
Monadically Stable and Monadically Dependent Graph Classes
Characterizations and Algorithmic Meta-Theorems

Nikolas Mählmann

05.09.2024, PhD defense

1/30



Graphs

A graph consists of vertices
connected by edges.

Graphs are an effective way to
model real systems:
• road networks
• power grids
• computer networks
• circuits
• molecules

A graph class is a (usually infinite) set of graphs. Example: the class of all cliques:

{ }, , , , , ...

2/30



Graphs

A graph consists of vertices
connected by edges.

Graphs are an effective way to
model real systems:
• road networks
• power grids
• computer networks
• circuits
• molecules

A graph class is a (usually infinite) set of graphs. Example: the class of all cliques:

{ }, , , , , ...

2/30



Graphs

A graph consists of vertices
connected by edges.

Graphs are an effective way to
model real systems:
• road networks
• power grids
• computer networks
• circuits
• molecules

A graph class is a (usually infinite) set of graphs. Example: the class of all cliques:

{ }, , , , , ...

2/30



Graphs

A graph consists of vertices
connected by edges.

Graphs are an effective way to
model real systems:
• road networks
• power grids
• computer networks
• circuits
• molecules

A graph class is a (usually infinite) set of graphs. Example: the class of all cliques:

{ }, , , , , ...

2/30



Graphs

A graph consists of vertices
connected by edges.

Graphs are an effective way to
model real systems:
• road networks
• power grids
• computer networks
• circuits
• molecules

A graph class is a (usually infinite) set of graphs. Example: the class of all cliques:

{ }, , , , , ...
2/30



The FO Model Checking Problem
Problem: Given a graph G and an FO sentence φ, decide whether

G |= φ.

Example: G contains a dominating set of size k iff.

G |= ∃x1 . . . ∃xk∀y :
∨
i∈[k]

(
y = xi ∨ Edge(y , xi )

)
.

Further expressible problems: Independent Set, Subgraph Isomorphism, Independent
Red-Blue Distance-7 Dominating Set, ...

Runtime: Let q be the quantifier rank of φ. On the class of all graphs, the naive
O(nq) algorithm is best possible, assuming ETH.

Question: On which classes is FO model checking fixed-parameter tractable, i.e.,
solvable in time f (φ) · nc?

3/30



The FO Model Checking Problem
Problem: Given a graph G and an FO sentence φ, decide whether

G |= φ.

Example: G contains a dominating set of size k iff.

G |= ∃x1 . . . ∃xk∀y :
∨
i∈[k]

(
y = xi ∨ Edge(y , xi )

)
.

Further expressible problems: Independent Set, Subgraph Isomorphism, Independent
Red-Blue Distance-7 Dominating Set, ...

Runtime: Let q be the quantifier rank of φ. On the class of all graphs, the naive
O(nq) algorithm is best possible, assuming ETH.

Question: On which classes is FO model checking fixed-parameter tractable, i.e.,
solvable in time f (φ) · nc?

3/30



The FO Model Checking Problem
Problem: Given a graph G and an FO sentence φ, decide whether

G |= φ.

Example: G contains a dominating set of size k iff.

G |= ∃x1 . . . ∃xk∀y :
∨
i∈[k]

(
y = xi ∨ Edge(y , xi )

)
.

Further expressible problems: Independent Set, Subgraph Isomorphism, Independent
Red-Blue Distance-7 Dominating Set, ...

Runtime: Let q be the quantifier rank of φ. On the class of all graphs, the naive
O(nq) algorithm is best possible, assuming ETH.

Question: On which classes is FO model checking fixed-parameter tractable, i.e.,
solvable in time f (φ) · nc?

3/30



The FO Model Checking Problem
Problem: Given a graph G and an FO sentence φ, decide whether

G |= φ.

Example: G contains a dominating set of size k iff.

G |= ∃x1 . . . ∃xk∀y :
∨
i∈[k]

(
y = xi ∨ Edge(y , xi )

)
.

Further expressible problems: Independent Set, Subgraph Isomorphism, Independent
Red-Blue Distance-7 Dominating Set, ...

Runtime: Let q be the quantifier rank of φ. On the class of all graphs, the naive
O(nq) algorithm is best possible, assuming ETH.

Question: On which classes is FO model checking fixed-parameter tractable, i.e.,
solvable in time f (φ) · nc?

3/30



Nowhere Dense Classes of Graphs

For sparse graph classes, we know the exact limits of tractability.

Theorem [Grohe, Kreutzer, Siebertz, 2014]

Let C be a monotone graph class.
• If C is nowhere dense, then model checking is fixed-parameter tractable on C.
• Otherwise model checking is AW[∗]-hard on C.

Nowhere denseness generalizes many notions of sparsity such as: bounded degree,
bounded tree-width, planarity, excluding a minor, ...

4/30



Monotone and Hereditary Graph Classes

{ }, , , , , ...
The class of all cliques is not nowhere dense, but model checking is trivial there.

Cliques are not monotone: closed under taking subgraphs.
(i.e. deleting vertices and edges)

But cliques are hereditary: closed under taking induced subgraphs.
(i.e. deleting vertices)

To go beyond sparse classes, we need to shift from monotone to hereditary classes.

5/30



Monotone and Hereditary Graph Classes

{ }, , , , , ...
The class of all cliques is not nowhere dense, but model checking is trivial there.

Cliques are not monotone: closed under taking subgraphs.
(i.e. deleting vertices and edges)

But cliques are hereditary: closed under taking induced subgraphs.
(i.e. deleting vertices)

To go beyond sparse classes, we need to shift from monotone to hereditary classes.

5/30



Monotone and Hereditary Graph Classes

{ }, , , , , ...
The class of all cliques is not nowhere dense, but model checking is trivial there.

Cliques are not monotone: closed under taking subgraphs.
(i.e. deleting vertices and edges)

But cliques are hereditary: closed under taking induced subgraphs.
(i.e. deleting vertices)

To go beyond sparse classes, we need to shift from monotone to hereditary classes.

5/30



Transductions

Transductions are graph transformations defined by FO logic.

Example: φ(x , y) = (dist(x , y) = 3) ∨ (Red(x) ∧ Red(y))

coloring
defining a new
edge relation

taking an
induced subgraph

6/30



Monadic Stability and Monadic Dependence

Definition

A class is monadically stable, if it does not transduce the
class of all half graphs.

Definition

A class is monadically dependent, if it does not transduce
the class of all graphs.

Equivalently: it does not transduce the class of all
1-subdivided bicliques.

7/30



Monadic Stability and Monadic Dependence

Definition

A class is monadically stable, if it does not transduce the
class of all half graphs.

Definition

A class is monadically dependent, if it does not transduce
the class of all graphs.

Equivalently: it does not transduce the class of all
1-subdivided bicliques.

7/30



Monadic Stability and Monadic Dependence

Definition

A class is monadically stable, if it does not transduce the
class of all half graphs.

Definition

A class is monadically dependent, if it does not transduce
the class of all graphs.

Equivalently: it does not transduce the class of all
1-subdivided bicliques.

7/30



Monadic Stability and Monadic Dependence

Definition

A class is monadically stable, if it does not transduce the
class of all half graphs.

Definition

A class is monadically dependent, if it does not transduce
the class of all graphs.

Equivalently: it does not transduce the class of all
1-subdivided bicliques.

7/30



Monadic Stability and Monadic Dependence

Definition

A class is monadically stable, if it does not transduce the
class of all half graphs.

Definition

A class is monadically dependent, if it does not transduce
the class of all graphs.

Equivalently: it does not transduce the class of all
1-subdivided bicliques.

