Flip-Breakability: Combinatorial Characterizations of Monadically NIP Graph Classes

Jan Dreier1, Nikolas Mählmann2, Szymon Toruńczyk3

LoGAlg 2023

1TU Wien
2University of Bremen
3University of Warsaw
The FO Model Checking Problem

Problem: Given a graph G and an FO sentence φ, decide whether

$$G \models \varphi.$$

Example: G contains a dominating set of size k iff.

$$G \models \exists x_1 \ldots \exists x_k \forall y : \bigvee_{i \in [k]} (y = x_i \lor y \sim x_i).$$

Runtime: On the class of all graphs, FO model checking is $\text{AW}[*]$-hard. We will assume $\text{FPT} \neq \text{AW}[*]$.

Question: On which classes is FO model checking fixed-parameter tractable, i.e., solvable in time $f(\varphi) \cdot n^c$?
Tractable Classes

Theorem [Grohe, Kreutzer, Siebertz, 2014]

Let C be a **monotone** class of graphs.

C admits fpt FO model checking if and only if C is **nowhere dense**.

Theorem [Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023+]

Let C be a **hereditary and orderless** class of graphs.

C admits fpt FO model checking if and only if C is **monadically stable**.

Theorem [Bonnet, Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk, 2022]

Let C be a **hereditary and ordered** class of graphs.

C admits fpt FO model checking if and only if C has **bounded twin-width**.
Tractable Classes

Theorem [Grohe, Kreutzer, Siebertz, 2014]

Let \mathcal{C} be a **monotone** class of graphs.

\mathcal{C} admits fpt FO model checking if and only if \mathcal{C} is **monadically NIP**.

Theorem [Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023+]

Let \mathcal{C} be a **hereditary and orderless** class of graphs.

\mathcal{C} admits fpt FO model checking if and only if \mathcal{C} is **monadically NIP**.

Theorem [Bonnet, Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk, 2022]

Let \mathcal{C} be a **hereditary and ordered** class of graphs.

\mathcal{C} admits fpt FO model checking if and only if \mathcal{C} is **monadically NIP**.
Conjecture

Let \mathcal{C} be a hereditary class of graphs.

\mathcal{C} admits fpt FO model checking if and only if \mathcal{C} is monadically NIP.
FO Transductions

Transductions \(\triangleq \) coloring + interpreting + taking an induced subgraph

\[
\varphi(x, y) := \text{Red}(x) \land \text{Red}(y) \land \text{dist}(x, y) = 3
\]
Monadic Stability and Monadic NIP

Definition

A class is monadically stable, if it does not transduce the class of all half graphs.

Diagram:

![Diagram of a half graph](image-url)
Monadic Stability and Monadic NIP

Definition

A class is monadically stable, if it does not transduce the class of all half graphs.

Definition

A class is monadically NIP, if it does not transduce the class of all graphs. Equivalently, it does not transduce the class of all 1-subdivided bicliques.
Wanted: Combinatorial Characterizations

Monadically NIP classes are defined using logic.

Working towards algorithms we need tools that are combinatorial.
Wanted: Combinatorial Characterizations

Monadically NIP classes are defined using logic.

Working towards algorithms we need tools that are combinatorial.

In this talk we will present:

• a combinatorial structure characterization: flip-breakability

• a combinatorial non-structure characterization: forbidden induced subgraphs
Characterizing Nowhere Denseness: Uniform Quasi-Wideness

A class \(C \) is uniformly quasi-wide if for every radius \(r \), in every large set \(S \) we find a still large set \(A \) that is \(r \)-independent after removing a set \(F \) of constantly many vertices.

Theorem [Nesetril, Ossona de Mendez, 2011]

A class \(C \) is uniformly quasi-wide if and only if it is nowhere dense.
Characterizing Nowhere Denseness: Uniform Quasi-Wideness

A class C is uniformly quasi-wide if for every radius r, in every large set S we find a still large set A that is r-independent after removing a set F of constantly many vertices.

