Recursive Backdoors for SAT

Nikolas Mählmann, Sebastian Siebertz, Alexandre Vigny

23.08.2021

Input: a formula ϕ of propositional logic

Output: does there exists a satisfying assignment for ϕ ?

Input: a formula ϕ of propositional logic

Output: does there exists a satisfying assignment for ϕ ?

$$(x_- \vee y_+) \wedge (x_+ \vee z_+)$$

Input: a formula ϕ of propositional logic

Output: does there exists a satisfying assignment for ϕ ?

$$(x_- \lor y_+) \land (x_+ \lor z_+)$$
 is SAT

Input: a formula ϕ of propositional logic

Output: does there exists a satisfying assignment for ϕ ?

$$(x_- \lor y_+) \land (x_+ \lor z_+)$$
 is SAT
 $(x_+ \lor y_+) \land (x_-) \land (y_-)$

Input: a formula ϕ of propositional logic

Output: does there exists a satisfying assignment for ϕ ?

$$(x_- \lor y_+) \land (x_+ \lor z_+)$$
 is SAT
 $(x_+ \lor y_+) \land (x_-) \land (y_-)$ is UNSAT

Tractable Base Classes

There exist tractable base classes of formulas:

- 2CNF: each clause contains at most two literals
- Horn: each clause contains at most one positive literal

However real world instances are often less homogenous!

Tractable Base Classes

There exist tractable base classes of formulas:

- 2CNF: each clause contains at most two literals
- Horn: each clause contains at most one positive literal

However real world instances are often less homogenous!

$$\phi = (x_{1-} \lor x_{2-} \lor x_{3+} \lor x_{4+}) \land (x_{4+} \lor x_{5+}) \land (x_{5+} \lor x_{6+}) \land \dots$$

Tractable Base Classes

There exist tractable base classes of formulas:

- 2CNF: each clause contains at most two literals
- Horn: each clause contains at most one positive literal

However real world instances are often less homogenous!

$$\phi = (x_{1-} \lor x_{2-} \lor x_{3+} \lor x_{4+}) \land (x_{4+} \lor x_{5+}) \land (x_{5+} \lor x_{6+}) \land \dots$$

 ϕ is not in 2CNF but very *close* to 2CNF.

A backdoor B of ϕ to C is a set of variables that reduces ϕ to a formula from C no matter which assignment is chosen.

A backdoor B of ϕ to C is a set of variables that reduces ϕ to a formula from C no matter which assignment is chosen.

Example:

$$\phi = (x_{1_{-}} \lor x_{2_{-}} \lor x_{3_{+}} \lor x_{4_{+}}) \land (x_{4_{+}} \lor x_{5_{+}}) \land (x_{5_{+}} \lor x_{6_{+}}) \land \dots$$

 $\{x_1, x_2\}$ is a backdoor of ϕ to 2CNF.

A backdoor B of ϕ to $\mathcal C$ is a set of variables that reduces ϕ to a formula from $\mathcal C$ no matter which assignment is chosen.

$$\phi = (x_{1_{-}} \lor x_{2_{-}} \lor x_{3_{+}} \lor x_{4_{+}}) \land (x_{4_{+}} \lor x_{5_{+}}) \land (x_{5_{+}} \lor x_{6_{+}}) \land ...$$
$$\{x_{1}, x_{2}\} \text{ is a backdoor of } \phi \text{ to 2CNF}.$$

$$\phi[x_{1_{+}}, x_{2_{+}}] =$$

$$\phi[x_{1_{-}}, x_{2_{+}}] =$$

$$\phi[x_{1_{+}}, x_{2_{-}}] =$$

$$\phi[x_{1_{-}}, x_{2_{-}}] =$$

A backdoor B of ϕ to $\mathcal C$ is a set of variables that reduces ϕ to a formula from $\mathcal C$ no matter which assignment is chosen.