7/30



Nowhere Dense Monadically Stable
Monadically
Dependent

Model Checking in Hereditary Graph Classes

8/30



Nowhere Dense

Structurally
Bounded Expansion

Bounded Tree-width
Structurally

Bounded Tree-width

Bounded Tree-depth Bounded Shrub-depth

Monadically Stable
Monadically
Dependent

Bounded Sparse
Twin-width

Structurally Bounded
Sparse Twin-width

Bounded Expansion

Bounded Clique-width

Bounded Twin-width

Bounded Flip-width

Model Checking in Hereditary Graph Classes

8/30



Nowhere Dense

Structurally
Bounded Expansion

Bounded Tree-width
Structurally

Bounded Tree-width

Bounded Tree-depth Bounded Shrub-depth

Monadically Stable
Monadically
Dependent

Bounded Sparse
Twin-width

Structurally Bounded
Sparse Twin-width

Bounded Expansion

Bounded Clique-width

Bounded Twin-width

Bounded Flip-width

Sparse and
Monadically Independent

Monadically Independent
Orderless and

Monadically Independent

Model Checking in Hereditary Graph Classes

8/30



Nowhere Dense

Structurally
Bounded Expansion

Bounded Tree-width
Structurally

Bounded Tree-width

Bounded Tree-depth Bounded Shrub-depth

Monadically Stable
Monadically
Dependent

Bounded Sparse
Twin-width

Structurally Bounded
Sparse Twin-width

Bounded Expansion

Bounded Clique-width

Bounded Twin-width

Bounded Flip-width

Sparse and
Monadically Independent

Monadically Independent
Orderless and

Monadically Independent

Model Checking in Hereditary Graph Classes

8/30



Nowhere Dense

Structurally
Bounded Expansion

Bounded Tree-width
Structurally

Bounded Tree-width

Bounded Tree-depth Bounded Shrub-depth

Monadically Stable
Monadically
Dependent

Bounded Sparse
Twin-width

Structurally Bounded
Sparse Twin-width

Bounded Expansion

Bounded Clique-width

Bounded Twin-width

Bounded Flip-width

Sparse and
Monadically Independent

Monadically Independent
Orderless and

Monadically Independent

Model Checking in Hereditary Graph Classes

8/30



Nowhere Dense

Structurally
Bounded Expansion

Bounded Tree-width
Structurally

Bounded Tree-width

Bounded Tree-depth Bounded Shrub-depth

Monadically Stable
Monadically
Dependent

Bounded Sparse
Twin-width

Structurally Bounded
Sparse Twin-width

Bounded Expansion

Bounded Clique-width

Bounded Twin-width

Bounded Flip-width

Sparse and
Monadically Independent

Monadically Independent
Orderless and

Monadically Independent

Model Checking in Hereditary Graph Classes

8/30



Nowhere Dense

Structurally
Bounded Expansion

Bounded Tree-width
Structurally

Bounded Tree-width

Bounded Tree-depth Bounded Shrub-depth

Monadically Stable
Monadically
Dependent

Bounded Sparse
Twin-width

Structurally Bounded
Sparse Twin-width

Bounded Expansion

Bounded Clique-width

Bounded Twin-width

Bounded Flip-width

Sparse and
Monadically Independent

Monadically Independent
Orderless and

Monadically Independent

Model Checking in Hereditary Graph Classes

8/30



Nowhere Dense

Structurally
Bounded Expansion

Bounded Tree-width
Structurally

Bounded Tree-width

Bounded Tree-depth Bounded Shrub-depth

Monadically Stable
Monadically
Dependent

Bounded Sparse
Twin-width

Structurally Bounded
Sparse Twin-width

Bounded Expansion

Bounded Clique-width

Bounded Twin-width

Bounded Flip-width

Sparse and
Monadically Independent

Monadically Independent
Orderless and

Monadically Independent

Conjectured Tractability Limits

8/30



Nowhere Dense

Structurally
Bounded Expansion

Bounded Tree-width
Structurally

Bounded Tree-width

Bounded Tree-depth Bounded Shrub-depth

Monadically Stable
Monadically
Dependent

Bounded Sparse
Twin-width

Structurally Bounded
Sparse Twin-width

Bounded Expansion

Bounded Clique-width

Bounded Twin-width

Bounded Flip-width

Sparse and
Monadically Independent

Monadically Independent
Orderless and

Monadically Independent

Our Results ⋆

8/30



Nowhere Dense

Structurally
Bounded Expansion

Bounded Tree-width
Structurally

Bounded Tree-width

Bounded Tree-depth Bounded Shrub-depth

Monadically Stable
Monadically
Dependent

Bounded Sparse
Twin-width

Structurally Bounded
Sparse Twin-width

Bounded Expansion

Bounded Clique-width

Bounded Twin-width

Bounded Flip-width

Sparse and
Monadically Independent

Monadically Independent
Orderless and

Monadically Independent

⋆

Our Results ⋆

8/30



Nowhere Dense

Structurally
Bounded Expansion

Bounded Tree-width
Structurally

Bounded Tree-width

Bounded Tree-depth Bounded Shrub-depth

Monadically Stable
Monadically
Dependent

Bounded Sparse
Twin-width

Structurally Bounded
Sparse Twin-width

Bounded Expansion

Bounded Clique-width

Bounded Twin-width

Bounded Flip-width

Sparse and
Monadically Independent

Monadically Independent
Orderless and

Monadically Independent

⋆

Our Results ⋆

8/30



Nowhere Dense

Structurally
Bounded Expansion

Bounded Tree-width
Structurally

Bounded Tree-width

Bounded Tree-depth Bounded Shrub-depth

Monadically Stable
Monadically
Dependent

Bounded Sparse
Twin-width

Structurally Bounded
Sparse Twin-width

Bounded Expansion

Bounded Clique-width

Bounded Twin-width

Bounded Flip-width

Sparse and
Monadically Independent

Monadically Independent
Orderless and

Monadically Independent

⋆

⋆

Our Results ⋆

8/30



Nowhere Dense

Structurally
Bounded Expansion

Bounded Tree-width
Structurally

Bounded Tree-width

Bounded Tree-depth Bounded Shrub-depth

Monadically Stable
Monadically
Dependent

Bounded Sparse
Twin-width

Structurally Bounded
Sparse Twin-width

Bounded Expansion

Bounded Clique-width

Bounded Twin-width

Bounded Flip-width

Sparse and
Monadically Independent

Monadically Independent
Orderless and

Monadically Independent

⋆

⋆

Our Results ⋆

8/30



Algorithmic Results

Theorem

There is a model checking algorithm with the following property.

For every monadically stable class C, there exists a function f : N× R → N such that
for every n-vertex graph G ∈ C, sentence φ, and ε > 0, the algorithm runs in time

f (|φ|, ε) · n6+ε.

Theorem

Model checking is AW[∗]-hard on every hereditary, monadically independent class.

9/30



Combinatorial Results

Monadic stability and dependence are defined through logic.

Algorithmic results require a combinatorial understanding.

Main part of the thesis: combinatorial characterizations of mon. stability/dependence

• Ramsey-theoretic characterizations

• Forbidden induced subgraphs characterizations

• Game characterization (only for monadic stability)

10/30



Combinatorial Results

Monadic stability and dependence are defined through logic.

Algorithmic results require a combinatorial understanding.

Main part of the thesis: combinatorial characterizations of mon. stability/dependence

• Ramsey-theoretic characterizations

• Forbidden induced subgraphs characterizations

• Game characterization (only for monadic stability)

10/30



Characterizing Nowhere Denseness: Uniform Quasi-Wideness

G

Uniform Quasi-Wideness (slightly informal)

A class C is uniformly quasi-wide if for every radius r , in every large set W we find a
still large set A that is r -independent after removing a set S of constantly many
vertices.

Theorem [Něseťril, Ossona de Mendez, 2011]

A class C is uniformly quasi-wide if and only if it is nowhere dense.

11/30



Characterizing Nowhere Denseness: Uniform Quasi-Wideness

G

W

Uniform Quasi-Wideness (slightly informal)

A class C is uniformly quasi-wide if for every radius r , in every large set W we find a
still large set A that is r -independent after removing a set S of constantly many
vertices.

Theorem [Něseťril, Ossona de Mendez, 2011]

A class C is uniformly quasi-wide if and only if it is nowhere dense.

11/30



Characterizing Nowhere Denseness: Uniform Quasi-Wideness

G

W

S

Uniform Quasi-Wideness (slightly informal)

A class C is uniformly quasi-wide if for every radius r , in every large set W we find a
still large set A that is r -independent after removing a set S of constantly many
vertices.