Theorem [Nesetril, Ossona de Mendez, 2011]
A class C is uniformly quasi-wide if and only if it is nowhere dense.
Characterizing Nowhere Denseness: Uniform Quasi-Wideness

A class C is uniformly quasi-wide if for every radius r, in every large set S we find a still large set A that is r-independent after removing a set F of constantly many vertices.

Theorem [Nˇesetˇril, Ossona de Mendez, 2011] A class C is uniformly quasi-wide if and only if it is nowhere dense.
A class C is uniformly quasi-wide if for every radius r, in every large set S we find a still large set A that is r-independent after removing a set F of constantly many vertices.

Theorem [Nˇesetřil, Ossona de Mendez, 2011]

A class C is uniformly quasi-wide if and only if it is nowhere dense.
Uniform Quasi-Wideness (slightly informal)

A class C is *uniformly quasi-wide* if for every radius r, in every large set S we find a still large set A that is r-independent after removing a set F of constantly many vertices.
Uniform Quasi-Wideness (slightly informal)

A class C is *uniformly quasi-wide* if for every radius r, in every large set S we find a still large set A that is r-independent after removing a set F of constantly many vertices.

Theorem [Něsetřil, Ossona de Mendez, 2011]

A class C is uniformly quasi-wide if and only if it is nowhere dense.
Towards Dense Graphs

Denote by $G \oplus (P, Q)$ the graph obtained from G by complementing edges between pairs of vertices from $P \times Q$.

![Diagram of graphs](https://via.placeholder.com/150)
Characterizing Monadic Stability: Flip-Flatness

A class C is flip-flat if for every radius r, in every large set S we find a still large set A that is r-independent after performing a set F of constantly many flips.

Theorem [Dreier, Mählmann, Siebertz, Toruńczyk, 2022]

A class C is flip-flat if and only if it is monadically stable.
Characterizing Monadic Stability: Flip-Flatness

A class C is flip-flat if for every radius r, in every large set S we find a still large set A that is r-independent after performing a set F of constantly many flips.

Theorem [Dreier, Mählmann, Siebertz, Toruńczyk, 2022]

A class C is flip-flat if and only if it is monadically stable.
Characterizing Monadic Stability: Flip-Flatness

A class C is flip-flat if for every radius r, in every large set S we find a still large set A that is r-independent after performing a set F of constantly many flips.

Theorem [Dreier, Mählmann, Siebertz, Toruńczyk, 2022]

A class C is flip-flat if and only if it is monadically stable.
Flip-Flatness

A class C is flip-flat if for every radius r, in every large set S we find a still large set A that is r-independent after performing a set F of constantly many flips.

Theorem [Dreier, Mählmann, Siebertz, Toruńczyk, 2022]

A class C is flip-flat if and only if it is monadically stable.
Flip-Flatness (slightly informal)

A class C is *flip-flat* if for every radius r, in every large set S we find a still large set A that is r-independent after performing a set F of constantly many flips.
Flip-Flatness (slightly informal)

A class C is *flip-flat* if for every radius r, in every large set S we find a still large set A that is r-independent after performing a set F of constantly many flips.

Theorem [Dreier, Mählmann, Siebertz, Toruńczyk, 2022]

A class C is flip-flat if and only if it is monadically stable.
A class C is flip-breakable if for every radius r, in every large set S we find two large sets A and B and a flip F of bounded size such that $N_r \mathbin{\oplus} F(A) \cap N_r \mathbin{\oplus} F(B) = \emptyset$.

Theorem [Dreier, M"ahlmann, Toru´nczyk] A class C is flip-breakable if and only if it is monadically NIP.
A class C is flip-breakable if for every radius r, in every large set S we find two large sets A and B and a flip F of bounded size such that $N_r G \oplus F(A) \cap N_r G \oplus F(B) = \emptyset$.

Theorem [Dreier, Mählmann, Toruńczyk]

A class C is flip-breakable if and only if it is monadically NIP.
Flip-Breakability (slightly informal)

A class C is flip-breakable if for every radius r, in every large set S we find two large sets A and B and a flip F of bounded size such that $N_r(G) \oplus F(A) \cap N_r(G) \oplus F(B) = \emptyset$.