$$\phi = (x_{1_{-}} \lor x_{2_{-}} \lor x_{3_{+}} \lor x_{4_{+}}) \land (x_{4_{+}} \lor x_{5_{+}}) \land (x_{5_{+}} \lor x_{6_{+}}) \land \dots$$

$$\{x_{1}, x_{2}\} \text{ is a backdoor of } \phi \text{ to 2CNF.}$$

$$\phi[x_{1_{+}}, x_{2_{+}}] = (x_{3_{+}} \lor x_{4_{+}}) \land (x_{4_{+}} \lor x_{5_{+}}) \land (x_{5_{+}} \lor x_{6_{+}}) \land \dots$$

$$\phi[x_{1_{-}}, x_{2_{+}}] =$$

$$\phi[x_{1_{-}}, x_{2_{-}}] =$$

$$\phi[x_{1_{-}}, x_{2_{-}}] =$$

A backdoor B of ϕ to C is a set of variables that reduces ϕ to a formula from C no matter which assignment is chosen.

$$\phi = (x_{1_{-}} \lor x_{2_{-}} \lor x_{3_{+}} \lor x_{4_{+}}) \land (x_{4_{+}} \lor x_{5_{+}}) \land (x_{5_{+}} \lor x_{6_{+}}) \land \dots$$

$$\{x_{1}, x_{2}\} \text{ is a backdoor of } \phi \text{ to 2CNF.}$$

$$\phi[x_{1_{+}}, x_{2_{+}}] = (x_{3_{+}} \lor x_{4_{+}}) \land (x_{4_{+}} \lor x_{5_{+}}) \land (x_{5_{+}} \lor x_{6_{+}}) \land \dots$$

$$\phi[x_{1_{-}}, x_{2_{+}}] = (x_{4_{+}} \lor x_{5_{+}}) \land (x_{5_{+}} \lor x_{6_{+}}) \land \dots$$

$$\phi[x_{1_{+}}, x_{2_{-}}] = (x_{4_{+}} \lor x_{5_{+}}) \land (x_{5_{+}} \lor x_{6_{+}}) \land \dots$$

$$\phi[x_{1_{-}}, x_{2_{-}}] = (x_{4_{+}} \lor x_{5_{+}}) \land (x_{5_{+}} \lor x_{6_{+}}) \land \dots$$

Using Backdoors to Solve SAT

Algorithm: Given a backdoor of ϕ of size k to some tractable class \mathcal{C} , test every of the 2^k possible assignments.

Runtime complexity:

$$2^k \cdot poly(|\phi|)$$

Using Backdoors to Solve SAT

Algorithm: Given a backdoor of ϕ of size k to some tractable class \mathcal{C} , test every of the 2^k possible assignments.

Runtime complexity:

$$2^k \cdot poly(|\phi|)$$

Fixed Parameter Tractability: Running times of the form:

$$\mathcal{O}(f(k)\cdot|\phi|^c)$$

are efficient for small k.

Using Backdoors to Solve SAT

Algorithm: Given a backdoor of ϕ of size k to some tractable class C, test every of the 2^k possible assignments.

Runtime complexity:

$$2^k \cdot poly(|\phi|)$$

Fixed Parameter Tractability: Running times of the form:

$$\mathcal{O}(f(k) \cdot |\phi|^c)$$

are efficient for small k.

There exists fpt backdoor detection algorithms to 2CNF, Horn, ...

Motivation for Recursive Backdoors

handlebars : {straight, riser, drops, wide}

frameset : {city, racing, mtb}

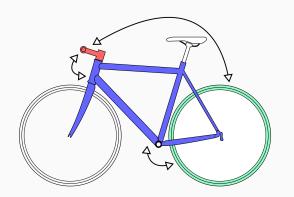
tire width : {21mm, 23mm, 28mm, 30mm, 35mm, 50mm}