Theorem [Něseťril, Ossona de Mendez, 2011]

A class C is uniformly quasi-wide if and only if it is nowhere dense.

11/30



Characterizing Nowhere Denseness: Uniform Quasi-Wideness

G

W

S

A
r

Uniform Quasi-Wideness (slightly informal)

A class C is uniformly quasi-wide if for every radius r , in every large set W we find a
still large set A that is r -independent after removing a set S of constantly many
vertices.

Theorem [Něseťril, Ossona de Mendez, 2011]

A class C is uniformly quasi-wide if and only if it is nowhere dense.

11/30



Characterizing Nowhere Denseness: Uniform Quasi-Wideness

G

W

S

A
r

Uniform Quasi-Wideness (slightly informal)

A class C is uniformly quasi-wide if for every radius r , in every large set W we find a
still large set A that is r -independent after removing a set S of constantly many
vertices.

Theorem [Něseťril, Ossona de Mendez, 2011]

A class C is uniformly quasi-wide if and only if it is nowhere dense.

11/30



Characterizing Nowhere Denseness: Uniform Quasi-Wideness

G

W

S

A
r

Uniform Quasi-Wideness (slightly informal)

A class C is uniformly quasi-wide if for every radius r , in every large set W we find a
still large set A that is r -independent after removing a set S of constantly many
vertices.

Theorem [Něseťril, Ossona de Mendez, 2011]

A class C is uniformly quasi-wide if and only if it is nowhere dense.
11/30



Uniform Quasi-Wideness: Example

12/30



Uniform Quasi-Wideness: Example

dist < 1

12/30



Uniform Quasi-Wideness: Example

12/30



Uniform Quasi-Wideness: Example

dist < 4

12/30



Uniform Quasi-Wideness: Example

12/30



Uniform Quasi-Wideness: Example

12/30



Uniform Quasi-Wideness: Example

dist < 6

12/30



Uniform Quasi-Wideness: Example

12/30



Characterizing Nowhere Denseness: Uniform Quasi-Wideness

G

W

S

A
r

Uniform Quasi-Wideness (slightly informal)

A class C is uniformly quasi-wide if for every radius r , in every large set W we find a
still large set A that is r -independent after removing a set S of constantly many
vertices.

Theorem [Něseťril, Ossona de Mendez, 2011]

A class C is uniformly quasi-wide if and only if it is nowhere dense.
13/30



Towards Dense Graphs

Question: Is there a similar characterization for monadic stability/dependence?

Denote by G ⊕ (P,Q) the graph obtained from G by complementing edges between
pairs of vertices from P × Q.

P

G G ⊕ (P,Q)

flip (P,Q)

Q P Q

14/30



Towards Dense Graphs

Question: Is there a similar characterization for monadic stability/dependence?

Denote by G ⊕ (P,Q) the graph obtained from G by complementing edges between
pairs of vertices from P × Q.

P

G G ⊕ (P,Q)

flip (P,Q)

Q P Q

14/30



Characterizing Monadic Stability: Flip-Flatness

G

Flip-Flatness (slightly informal)

A class C is flip-flat if for every radius r , in every large set W we find a still large set A
that is r -independent after performing a set S of constantly many flips.

Theorem

A class C is flip-flat if and only if it is monadically stable.

15/30



Characterizing Monadic Stability: Flip-Flatness

G

W

Flip-Flatness (slightly informal)

A class C is flip-flat if for every radius r , in every large set W we find a still large set A
that is r -independent after performing a set S of constantly many flips.

Theorem

A class C is flip-flat if and only if it is monadically stable.

15/30



Characterizing Monadic Stability: Flip-Flatness

G

W

S

Flip-Flatness (slightly informal)

A class C is flip-flat if for every radius r , in every large set W we find a still large set A
that is r -independent after performing a set S of constantly many flips.

Theorem

A class C is flip-flat if and only if it is monadically stable.

15/30



Characterizing Monadic Stability: Flip-Flatness

G

W

S

A
r

Flip-Flatness (slightly informal)

A class C is flip-flat if for every radius r , in every large set W we find a still large set A
that is r -independent after performing a set S of constantly many flips.

Theorem

A class C is flip-flat if and only if it is monadically stable.

15/30



Characterizing Monadic Stability: Flip-Flatness

G

W

S

A
r

Flip-Flatness (slightly informal)

A class C is flip-flat if for every radius r , in every large set W we find a still large set A
that is r -independent after performing a set S of constantly many flips.

Theorem

A class C is flip-flat if and only if it is monadically stable.

15/30



Characterizing Monadic Stability: Flip-Flatness

G

W

S

A
r

Flip-Flatness (slightly informal)

A class C is flip-flat if for every radius r , in every large set W we find a still large set A
that is r -independent after performing a set S of constantly many flips.

Theorem

A class C is flip-flat if and only if it is monadically stable.

15/30



Flip-Flatness: Example

16/30



Flip-Flatness: Example

16/30



Flip-Flatness: Example

16/30



Flip-Flatness: Example

16/30



Flip-Flatness: Example

16/30



Flip-Flatness: Example

16/30



Characterizing Monadic Stability: Flip-Flatness

G

W

S

A
r

Flip-Flatness (slightly informal)

A class C is flip-flat if for every radius r , in every large set W we find a still large set A
that is r -independent after performing a set S of constantly many flips.

Theorem

A class C is flip-flat if and only if it is monadically stable.

17/30



Characterizing Monadic Dependence: Flip-Breakability

G

Flip-Breakability (slightly informal)

A class C is flip-breakable if for every radius r , in every large set W we find two large
sets A and B that are at distance greater than 2r from each other after performing a
set S of constantly many flips.

Theorem

A class C is flip-breakable if and only if it is monadically dependent.

18/30



Characterizing Monadic Dependence: Flip-Breakability

G

W

Flip-Breakability (slightly informal)

A class C is flip-breakable if for every radius r , in every large set W we find two large
sets A and B that are at distance greater than 2r from each other after performing a
set S of constantly many flips.

Theorem

A class C is flip-breakable if and only if it is monadically dependent.

18/30



Characterizing Monadic Dependence: Flip-Breakability

G

W

S

Flip-Breakability (slightly informal)

A class C is flip-breakable if for every radius r , in every large set W we find two large
sets A and B that are at distance greater than 2r from each other after performing a
set S of constantly many flips.

Theorem

A class C is flip-breakable if and only if it is monadically dependent.

18/30



Characterizing Monadic Dependence: Flip-Breakability

G

W

S

A

r
B

r

Flip-Breakability (slightly informal)

A class C is flip-breakable if for every radius r , in every large set W we find two large
sets A and B that are at distance greater than 2r from each other after performing a
set S of constantly many flips.

Theorem

A class C is flip-breakable if and only if it is monadically dependent.

18/30



Characterizing Monadic Dependence: Flip-Breakability

G

W

S

A

r
B

r

Flip-Breakability (slightly informal)

A class C is flip-breakable if for every radius r , in every large set W we find two large
sets A and B that are at distance greater than 2r from each other after performing a
set S of constantly many flips.

Theorem

A class C is flip-breakable if and only if it is monadically dependent.

18/30



Characterizing Monadic Dependence: Flip-Breakability

G

W

S

A

r
B

r

Flip-Breakability (slightly informal)

A class C is flip-breakable if for every radius r , in every large set W we find two large
sets A and B that are at distance greater than 2r from each other after performing a
set S of constantly many flips.

Theorem

A class C is flip-breakable if and only if it is monadically dependent.
18/30



Flip-Breakability: Example

A B W

19/30



Flip-Breakability: Example

A B W

19/30



Flip-Breakability: Example

A B W

19/30



Flip-Breakability: Example

A B W

19/30



Flip-Breakability: Example

A B W

19/30



Flip-Breakability: Example

A B W

19/30



Flip-Breakability: Example

A B W

19/30



Characterizing Monadic Dependence: Flip-Breakability

G

W

S

A

r
B

r

Flip-Breakability (slightly informal)

A class C is flip-breakable if for every radius r , in every large set W we find two large
sets A and B that are at distance greater than 2r from each other after performing a
set S of constantly many flips.

