2 · 2k−1 · poly(|ϕ|)

solve all children

using superadditivity:

f (n1 + n2 + ...) ≥
f (n1) + f (n2) + ...

Using RBs to Solve SAT

x3

c2 c3

x4

c4

x5x2

c1

x1

x3

c2

x4

c4

x5x2

c1

x1

c3

x4

c4

x5x2

c1

x1

c2

x2

c1

x1 x4

c4

x5 x2

c1

x1

c3

x4

c4

x5

tractable class C
solve leaves

in poly(|ϕ|)

solve both children

in 2 · 2k−1 · poly(|ϕ|)

solve all children

using superadditivity:

f (n1 + n2 + ...) ≥
f (n1) + f (n2) + ...

	Appendix