Motivation for Recursive Backdoors

handlebars : {straight, riser, drops, wide}

frameset : {city, racing, mtb}

tire width : {21mm, 23mm, 28mm, 30mm, 35mm, 50mm}



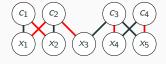
Motivation for Recursive Backdoors

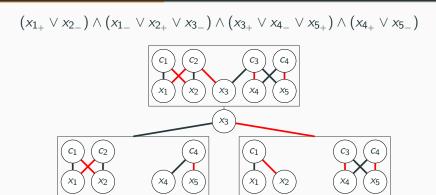
handlebars : {straight, riser, drops}

frameset : racing

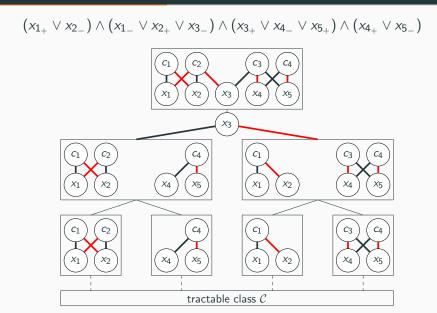
tire width : $\{21mm, 23mm, 28mm\}$

$$(x_{1_{+}} \lor x_{2_{-}}) \land (x_{1_{-}} \lor x_{2_{+}} \lor x_{3_{-}}) \land (x_{3_{+}} \lor x_{4_{-}} \lor x_{5_{+}}) \land (x_{4_{+}} \lor x_{5_{-}})$$





$$(x_{1_{+}} \lor x_{2_{-}}) \land (x_{1_{-}} \lor x_{2_{+}} \lor x_{3_{-}}) \land (x_{3_{+}} \lor x_{4_{-}} \lor x_{5_{+}}) \land (x_{4_{+}} \lor x_{5_{-}})$$



Recursive Backdoor Depth

Definition (Mählmann, Siebertz, Vigny)

$$\operatorname{rbd}_{\mathcal{C}}(G) = \begin{cases} \frac{\operatorname{if}\ G \in \mathcal{C}:}{0} \\ \end{cases}$$

Recursive Backdoor Depth

Definition (Mählmann, Siebertz, Vigny)

$$\mathrm{rbd}_{\mathcal{C}}(G) = \begin{cases} \frac{\mathrm{if} \ G \in \mathcal{C}:}{0} \\ \frac{\mathrm{if} \ G \notin \mathcal{C} \ \mathrm{and} \ G \ \mathrm{is \ connected}:}{1 + \min_{x \in \mathrm{var}(G)} \max_{x \in \{+, -\}} \ \mathrm{rbd}_{\mathcal{C}}(G[x_{\star}])} \end{cases}$$

Recursive Backdoor Depth

Definition (Mählmann, Siebertz, Vigny)

$$\operatorname{rbd}_{\mathcal{C}}(G) = \begin{cases} \frac{\operatorname{if} \ G \notin \mathcal{C} \text{ and } G \text{ is connected:}}{1 + \min_{x \in \operatorname{var}(G)} \max_{x \in \{+, -\}} \operatorname{rbd}_{\mathcal{C}}(G[x_{x}])} \\ \frac{\operatorname{otherwise:}}{\max \{ \operatorname{rbd}_{\mathcal{C}}(H) : H \text{ connected component of } G \}} \end{cases}$$

Measuring RBs

depth of a RB $\hat{=}$ maximal number of variables on a path between the root and a leaf

Measuring RBs

depth of a RB $\hat{=}$ maximal number of variables on a path between the root and a leaf

RBs with a limited depth can contain an **unbounded** number of variables!

Measuring RBs

depth of a RB $\hat{=}$ maximal number of variables on a path between the root and a leaf

RBs with a limited depth can contain an **unbounded** number of variables!

Given a RB of ϕ of depth k to a tractable class $\mathcal C$ we can decide satisfiability of ϕ in time:

$$2^k \cdot poly(|\phi|)$$

RB Detection

Again we need an fpt detection algorithm for RBs:

Input: (ϕ, k)

Output:

- There exists no RB of depth at most k for ϕ , or
- a RB of depth g(k).

RB Detection

Again we need an fpt detection algorithm for RBs:

Input: (ϕ, k)

Output:

- ullet There exists no RB of depth at most k for ϕ , or
- a RB of depth g(k).