Theorem [Dreier, Mählmann, Toruńczyk]

A class C is flip-breakable if and only if it is monadically NIP.
Flip-Breakability (slightly informal)

A class C is flip-breakable if for every radius r, in every large set S we find two large sets A and B and a flip F of bounded size such that $N_r G \oplus F(A) \cap N_r G \oplus F(B) = \emptyset$.

Theorem [Dreier, Mählmann, Toruńczyk]

A class C is flip-breakable if and only if it is monadically NIP.
Flip-Breakability (slightly informal)

A class C is *flip-breakable* if for every radius r, in every large set S we find two large sets A and B that and a flip F of bounded size such that $N^r_{G \oplus F}(A) \cap N^r_{G \oplus F}(B) = \emptyset$.

Theorem [Dreier, Mählmann, Toruńczyk]

A class C is flip-breakable if and only if it is monadically NIP.
Flip-Breakability: Example
Characterizing Monadic NIP: Flip-Breakability

Flip-Breakability (slightly informal)

A class C is *flip-breakable* if for every radius r, in every large set S we find two large sets A and B that and a flip F of bounded size such that $N^r_{G \oplus F}(A) \cap N^r_{G \oplus F}(B) = \emptyset$.

Theorem [Dreier, Mählmann, Toruńczyk]

A class C is flip-breakable if and only if it is monadically NIP.
Flip-Breakability (slightly informal)

A class C is \textit{flip-breakable} if for every radius r, in every large set S we find two large sets A and B that and a flip F of bounded size such that $N^r_{G⊕F}(A) \cap N^r_{G⊕F}(B) = \emptyset$.

Theorem [Dreier, Mählmann, Toruńczyk]

A class C is flip-breakable if and only if it is monadically NIP.
Flip-Breakability \Rightarrow Monadic NIP

Assume towards a contradiction a class \mathcal{C} is not monadically NIP but flip-breakable.

$S \subseteq \mathcal{C}$

\Rightarrow

2^S
Flip-Breakability \Rightarrow Monadic NIP

Assume towards a contradiction a class C is not monadically NIP but flip-breakable.
Flip-Breakability \Rightarrow Monadic NIP

Assume towards a contradiction a class \mathcal{C} is not monadically NIP but flip-breakable.
Flip-Breakability \Rightarrow Monadic NIP

Assume towards a contradiction a class C is not monadically NIP but flip-breakable.
Flip-Breakability \Rightarrow Monadic NIP

Assume towards a contradiction a class \mathcal{C} is not monadically NIP but flip-breakable.
Flip-Breakability \Rightarrow Monadic NIP

Assume towards a contradiction a class C is not monadically NIP but flip-breakable.
Flip-Breakability \Rightarrow Monadic NIP

Assume towards a contradiction a class \mathcal{C} is not monadically NIP but flip-breakable.

\[r := \text{gaif}(\varphi) \]

S
Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.
Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.

2. We demand our resulting set is either flat or broken.

 flat: pairwise separated; broken: separated into two large sets
Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.

2. We demand our resulting set is either flat or broken.

 flat: pairwise separated; broken: separated into two large sets

3. Separation means either distance-\(r\) or distance-\(\infty\).
Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.

2. We demand our resulting set is either flat or broken.

 flat: pairwise separated; broken: separated into two large sets

3. Separation means either distance-r or distance-∞.

<table>
<thead>
<tr>
<th></th>
<th>flatness</th>
<th>breakability</th>
</tr>
</thead>
<tbody>
<tr>
<td>dist-r</td>
<td>flip- monadic stability</td>
<td>monadic NIP</td>
</tr>
<tr>
<td></td>
<td>deletion- nowhere denseness</td>
<td></td>
</tr>
<tr>
<td>dist-∞</td>
<td>flip-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>deletion-</td>
<td></td>
</tr>
</tbody>
</table>
Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.