Theorem

A class C is flip-breakable if and only if it is monadically dependent.
20/30



Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.

2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

3. Separation means either distance-r or distance-∞.

flatness breakability

dist-r
flip- monadic stability monadic dependence

deletion- nowhere denseness

dist-∞ flip-
deletion-

21/30



Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.

2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

3. Separation means either distance-r or distance-∞.

flatness breakability

dist-r
flip- monadic stability monadic dependence

deletion- nowhere denseness

dist-∞ flip-
deletion-

21/30



Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.

2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

3. Separation means either distance-r or distance-∞.

flatness breakability

dist-r
flip- monadic stability monadic dependence

deletion- nowhere denseness

dist-∞ flip-
deletion-

21/30



Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.

2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

3. Separation means either distance-r or distance-∞.

flatness breakability

dist-r
flip- monadic stability monadic dependence

deletion- nowhere denseness

dist-∞ flip-
deletion-

21/30



Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.

2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

3. Separation means either distance-r or distance-∞.

flatness breakability

dist-r
flip- monadic stability monadic dependence

deletion- nowhere denseness nowhere denseness

dist-∞ flip-
deletion-

21/30



Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.

2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

3. Separation means either distance-r or distance-∞.

flatness breakability

dist-r
flip- monadic stability monadic dependence

deletion- nowhere denseness nowhere denseness

dist-∞ flip- bd. shrub-depth bd. clique-width
deletion-

21/30



Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.

2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

3. Separation means either distance-r or distance-∞.

flatness breakability

dist-r
flip- monadic stability monadic dependence

deletion- nowhere denseness nowhere denseness

dist-∞ flip- bd. shrub-depth bd. clique-width
deletion- bd. tree-depth bd. tree-width

21/30



Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.

2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

3. Separation means either distance-r or distance-∞.

flatness breakability

dist-r
flip- monadic stability monadic dependence

deletion- nowhere denseness nowhere denseness

dist-∞ flip- bd. shrub-depth bd. clique-width
deletion- bd. tree-depth bd. tree-width

Ramsey-theoretic characterization ✓ next up: forbidden induced subgraphs

21/30



Characterizing Monadic Dependence by Forbidden Induced Subgraphs

star r -crossing

= r -subdivided biclique

r

22/30



Characterizing Monadic Dependence by Forbidden Induced Subgraphs

star r -crossing clique r -crossing

= r -subdivided biclique

r

22/30



Characterizing Monadic Dependence by Forbidden Induced Subgraphs

star r -crossing clique r -crossing half-graph r -crossing

= r -subdivided biclique

r

22/30



Characterizing Monadic Dependence by Forbidden Induced Subgraphs

comparability grid

23/30



Characterizing Monadic Dependence by Forbidden Induced Subgraphs

Theorem

Let C be a graph class. Then C is monadically dependent if and only if for every r ≥ 1
there exists k ∈ N such C excludes as induced subgraphs

• all layerwise flipped star r -crossings of order k, and
• all layerwise flipped clique r -crossings of order k, and
• all layerwise flipped half-graph r -crossings of order k , and
• the comparability grid of order k .

⇒ Model checking is hard on every hereditary, monadically independent graph class.

24/30



Characterizing Monadic Dependence by Forbidden Induced Subgraphs

Theorem

Let C be a graph class. Then C is monadically dependent if and only if for every r ≥ 1
there exists k ∈ N such C excludes as induced subgraphs

• all layerwise flipped star r -crossings of order k, and
• all layerwise flipped clique r -crossings of order k, and
• all layerwise flipped half-graph r -crossings of order k , and
• the comparability grid of order k .

⇒ Model checking is hard on every hereditary, monadically independent graph class.
24/30



Characterizing Monadic Stability by Forbidden Induced Subgraphs

Theorem

Let C be a graph class. Then C is monadically stable if and only if for every r ≥ 1
there exists k ∈ N such C excludes as induced subgraphs

• all layerwise flipped star r -crossings of order k, and
• all layerwise flipped clique r -crossings of order k, and
• all semi-induced halfgraphs of order k

Characterizations: ramsey-theoretic ✓ forbidden induced subgraphs ✓
Next up: a game characterization for monadic stability

25/30



Characterizing Monadic Stability by Forbidden Induced Subgraphs

Theorem

Let C be a graph class. Then C is monadically stable if and only if for every r ≥ 1
there exists k ∈ N such C excludes as induced subgraphs

• all layerwise flipped star r -crossings of order k, and
• all layerwise flipped clique r -crossings of order k, and
• all semi-induced halfgraphs of order k

Characterizations: ramsey-theoretic ✓ forbidden induced subgraphs ✓
Next up: a game characterization for monadic stability

25/30



The Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Localizer chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

26/30



The Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Localizer chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

26/30



The Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Localizer chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

26/30



The Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Localizer chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

26/30



The Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Localizer chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

26/30



The Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Localizer chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

26/30



The Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Localizer chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

26/30



The Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Localizer chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

26/30



The Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Localizer chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

26/30



The Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Localizer chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

26/30



The Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Localizer chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

26/30



The Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Localizer chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

26/30



The Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Localizer chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

26/30



The Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Localizer chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:

26/30



The Splitter Game in Nowhere Dense Classes

Theorem [Grohe, Kreutzer, Siebertz, 2013]

A graph class C is nowhere dense ⇔

∀r∃ℓ such that Splitter wins the radius-r game on all graphs from C in ℓ rounds.

Question: Can we find a similar game characterization for monadic stability?

27/30



The Splitter Game in Nowhere Dense Classes

Theorem [Grohe, Kreutzer, Siebertz, 2013]

A graph class C is nowhere dense ⇔

∀r∃ℓ such that Splitter wins the radius-r game on all graphs from C in ℓ rounds.

Question: Can we find a similar game characterization for monadic stability?

27/30



The Flipper Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v

2. Localizer chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

28/30



The Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

28/30



The Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

28/30



The Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

28/30



The Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

28/30



The Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

28/30



The Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

28/30



The Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

28/30



The Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

28/30



The Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

28/30



The Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

28/30



The Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

28/30



The Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

28/30



The Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

28/30



The Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip F

2. Localizer chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

28/30



The Flipper Game in Monadically Stable Classes

Theorem

A graph class C is monadically stable ⇔

∀r∃ℓ such that Flipper wins the radius-r game on all graphs from C in ℓ rounds.

Proof builds on flip-flatness. Flippers moves are computable in time OC,r (n2).

The game tree is a bounded depth decomposition of a graph into r -neighborhoods.

The decomposition can be further compressed by clustering neighborhoods.

Dynamic programming on the compressed tree gives fpt model checking.

29/30



The Flipper Game in Monadically Stable Classes

Theorem

A graph class C is monadically stable ⇔

∀r∃ℓ such that Flipper wins the radius-r game on all graphs from C in ℓ rounds.

Proof builds on flip-flatness. Flippers moves are computable in time OC,r (n2).

The game tree is a bounded depth decomposition of a graph into r -neighborhoods.

The decomposition can be further compressed by clustering neighborhoods.

Dynamic programming on the compressed tree gives fpt model checking.

29/30



The Flipper Game in Monadically Stable Classes

Theorem

A graph class C is monadically stable ⇔

∀r∃ℓ such that Flipper wins the radius-r game on all graphs from C in ℓ rounds.

Proof builds on flip-flatness. Flippers moves are computable in time OC,r (n2).

The game tree is a bounded depth decomposition of a graph into r -neighborhoods.

The decomposition can be further compressed by clustering neighborhoods.

Dynamic programming on the compressed tree gives fpt model checking.

29/30



Summary

We have initiated the development of a combinatorial theory for monadically stable
and dependent graph classes:

G

S

F

A

r
B

r

G

A

F

B
r

st
ab
le

de
p
en
de
nt

structure non-structure

Algorithmic applications: model checking is fpt on every monadically stable class, but
AW[∗]-hard on every hereditary, monadically independent class.