Base Class: $\mathcal{C}_0 \triangleq$ the class of edgeless incidence graphs

RB Detection

Again we need an fpt detection algorithm for RBs:

Input: (ϕ, k)

Output:

- There exists no RB of depth at most k for ϕ , or
- a RB of depth g(k).

Base Class: $\mathcal{C}_0 \triangleq$ the class of edgeless incidence graphs

Theorem (Mählmann, Siebertz, Vigny)

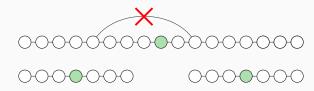
RB detection to C_0 is fixed parameter tractable.

Bounded Diameter

RB to C_0 of depth $\leq k$ implies diameter $\leq \lambda_k := 4 \cdot 2^k$.

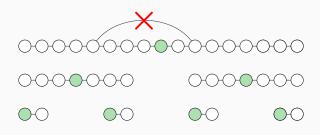
Bounded Diameter

RB to C_0 of depth $\leq k$ implies diameter $\leq \lambda_k := 4 \cdot 2^k$.



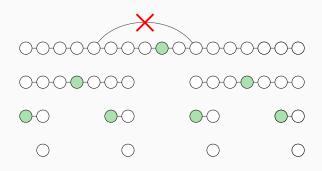
Bounded Diameter

RB to C_0 of depth $\leq k$ implies diameter $\leq \lambda_k := 4 \cdot 2^k$.



Bounded Diameter

RB to C_0 of depth $\leq k$ implies diameter $\leq \lambda_k := 4 \cdot 2^k$.

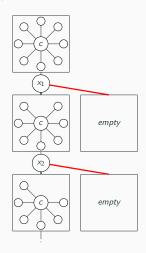


Bounded Clause Degree

RB to C_0 of depth $\leq k$ implies clause degree $\leq k$. $(x_{1_-} \lor x_{2_-} \lor ... \lor x_{k_-})$

Bounded Clause Degree

RB to C_0 of depth $\leq k$ implies clause degree $\leq k$. $(x_{1_-} \lor x_{2_-} \lor ... \lor x_{k_-})$



Obstruction-Trees: k = d

Given: an incidence graph $\it G$ with maximal clause degree $\it d \leq \it k$

Obstruction-Trees: k = d

Given: an incidence graph G with maximal clause degree $d \le k$

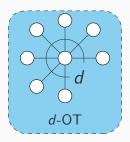
A k-obstruction-tree is a subgraph that guarantees G to have RB depth at least k.

Obstruction-Trees: k = d

Given: an incidence graph G with maximal clause degree $d \le k$

A k-obstruction-tree is a subgraph that guarantees G to have RB depth at least k.

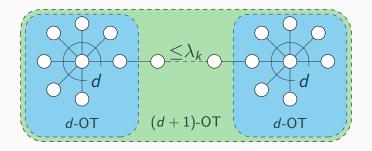
For k = d:



 \rightarrow a *d*-clause in *G* is a *d*-obstruction-tree.

Obstruction-Trees: k = d + 1

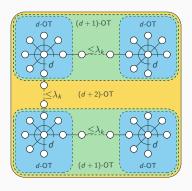
For k = d + 1:



ightarrow two connected and **variable disjoint** d-clauses in G is form a (d+1)-obstruction-tree.

Obstruction-Trees: k = i

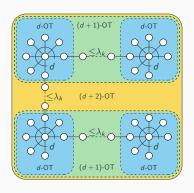
For k = i + 1:



ightarrow two connected $i ext{-}\mathsf{OTs}$ with disjoint "neighborhoods" in G form an $(i+1) ext{-}\mathsf{OT}$.