2. We demand our resulting set is either flat or broken.

 flat: pairwise separated; broken: separated into two large sets

3. Separation means either distance-\(r\) or distance-\(\infty\).

<table>
<thead>
<tr>
<th></th>
<th>flatness</th>
<th>breakability</th>
</tr>
</thead>
<tbody>
<tr>
<td>dist-(r)</td>
<td>flip-</td>
<td>monadic stability</td>
</tr>
<tr>
<td></td>
<td>deletion-</td>
<td>nowhere denseness</td>
</tr>
<tr>
<td>dist-(\infty)</td>
<td>flip-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>deletion-</td>
<td></td>
</tr>
</tbody>
</table>
Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.
2. We demand our resulting set is either flat or broken.
 flat: pairwise separated; broken: separated into two large sets
3. Separation means either distance-r or distance-∞.

<table>
<thead>
<tr>
<th></th>
<th>flatness</th>
<th>breakability</th>
</tr>
</thead>
<tbody>
<tr>
<td>dist-r</td>
<td>flip- monadic stability</td>
<td>monadic NIP</td>
</tr>
<tr>
<td></td>
<td>deletion- nowhere denseness</td>
<td>nowhere denseness</td>
</tr>
<tr>
<td>dist-∞</td>
<td>flip- bd. shrubdepth</td>
<td>bd. cliquewidth</td>
</tr>
<tr>
<td></td>
<td>deletion-</td>
<td></td>
</tr>
</tbody>
</table>
Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.

2. We demand our resulting set is either flat or broken.

 flat: pairwise separated; broken: separated into two large sets

3. Separation means either distance-r or distance-∞.

<table>
<thead>
<tr>
<th></th>
<th>Flatness</th>
<th>Breakability</th>
</tr>
</thead>
</table>
| dist-r | flip-
 | monadic stability | monadic NIP |
| deletion- | nowhere denseness | nowhere denseness |
| dist-∞ | flip-
 | bd. shrubdepth | bd. cliquewidth |
| deletion- | bd. treedepth | bd. treewidth |
Wanted: Combinatorial Characterizations

In this talk we will present:

- a combinatorial structure characterization: **flip-breakability**

- a combinatorial non-structure characterization: **forbidden induced subgraphs**
Characterizing Monadic NIP by Forbidden Induced Subgraphs

\[\text{star } r\text{-crossing} \]
\[= r\text{-subdivided biclique} \]
Characterizing Monadic NIP by Forbidden Induced Subgraphs

star r-crossing

$= r$-subdivided biclique

clique r-crossing
Characterizing Monadic NIP by Forbidden Induced Subgraphs

star r-crossing

clique r-crossing

half-graph r-crossing

$= r$-subdivided biclique
Characterizing Monadic NIP by Forbidden Induced Subgraphs

comparability grid
Let \mathcal{C} be a graph class. Then \mathcal{C} is monadically NIP if and only if for every $r \geq 1$ there exists $k \in \mathbb{N}$ such \mathcal{C} excludes as induced subgraphs

- all layerwise flipped star r-crossings of order k, and
- all layerwise flipped clique r-crossings of order k, and
- all layerwise flipped half-graph r-crossings of order k, and
- the comparability grid of order k.

Theorem [Dreier, Mählmann, Toruńczyk]
Forbidden Induced Subgraphs: Applications

Theorem [Dreier, Mählmann, Toruńczyk]

1. FO Model checking is $AW[*]$-hard on every hereditary class that is not mon. NIP.
Forbidden Induced Subgraphs: Applications

Theorem [Dreier, Mählmann, Toruńczyk]

1. FO Model checking is $\text{AW}[\ast]$-hard on every hereditary class that is not monadically NIP.
2. Every small hereditary class is monadically NIP.

Theorem [Dreier, Mählmann, Toruńczyk]

1. FO Model checking is $\text{AW}[\ast]$-hard on every hereditary class that is not monadically NIP.
2. Every small hereditary class is monadically NIP.
3. Every class with almost bounded flip-width is monadically NIP.
Summary: We give two combinatorial characterizations of mon. NIP graph classes.

A structure characterization called flip-breakability:

A non-structure characterization by forbidden induced subgraphs:

FO model checking is $\mathsf{AW}[\ast]$-hard on hereditary graph classes that are not mon. NIP.