Vielen Dank!

30/30



Summary

We have initiated the development of a combinatorial theory for monadically stable
and dependent graph classes:

G

S

F

A

r
B

r

G

A

F

B
r

st
ab
le

de
p
en
de
nt

structure non-structure

Algorithmic applications: model checking is fpt on every monadically stable class, but
AW[∗]-hard on every hereditary, monadically independent class.

Vielen Dank!
30/30



Backup slides



Publications 1/2

1. Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes
joint work with Jan Dreier, Sebastian Siebertz, Szymon Toruńczyk
presented at ICALP 2023

2. Flipper Games for Monadically Stable Graph Classes
joint work with Jakub Gajarský, Rose McCarty, Pierre Ohlmann, Micha l Pilipczuk,

Wojciech Przybyszewski, Sebastian Siebertz, Marek Soko lowski, Szymon Toruńczyk

presented at ICALP 2023

3. First-Order Model Checking on Structurally Sparse Graph Classes
joint work with Jan Dreier, Sebastian Siebertz
presented at STOC 2023

32/30



Publications 2/2

4. First-Order Model Checking on Monadically Stable Graph Classes
joint work with Jan Dreier, Ioannis Eleftheriadis, Rose McCarty, Micha l Pilipczuk,
Szymon Toruńczyk
accepted at FOCS 2024

5. Flip-Breakability: A Combinatorial Dichotomy for Monadically Dependent Graph Classes

joint work with Jan Dreier, Szymon Toruńczyk
presented at STOC 2024

33/30



Flip-Flatness

Theorem

A graph class C is flip-flat if for every radius r ∈ N there exists a function Nr : N → N
and a constant kr ∈ N such that for all m ∈ N, G ∈ C and W ⊆ V (G ) with
|W | ≥ Nr (m) there exist a subset A ⊂ W with |A| ≥ m and a kr -flip H of G such that
for every two distinct vertices u, v ∈ A:

distH(u, v) > r .

34/30



Flip-Breakability

Theorem

A graph class C is flip-breakable if for every radius r ∈ N there exists a function
Nr : N → N and a constant kr ∈ N such that for all m ∈ N, G ∈ C and W ⊆ V (G )
with |W | ≥ Nr (m) there exist subsets A,B ⊂ W with |A|, |B| ≥ m and a kr -flip H of
G such that:

distH(A,B) > r .

35/30



Flip-Breakability ⇒ Monadic Dependence

Assume towards a contradiction a class C is not monadically dependent but
flip-breakable.

S

2S

36/30



Flip-Breakability ⇒ Monadic Dependence

Assume towards a contradiction a class C is not monadically dependent but
flip-breakable.

S

2S

36/30



Flip-Breakability ⇒ Monadic Dependence

Assume towards a contradiction a class C is not monadically dependent but
flip-breakable.

S

2S

¬φ φ

36/30



Flip-Breakability ⇒ Monadic Dependence

Assume towards a contradiction a class C is not monadically dependent but
flip-breakable.

S

2S

36/30



Flip-Breakability ⇒ Monadic Dependence

Assume towards a contradiction a class C is not monadically dependent but
flip-breakable.

S

2S

A

r

B

r := gaif(φ)

36/30



Flip-Breakability ⇒ Monadic Dependence

Assume towards a contradiction a class C is not monadically dependent but
flip-breakable.

S

2S

A

r

B

r := gaif(φ)

same q-type same q-type

36/30



Flip-Breakability ⇒ Monadic Dependence

Assume towards a contradiction a class C is not monadically dependent but
flip-breakable.

S

2S

A

r

B

r := gaif(φ)

same q-type same q-type

¬φ′ φ′

36/30



Monadic Stability ⇒ Flip-Flatness: r = 1

We prove flip-flatness by induction on r . For r = 1 we use Ramsey’s theorem.

Case 1: W contains a large independent set.

WA

→ A is distance-1 independent without performing any flips.

Case 2: W contains a large clique.

WA

→ flip (A,A). This is the same as complementing the edges in A.

37/30



Monadic Stability ⇒ Flip-Flatness: r = 1

We prove flip-flatness by induction on r . For r = 1 we use Ramsey’s theorem.

Case 1: W contains a large independent set.

WA

→ A is distance-1 independent without performing any flips.

Case 2: W contains a large clique.

WA

→ flip (A,A). This is the same as complementing the edges in A.

37/30



Monadic Stability ⇒ Flip-Flatness: Indiscernibles
Every long sequence of vertices contains a still long subsequence that is indiscernible.
In a monadically dependent class every vertex is connected to an indiscernible sequence
in one of the following patterns:

monadically dependent

homogenous single exception single alternation

[Blumensath, 2011], [Dreier, Mählmann, Toruńczyk, Siebertz, 2023]
38/30



Monadic Stability ⇒ Flip-Flatness: Indiscernibles
Every long sequence of vertices contains a still long subsequence that is indiscernible.
In a monadically dependent class every vertex is connected to an indiscernible sequence
in one of the following patterns:

monadically stable
monadically dependent

homogenous single exception single alternation

[Blumensath, 2011], [Dreier, Mählmann, Toruńczyk, Siebertz, 2023]
38/30



Monadic Stability ⇒ Flip-Flatness: r = 2

deg 0 deg 1 deg |A| − 1 deg |A|

A

39/30



Monadic Stability ⇒ Flip-Flatness: r = 2

deg 0 deg 1 deg |A| − 1 deg |A|

A

39/30



Monadic Stability ⇒ Flip-Flatness: r = 2

deg 0 deg 1 deg |A|deg 1

A

39/30



Monadic Stability ⇒ Flip-Flatness: r = 2

deg 0 deg 1 deg |A|deg 1

A

39/30



Monadic Stability ⇒ Flip-Flatness: r = 2

deg 0 deg 1 deg |A|deg 1

A

39/30



Monadic Stability ⇒ Flip-Flatness: r = 2

deg 0 deg 1 deg 1 deg 0

A

39/30



Monadic Stability ⇒ Flip-Flatness: r = 2

deg 0 deg 1 deg 1 deg 0

A

39/30



Monadic Stability ⇒ Flip-Flatness: r ≥ 3

If C is monadically stable, then every large sequence of disjoint r -balls contains a large
subsequence that can be colored by a bounded number of colors such that the
neighborhood of every vertex is described by a single colors as follows:

r r r r r

?

v

40/30



Mon. Stability ⇒ Flipper Wins: Proof Idea

Let W = w1,w2,w3, . . . be the vertices played by Localizer.

If the game continues long enough, we can apply flip-flatness to find a set A ⊆ W
which is 2r -independent after applying constantly many flips F .

41/30



Mon. Stability ⇒ Flipper Wins: Proof Idea

Let W = w1,w2,w3, . . . be the vertices played by Localizer.

If the game continues long enough, we can apply flip-flatness to find a set A ⊆ W
which is 2r -independent after applying constantly many flips F .

41/30



Mon. Stability ⇒ Flipper Wins: Proof Idea

Let W = w1,w2,w3, . . . be the vertices played by Localizer.

If the game continues long enough, we can apply flip-flatness to find a set A ⊆ W
which is 2r -independent after applying constantly many flips F .

41/30



Mon. Stability ⇒ Flipper Wins: Proof Idea

Let W = w1,w2,w3, . . . be the vertices played by Localizer.

If the game continues long enough, we can apply flip-flatness to find a set A ⊆ W
which is 2r -independent after applying constantly many flips F .

41/30



Mon. Stability ⇒ Flipper Wins: Proof Idea

Let W = w1,w2,w3, . . . be the vertices played by Localizer.

If the game continues long enough, we can apply flip-flatness to find a set A ⊆ W
which is 2r -independent after applying constantly many flips F .

41/30



Mon. Stability ⇒ Flipper Wins: Proof Idea

Let W = w1,w2,w3, . . . be the vertices played by Localizer.

If the game continues long enough, we can apply flip-flatness to find a set A ⊆ W
which is 2r -independent after applying constantly many flips F .

