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The SAT Problem

Input: a formula ¢ of propositional logic
Output: does there exists a satisfying assignment for ¢?

Examples:

(x= Vys) A (x4 Vzy) is SAT
(xt Vys) A(x2)A(y=) is UNSAT



Tractable Base Classes

There exist tractable base classes of formulas:

e 2CNF: each clause contains at most two literals

e Horn: each clause contains at most one positive literal

However real world instances are often less homogenous!



Tractable Base Classes

There exist tractable base classes of formulas:

e 2CNF: each clause contains at most two literals

e Horn: each clause contains at most one positive literal

However real world instances are often less homogenous!

p=(x1_Vxo Vx3, Vxa,)A(xa, Vx5,)A (X5, VX6, )N ...



Tractable Base Classes

There exist tractable base classes of formulas:

e 2CNF: each clause contains at most two literals

e Horn: each clause contains at most one positive literal

However real world instances are often less homogenous!
p=(x1_Vxo Vx3, Vxa,)A(xa, Vx5,)A (X5, VX6, )N ...

¢ is not in 2CNF but very close to 2CNF.
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Backdoors for SAT

A backdoor B of ¢ to C is a set of variables that reduces ¢ to a
formula from C no matter which assignment is chosen.

Example:
p=(x1_Vxo Vx3, Vx4, )A(xa, Vx5,) N (X5, VX6, )N ...

{x1,x2} is a backdoor of ¢ to 2CNF.

Plx,x,] = (x3, Vxa ) A(xa, Vs ) A (X6, Vxe,) A
P, xe ] = (xa, Vxs, ) A(xs, VX6, ) A
dlxi, x ] = (xa, Vx5, ) A (x5, V X6,) A ...
dlxi_,xo_ ] = (Xa, Vx5, ) AN (X5, V X6, ) A ...
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Using Backdoors to Solve SAT

Algorithm: Given a backdoor of ¢ of size k to some tractable class
C, test every of the 2¥ possible assignments.

Runtime complexity:
2 poly(|¢])

Fixed Parameter Tractability: Running times of the form:
O(f (k) - [4]°)

are efficient for small k.

There exists fpt backdoor detection algorithms to 2CNF, Horn, ...
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Motivation for Recursive Backdoors

handlebars : {straight, riser, drops}
frameset : racing
tire width : {21imm, 23mm, 28mm}
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Recursive Backdoors

(Xl+ \/X27)/\(X17 \/X2+ \/X37)/\(X3+ V Xq \/X5+)/\(X4_Jr \/X57)
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Recursive Backdoor Depth

Definition (Mahlmann, Siebertz, Vigny)

if G eC:
0

if G ¢ C and G is connected:

rbde(G) =
1+ mianvar(G) MmaXue{+,-} I‘bdc(G[X*])

otherwise:

max {rbd¢(H) : H connected component of G }
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Measuring RBs

depth of a RB = maximal number of variables on a path between

the root and a leaf

RBs with a limited depth can contain an unbounded number of

variables!

Given a RB of ¢ of depth k to a tractable class C we can decide
satisfiability of ¢ in time:

2K poly(|¢|)
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Again we need an fpt detection algorithm for RBs:
Input: (¢, k)
Output:
e There exists no RB of depth at most k for ¢, or
e a RB of depth g(k).

Base Class: Cy = the class of edgeless incidence graphs

Theorem (Mahlmann, Siebertz, Vigny)

RB detection to Cqy is fixed parameter tractable.
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Bounded Diameter
RB to Cy of depth < k implies diameter < \, := 4 - 2.

%@OW
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RB to Cp of depth < k implies clause degree < k.
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Obstruction-Trees: kK =d

Given: an incidence graph G with maximal clause degree d < k

A k-obstruction-tree is a subgraph that guarantees G to have RB
depth at least k.

For k = d:

Q.

— a d-clause in G is a d-obstruction-tree.
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Obstruction-Trees: k=d +1

For k =d + 1:

— two conncected and variable disjoint d-clauses in G is form a
(d + 1)-obstruction-tree.
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Obstruction-Trees: kK =/

For k =i+ 1:

— two conncected i-OTs with disjoint “neighborhoods” in G form
an (i +1)-OT.
— the neighborhood of an obstruction-tree contains at most (k)

variables
14
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Searching for Obstruction-Trees

Given ¢ with maximal clause degree d, there exists an algorithm
SEARCH; that either:

e finds an /-obstruction-tree, or
e finds an RB with bounded depth to Cy_1, or

e concludes that no RB of depth < k to Cy exists
15
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e Backdoors classify tractable SAT instances
e RBs generalize SAT backdoors and extend their power

e RB detection to Cy is fixed parameter tractable
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What we have seen:

e Backdoors classify tractable SAT instances
e RBs generalize SAT backdoors and extend their power

e RB detection to Cy is fixed parameter tractable

What's next?
Theorem (Jan Dreier, Sebastian Ordyniak, Stefan Szeider)
RB detection to 2CNF is fixed parameter tractable.

e Further base classes are still open: Horn, Antihorn, Bounded
Treewidth
e RBs to heterogenous base classes
Thank you for listening!
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Using RBs to Solve SAT

solve both children
in 2-2k71 - poly(|¢])
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Using RBs to Solve

0:.010:0

tractable class C

solve both children
in 2-2k71 - poly(|¢])

solve all children
using superadditivity:
f(lm+m+..)>
f(n)+f(n) + ...

solve leaves
in poly(|¢[)
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