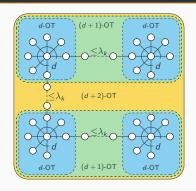
Obstruction-Trees: k = i

For k = i + 1:



- ightarrow two connected $i ext{-}\mathsf{OTs}$ with disjoint "neighborhoods" in G form an $(i+1) ext{-}\mathsf{OT}$.
- ightarrow the neighborhood of an obstruction-tree contains at most f(k) variables

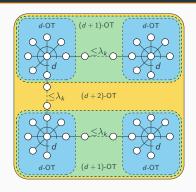
Searching for Obstruction-Trees



Given ϕ with maximal clause degree d, there exists an algorithm SEARCH $_i$ that either:

• finds an i-obstruction-tree, or

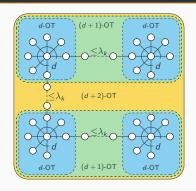
Searching for Obstruction-Trees



Given ϕ with maximal clause degree d, there exists an algorithm SEARCH; that either:

- finds an i-obstruction-tree, or
- finds an RB with bounded depth to C_{d-1} , or

Searching for Obstruction-Trees



Given ϕ with maximal clause degree d, there exists an algorithm SEARCH; that either:

- finds an i-obstruction-tree, or
- finds an RB with bounded depth to C_{d-1} , or
- concludes that no RB of depth $\leq k$ to \mathcal{C}_0 exists

Summary

What we have seen:

- Backdoors classify tractable SAT instances
- RBs generalize SAT backdoors and extend their power
- \bullet RB detection to \mathcal{C}_0 is fixed parameter tractable

Summary

What we have seen:

- Backdoors classify tractable SAT instances
- RBs generalize SAT backdoors and extend their power
- \bullet RB detection to \mathcal{C}_0 is fixed parameter tractable

What's next?

Theorem (Jan Dreier, Sebastian Ordyniak, Stefan Szeider) *RB detection to 2CNF is fixed parameter tractable.*

- Further base classes are still open: Horn, Antihorn, Bounded Treewidth
- RBs to heterogenous base classes

Summary

What we have seen:

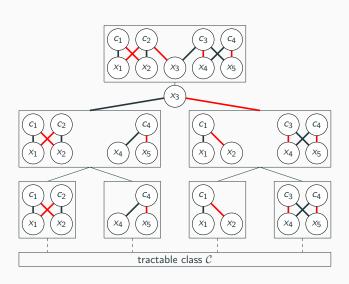
- Backdoors classify tractable SAT instances
- RBs generalize SAT backdoors and extend their power
- ullet RB detection to \mathcal{C}_0 is fixed parameter tractable

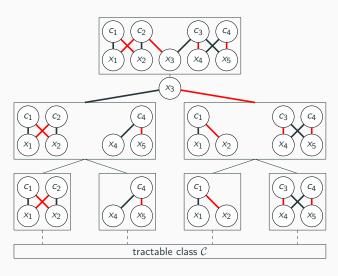
What's next?

Theorem (Jan Dreier, Sebastian Ordyniak, Stefan Szeider) *RB detection to 2CNF is fixed parameter tractable.*

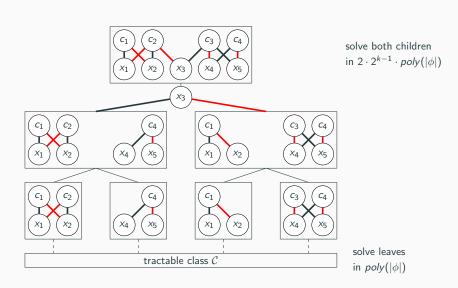
- Further base classes are still open: Horn, Antihorn, Bounded Treewidth
- RBs to heterogenous base classes

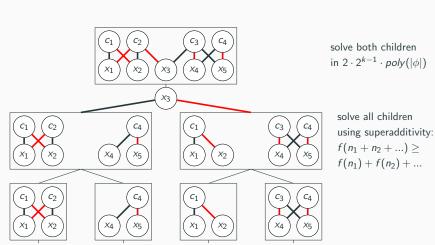
Thank you for listening!





solve leaves in $poly(|\phi|)$





tractable class $\mathcal C$

solve leaves in $poly(|\phi|)$