41/30



Mon. Stability ⇒ Flipper Wins: Proof Idea

Let W = w1,w2,w3, . . . be the vertices played by Localizer.

If the game continues long enough, we can apply flip-flatness to find a set A ⊆ W
which is 2r -independent after applying constantly many flips F .

41/30



Mon. Stability ⇒ Flipper Wins: Proof Idea

Let W = w1,w2,w3, . . . be the vertices played by Localizer.

If the game continues long enough, we can apply flip-flatness to find a set A ⊆ W
which is 2r -independent after applying constantly many flips F .

W

41/30



Mon. Stability ⇒ Flipper Wins: Proof Idea

Let W = w1,w2,w3, . . . be the vertices played by Localizer.

If the game continues long enough, we can apply flip-flatness to find a set A ⊆ W
which is 2r -independent after applying constantly many flips F .

Wa1 a2

distG⊕F (a1, a2) > 2r

41/30



Mon. Stability ⇒ Flipper Wins: Proof Idea

Let W = w1,w2,w3, . . . be the vertices played by Localizer.

If the game continues long enough, we can apply flip-flatness to find a set A ⊆ W
which is 2r -independent after applying constantly many flips F .

Wa1 a2

distG⊕F (a1, a2) > 2r

t

41/30



Mon. Stability ⇒ Flipper Wins: Proof Idea

Let W = w1,w2,w3, . . . be the vertices played by Localizer.

If the game continues long enough, we can apply flip-flatness to find a set A ⊆ W
which is 2r -independent after applying constantly many flips F .

Wa1 a2

distG⊕F (a1, a2) > 2r

t

If Flipper had played the flip F at time t then only one of a1 and a2 could have
survived in the graph.

41/30



Mon. Stability ⇒ Flipper Wins: Proof Idea

Let W = w1,w2,w3, . . . be the vertices played by Localizer.

If the game continues long enough, we can apply flip-flatness to find a set A ⊆ W
which is 2r -independent after applying constantly many flips F .

Wa1 a2

distG⊕F (a1, a2) > 2r

t

If Flipper had played the flip F at time t then only one of a1 and a2 could have
survived in the graph.

Problem: Flipper does not know W at time t.
41/30



Mon. Stability ⇒ Flipper Wins: Predictable Flip-Flatness

W1

A1

G

ff(W1) = (A1,F1)

ff(W2) = (A2,F2)

|A1 ∩ A2| ≥ 5 ⇒ F1 = F2

F1 = F2 are computable from a five-element subset of A1 ∩ A2 in time O(n2).

42/30



Mon. Stability ⇒ Flipper Wins: Predictable Flip-Flatness

W1

A1 W2

A2

G

ff(W1) = (A1,F1)

ff(W2) = (A2,F2)

|A1 ∩ A2| ≥ 5 ⇒ F1 = F2

F1 = F2 are computable from a five-element subset of A1 ∩ A2 in time O(n2).

42/30



Mon. Stability ⇒ Flipper Wins: Predictable Flip-Flatness

W1

A1 W2

A2

G

ff(W1) = (A1,F1)

ff(W2) = (A2,F2)

|A1 ∩ A2| ≥ 5 ⇒ F1 = F2

F1 = F2 are computable from a five-element subset of A1 ∩ A2 in time O(n2).
42/30



Mon. Stability ⇒ Flipper Wins: Flippers Winning Strategy
For every 5 element subset P of Localizers previous moves:

1. apply the flips predict(P) for radius 2r

2. let Localizer localize to an r -ball

3. undo predict(P)

Assume Localizer can play enough rounds to apply size 7 flip-flatness

t

W

A

︸ ︷︷ ︸
P

︷ ︸︸ ︷
a1 a2

At time t, P was considered as a subset of Localizers previous moves.

A was flipped 2r -independent and only one of a1, a2 survived. Contradiction!

43/30



Mon. Stability ⇒ Flipper Wins: Flippers Winning Strategy
For every 5 element subset P of Localizers previous moves:

1. apply the flips predict(P) for radius 2r

2. let Localizer localize to an r -ball

3. undo predict(P)

Assume Localizer can play enough rounds to apply size 7 flip-flatness

t

W

A

︸ ︷︷ ︸
P

︷ ︸︸ ︷
a1 a2

At time t, P was considered as a subset of Localizers previous moves.

A was flipped 2r -independent and only one of a1, a2 survived. Contradiction!

43/30



Mon. Stability ⇒ Flipper Wins: Flippers Winning Strategy
For every 5 element subset P of Localizers previous moves:

1. apply the flips predict(P) for radius 2r

2. let Localizer localize to an r -ball

3. undo predict(P)

Assume Localizer can play enough rounds to apply size 7 flip-flatness

t

W

A

︸ ︷︷ ︸
P

︷ ︸︸ ︷
a1 a2

At time t, P was considered as a subset of Localizers previous moves.

A was flipped 2r -independent and only one of a1, a2 survived. Contradiction!

43/30



Model Checking: Idea

Goal: Decide whether G |= φ.

Idea: Recursion that works by induction on the length ℓ of the Flipper game.

• For every monadically stable class the recursion depth will be bounded.

• For ℓ = 1 we have |V (G )| = 1 and can brute force.

We make one round of progress by flipping and localizing.

Flipping is easy:

• Compute a progressing flip F using Flippers winning strategy

• Rewrite φ and color G such that G |= φ ⇐⇒ G+ ⊕ F |= φ̂.

How do we localize? What radius r do we play the Flipper game with?

44/30



Model Checking: Idea

Goal: Decide whether G |= φ.

Idea: Recursion that works by induction on the length ℓ of the Flipper game.

• For every monadically stable class the recursion depth will be bounded.

• For ℓ = 1 we have |V (G )| = 1 and can brute force.

We make one round of progress by flipping and localizing.

Flipping is easy:

• Compute a progressing flip F using Flippers winning strategy

• Rewrite φ and color G such that G |= φ ⇐⇒ G+ ⊕ F |= φ̂.

How do we localize? What radius r do we play the Flipper game with?

44/30



Model Checking: Idea

Goal: Decide whether G |= φ.

Idea: Recursion that works by induction on the length ℓ of the Flipper game.

• For every monadically stable class the recursion depth will be bounded.

• For ℓ = 1 we have |V (G )| = 1 and can brute force.

We make one round of progress by flipping and localizing.

Flipping is easy:

• Compute a progressing flip F using Flippers winning strategy

• Rewrite φ and color G such that G |= φ ⇐⇒ G+ ⊕ F |= φ̂.

How do we localize? What radius r do we play the Flipper game with?

44/30



Model Checking: Idea

Goal: Decide whether G |= φ.

Idea: Recursion that works by induction on the length ℓ of the Flipper game.

• For every monadically stable class the recursion depth will be bounded.

• For ℓ = 1 we have |V (G )| = 1 and can brute force.

We make one round of progress by flipping and localizing.

Flipping is easy:

• Compute a progressing flip F using Flippers winning strategy

• Rewrite φ and color G such that G |= φ ⇐⇒ G+ ⊕ F |= φ̂.

How do we localize? What radius r do we play the Flipper game with?

44/30



Model Checking: Idea

Goal: Decide whether G |= φ.

Idea: Recursion that works by induction on the length ℓ of the Flipper game.

• For every monadically stable class the recursion depth will be bounded.

• For ℓ = 1 we have |V (G )| = 1 and can brute force.

We make one round of progress by flipping and localizing.

Flipping is easy:

• Compute a progressing flip F using Flippers winning strategy

• Rewrite φ and color G such that G |= φ ⇐⇒ G+ ⊕ F |= φ̂.

How do we localize? What radius r do we play the Flipper game with?

44/30



Model Checking: Guarded Formulas
ψ is U-guarded, if each quantifier is of the form ∃x ∈ U or ∀x ∈ U for some U ∈ U .

Observation

For every graph G and {U1, . . . ,Ut}-guarded formula ψ we have

G |= ψ ⇐⇒ G [U1 ∪ . . . ∪ Ut ] |= ψ.

U1
U2

U3

r

G

Goal: efficiently compute ψ s.t.
1. ψ is equivalent to φ on G .
2. ψ is a BC of formulas, each guarded

by a family of bounded radius in G .

45/30



Model Checking: Guarded Formulas
ψ is U-guarded, if each quantifier is of the form ∃x ∈ U or ∀x ∈ U for some U ∈ U .

Observation

For every graph G and {U1, . . . ,Ut}-guarded formula ψ we have

G |= ψ ⇐⇒ G [U1 ∪ . . . ∪ Ut ] |= ψ.

U1
U2

U3

r

G

Goal: efficiently compute ψ s.t.
1. ψ is equivalent to φ on G .
2. ψ is a BC of formulas, each guarded

by a family of bounded radius in G .

45/30



Model Checking: Guarded Formulas
ψ is U-guarded, if each quantifier is of the form ∃x ∈ U or ∀x ∈ U for some U ∈ U .

Observation

For every graph G and {U1, . . . ,Ut}-guarded formula ψ we have

G |= ψ ⇐⇒ G [U1 ∪ . . . ∪ Ut ] |= ψ.

U1
U2

U3

r

G

Goal: efficiently compute ψ s.t.
1. ψ is equivalent to φ on G .
2. ψ is a BC of formulas, each guarded

by a family of bounded radius in G .

45/30



Model Checking: Guarded Formulas
ψ is U-guarded, if each quantifier is of the form ∃x ∈ U or ∀x ∈ U for some U ∈ U .

Observation

For every graph G and {U1, . . . ,Ut}-guarded formula ψ we have

G |= ψ ⇐⇒ G [U1 ∪ . . . ∪ Ut ] |= ψ.

U1
U2

U3

r

G

Goal: efficiently compute ψ s.t.
1. ψ is equivalent to φ on G .
2. ψ is a BC of formulas, each guarded

by a family of bounded radius in G .

45/30



Model Checking: Local Types

A

G

B

Assume tpq(•) = tpq(•). tpq(G ) := {ψ : ψ has quantifier rank ≤ q and G |= ψ}

Let ψ(x) be a formula of quantifier rank q − 1.

We have: G |= ∃x ∈ A ψ(x) ⇔ G |= ∃x ∈ B ψ(x).

The proof uses a local variant of Ehrenfeucht-Fräıssé games.

46/30



Model Checking: Local Types

A

G

B> 2q

Assume tpq(•) = tpq(•). tpq(G ) := {ψ : ψ has quantifier rank ≤ q and G |= ψ}

Let ψ(x) be a formula of quantifier rank q − 1.

We have: G |= ∃x ∈ A ψ(x) ⇔ G |= ∃x ∈ B ψ(x).

The proof uses a local variant of Ehrenfeucht-Fräıssé games.

46/30



Model Checking: Local Types

A

G

2q−1

B 2q−1
> 2q

Assume tpq(•) = tpq(•). tpq(G ) := {ψ : ψ has quantifier rank ≤ q and G |= ψ}

Let ψ(x) be a formula of quantifier rank q − 1.

We have: G |= ∃x ∈ A ψ(x) ⇔ G |= ∃x ∈ B ψ(x).

The proof uses a local variant of Ehrenfeucht-Fräıssé games.

46/30



Model Checking: Local Types

A

G

2q−1

B 2q−1
> 2q

Assume tpq(•) = tpq(•). tpq(G ) := {ψ : ψ has quantifier rank ≤ q and G |= ψ}

Let ψ(x) be a formula of quantifier rank q − 1.

We have: G |= ∃x ∈ A ψ(x) ⇔ G |= ∃x ∈ B ψ(x).

The proof uses a local variant of Ehrenfeucht-Fräıssé games.

46/30



Model Checking: Local Types

A

G

2q−1

B 2q−1
> 2q

Assume tpq(•) = tpq(•). tpq(G ) := {ψ : ψ has quantifier rank ≤ q and G |= ψ}

Let ψ(x) be a formula of quantifier rank q − 1.

We have: G |= ∃x ∈ A ψ(x) ⇔ G |= ∃x ∈ B ψ(x).

The proof uses a local variant of Ehrenfeucht-Fräıssé games.

46/30



Model Checking: Local Types

A

G

2q−1

B 2q−1
> 2q

Assume tpq(•) = tpq(•). tpq(G ) := {ψ : ψ has quantifier rank ≤ q and G |= ψ}

Let ψ(x) be a formula of quantifier rank q − 1.

We have: G |= ∃x ∈ A ψ(x) ⇔ G |= ∃x ∈ B ψ(x).

The proof uses a local variant of Ehrenfeucht-Fräıssé games.

46/30



Model Checking: Local Types

A

G

2q−1

B 2q−1
> 2q

Assume tpq(•) = tpq(•). tpq(G ) := {ψ : ψ has quantifier rank ≤ q and G |= ψ}

Let ψ(x) be a formula of quantifier rank q − 1.

We have: G |= ∃x ∈ A ψ(x) ⇔ G |= ∃x ∈ B ψ(x).

The proof uses a local variant of Ehrenfeucht-Fräıssé games.
46/30



Model Checking: Localizing a Single Quantifier

Let S = {N2q [v ] : v ∈ V (G )} be the set of 2q-neighborhoods in G . We have

G |= ∃x ψ(x) ⇐⇒ G |=
∨
S∈S

∃x ∈ S ψ(x).

Every set S is local, but |S| depends on |V (G )|!

Idea: Let S⋆ ⊆ S contain exactly one 2q-neighborhood for every possible q-type.

By the Local Type Theorem: G |= ∃x ψ(x) ⇐⇒ G |=
∨

S∈S⋆

∃x ∈ S ψ(x).

|S⋆| depends only on q ✓

When computing tpq(G [S ]), we make progress in the radius-2q Flipper game ✓

For multiple quantifiers: extend to parameters and argue by induction ✓

47/30



Model Checking: Localizing a Single Quantifier

Let S = {N2q [v ] : v ∈ V (G )} be the set of 2q-neighborhoods in G . We have

G |= ∃x ψ(x) ⇐⇒ G |=
∨
S∈S

∃x ∈ S ψ(x).

Every set S is local, but |S| depends on |V (G )|!

Idea: Let S⋆ ⊆ S contain exactly one 2q-neighborhood for every possible q-type.

By the Local Type Theorem: G |= ∃x ψ(x) ⇐⇒ G |=
∨

S∈S⋆

∃x ∈ S ψ(x).

|S⋆| depends only on q ✓

When computing tpq(G [S ]), we make progress in the radius-2q Flipper game ✓

For multiple quantifiers: extend to parameters and argue by induction ✓

47/30



Model Checking: Localizing a Single Quantifier

Let S = {N2q [v ] : v ∈ V (G )} be the set of 2q-neighborhoods in G . We have

G |= ∃x ψ(x) ⇐⇒ G |=
∨
S∈S

∃x ∈ S ψ(x).

Every set S is local, but |S| depends on |V (G )|!

Idea: Let S⋆ ⊆ S contain exactly one 2q-neighborhood for every possible q-type.

By the Local Type Theorem: G |= ∃x ψ(x) ⇐⇒ G |=
∨

S∈S⋆

∃x ∈ S ψ(x).

|S⋆| depends only on q ✓

When computing tpq(G [S ]), we make progress in the radius-2q Flipper game ✓

For multiple quantifiers: extend to parameters and argue by induction ✓

47/30



Model Checking: Localizing a Single Quantifier

Let S = {N2q [v ] : v ∈ V (G )} be the set of 2q-neighborhoods in G . We have

G |= ∃x ψ(x) ⇐⇒ G |=
∨
S∈S

∃x ∈ S ψ(x).

Every set S is local, but |S| depends on |V (G )|!

Idea: Let S⋆ ⊆ S contain exactly one 2q-neighborhood for every possible q-type.

By the Local Type Theorem: G |= ∃x ψ(x) ⇐⇒ G |=
∨

S∈S⋆

∃x ∈ S ψ(x).

|S⋆| depends only on q ✓

When computing tpq(G [S ]), we make progress in the radius-2q Flipper game ✓

For multiple quantifiers: extend to parameters and argue by induction ✓

47/30



Model Checking: Localizing a Single Quantifier

Let S = {N2q [v ] : v ∈ V (G )} be the set of 2q-neighborhoods in G . We have

G |= ∃x ψ(x) ⇐⇒ G |=
∨
S∈S

∃x ∈ S ψ(x).

Every set S is local, but |S| depends on |V (G )|!

Idea: Let S⋆ ⊆ S contain exactly one 2q-neighborhood for every possible q-type.

By the Local Type Theorem: G |= ∃x ψ(x) ⇐⇒ G |=
∨

S∈S⋆

∃x ∈ S ψ(x).

|S⋆| depends only on q ✓

When computing tpq(G [S ]), we make progress in the radius-2q Flipper game ✓

For multiple quantifiers: extend to parameters and argue by induction ✓

47/30



Model Checking: Localizing a Single Quantifier

Let S = {N2q [v ] : v ∈ V (G )} be the set of 2q-neighborhoods in G . We have

G |= ∃x ψ(x) ⇐⇒ G |=
∨
S∈S

∃x ∈ S ψ(x).

Every set S is local, but |S| depends on |V (G )|!

Idea: Let S⋆ ⊆ S contain exactly one 2q-neighborhood for every possible q-type.

By the Local Type Theorem: G |= ∃x ψ(x) ⇐⇒ G |=
∨

S∈S⋆

∃x ∈ S ψ(x).

|S⋆| depends only on q ✓

When computing tpq(G [S ]), we make progress in the radius-2q Flipper game ✓

For multiple quantifiers: extend to parameters and argue by induction ✓

47/30



Model Checking: Recursion Tree

We can now play the Flipper game for radius 2q:

1. Flip by rewriting φ and coloring G .

2. Localize by computing the q-type of every 2q-neighborhood.

By monadic stability the depth of the recursion tree is bounded by f (q).

However the branching degree is n. This gives an O(nf (q)) algorithm.

This is worse than the naive O(nq) algorithm!

48/30



Model Checking: Recursion Tree

We can now play the Flipper game for radius 2q:

1. Flip by rewriting φ and coloring G .

2. Localize by computing the q-type of every 2q-neighborhood.

By monadic stability the depth of the recursion tree is bounded by f (q).

However the branching degree is n. This gives an O(nf (q)) algorithm.

This is worse than the naive O(nq) algorithm!

48/30



Model Checking: Recursion Tree

We can now play the Flipper game for radius 2q:

1. Flip by rewriting φ and coloring G .

2. Localize by computing the q-type of every 2q-neighborhood.

By monadic stability the depth of the recursion tree is bounded by f (q).

However the branching degree is n. This gives an O(nf (q)) algorithm.

This is worse than the naive O(nq) algorithm!

48/30



Model Checking: Neighborhood Covers
Recursing into each 2q-neighborhood is too expensive!

Idea: group neighborhoods that are close to each other into clusters.

Definition

A family of sets X is a neighborhood cover with radius r , spread s, and degree d if
• each r -neighborhood of G is fully contained in one cluster X ∈ X ,
• each cluster is contained in an s-neighborhood of G ,
• each vertex appears in at most d clusters.

A class admits sparse neighborhood covers if we can set d = g(r , ε) · nε for every ε > 0.

The size of the clusters of a sparse neighborhood cover sum up to g(r , ε) · n1+ε.

Resulting size of the recursion tree: n((1+ε)f (q)); by choosing ε small enough: n1+ε′ .

49/30



Model Checking: Neighborhood Covers
Recursing into each 2q-neighborhood is too expensive!

Idea: group neighborhoods that are close to each other into clusters.

Definition

A family of sets X is a neighborhood cover with radius r , spread s, and degree d if
• each r -neighborhood of G is fully contained in one cluster X ∈ X ,
• each cluster is contained in an s-neighborhood of G ,
• each vertex appears in at most d clusters.

A class admits sparse neighborhood covers if we can set d = g(r , ε) · nε for every ε > 0.

The size of the clusters of a sparse neighborhood cover sum up to g(r , ε) · n1+ε.

Resulting size of the recursion tree: n((1+ε)f (q)); by choosing ε small enough: n1+ε′ .

49/30



Model Checking: Neighborhood Covers
Recursing into each 2q-neighborhood is too expensive!

Idea: group neighborhoods that are close to each other into clusters.

Definition

A family of sets X is a neighborhood cover with radius r , spread s, and degree d if
• each r -neighborhood of G is fully contained in one cluster X ∈ X ,
• each cluster is contained in an s-neighborhood of G ,
• each vertex appears in at most d clusters.

A class admits sparse neighborhood covers if we can set d = g(r , ε) · nε for every ε > 0.

The size of the clusters of a sparse neighborhood cover sum up to g(r , ε) · n1+ε.

Resulting size of the recursion tree: n((1+ε)f (q)); by choosing ε small enough: n1+ε′ .

49/30



Model Checking: Neighborhood Covers
Recursing into each 2q-neighborhood is too expensive!

Idea: group neighborhoods that are close to each other into clusters.

Definition

A family of sets X is a neighborhood cover with radius r , spread s, and degree d if
• each r -neighborhood of G is fully contained in one cluster X ∈ X ,
• each cluster is contained in an s-neighborhood of G ,
• each vertex appears in at most d clusters.

A class admits sparse neighborhood covers if we can set d = g(r , ε) · nε for every ε > 0.

The size of the clusters of a sparse neighborhood cover sum up to g(r , ε) · n1+ε.

Resulting size of the recursion tree: n((1+ε)f (q)); by choosing ε small enough: n1+ε′ .

49/30



Model Checking: Summary

Theorem [Dreier, Mählmann, Siebertz, 2023]

Every monadically stable class, that admits sparse neighborhood covers, admits FO
model checking in time f (φ) · |V (G )|11.

Theorem [Dreier, Mählmann, Siebertz, 2023]

Every structurally nowhere dense class admits sparse neighborhood covers.

Theorem [Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023]

Every monadically stable class admits sparse neighborhood covers.

Theorem

Every monadically stable class admits FO model checking in time f (φ, ε) · |V (G )|6+ε.

50/30



Model Checking: Summary

Theorem [Dreier, Mählmann, Siebertz, 2023]

Every monadically stable class, that admits sparse neighborhood covers, admits FO
model checking in time f (φ) · |V (G )|11.

Theorem [Dreier, Mählmann, Siebertz, 2023]

Every structurally nowhere dense class admits sparse neighborhood covers.

Theorem [Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023]

Every monadically stable class admits sparse neighborhood covers.

Theorem

Every monadically stable class admits FO model checking in time f (φ, ε) · |V (G )|6+ε.

50/30



Stability and Dependence in Model Theory

On a class C, a formula φ(x̄ , ȳ) has

• the order property if for every k ∈ N there are G ∈ C and two sequences (āi )i∈[k],

(b̄j)j∈[k] of tuples in G , such that for all i , j ∈ [k]: G |= φ(āi , b̄j) ⇔ i ≤ j .

• the independence property if for every k ∈ N there are G ∈ C, a size k set
A ⊆ V (G )|x̄ | and a sequence (b̄J)J⊆A of tuples in G such that for all ā ∈ A, J ⊆ A

G |= φ(ā, b̄J) ⇔ ā ∈ J.

A graph class is stable if it does not have the order property.
It is monadically stable if the class of colored graphs from C is stable.

A graph class is dependent if it does not have the independence property.
It is monadically dependent if the class of colored graphs from C is dependent.

51/30



Approximation Algorithms

Distance-r dominating set:

• constant factor approximation in bounded expansion classes [Dvǒrák 2013]

• O(d · log(d · OPT )) approximation of the distance-1 case on graphs with VC
dimension ≤ d [Brönnimann, Goodrich, 1995]

Distance-r independent set:

• constant factor approximation in bounded expansion classes [Dvǒrák 2013]

• nε approximation in nowhere dense classes [Dvǒrák 2019]

• nε approximation in bounded twin-width classes [Bergé et al. 2022]

52/30


	Appendix

