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The FO Model Checking Problem

Problem: Given a graph G and an FO sentence ψ, decide whether

G |= ψ.

Example: G contains a dominating set of size k

ψ = ∃x1 . . . ∃xk∀y :
∨
i∈[k]

(y = xi ∨ y ∼ xi ).

Runtime: On the class of all graphs the naive n|ψ| algorithm seems
best possible.

Question: On which classes is FO model checking fpt, i.e., solvable
in time f (ψ) · nc?
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Classes of Bounded Local Cliquewidth
• The cliquewidth cw(G ) of a graph G is a measure for how
well it decomposes.

G

v

r

B = G[Nr(v)]

• A class C has bounded local cliquewidth if there exists a
function lcw : N → N s.t. every radius-r ball B in a graph
from C has cw(B) ≤ lcw(r).

• FO model checking is fpt.

• Examples: bd. (local) treewidth, planar graphs, bd. degree
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Interpretations

Iφ

G Iφ(G)

φ(x , y) = Purple(x) ∧ Red(y) ∧ dist(x , y) ≤ 2



Model Checking Interpretations

Conjecture

If FO model checking is fpt on a class C, then for every formula φ,
it is also fpt on the class Iφ(C) = {Iφ(G ) : G ∈ C}.

So far this conjecture was proven for:

• classes of bd. cliquewidth ✓(trivial)

• classes of bd. degree ✓(Gajarský et al., 2018)

• and now:

Theorem (Our Result)

FO model checking is fpt on interpretations of classes of bounded
local cliquewidth.
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Computing Preimages

Idea: Use tractability of base class C.

Problem: Calculating a preimage G ∈ C from H = Iφ(G ) is hard
even for squares!

Goal: Find a preimage G ′ from another tractable class C′ such that

Iφ′(G ′) = H = Iφ(G ).
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Bounded Range Interpretations

Lemma (Gajarský et al., 2020; Nešeťril et al., 2021)

Every interpretation Iφ is equivalent to a composition of

1. a local part: a bounded range interpretation Iφ′

2. a global part: a bounded number of flips.

φ(x , y) has range r if G |= φ(u, v) implies distG (u, v) ≤ r .

• φ1(x , y) = ∃z1 ̸= z2 : {z1, z2} ∈ N(x) ∩ N(y) has range 2.

• φ2(x , y) = ¬(x ∼ y) has unbounded range.

Lemma

If φ has bounded range and C has bounded lcw, then Iφ(C) has
bounded lcw aswell.
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Flips

Applying a bounded number of flips to a graph G :

• Partition V (G ) into a bounded number of parts.

• Complement edges running between selected pairs of parts.

Example: We flip (•, •), (•, •), and (•, •):

Question: How to partition V (G )?
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Recovering Flips using Sample Vertices

Lemma (Main Lemma)

For every NIP class of graphs C and interpretation Iφ,

there exist
s, r ∈ N s.t. for every G ∈ C there exists a set S ⊆ V (G ) of size s,
s.t. for every pair u, v with distance ≥ r in G, whether
G |= φ(u, v) holds depends only on φ(u,S) and φ(v ,S).

≥ r

≥ r

s1

s2

s3

s4

s5

s6

φ φ
u

u′

v

v′

φ(u,S) = φ(u′,S) = {s1, s2} and φ(v ,S) = φ(v ′,S) = {s4, s6}

⇒ G |= φ(u, v) ⇔ G |= φ(u′, v ′).
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The Final Model Checking Algorithm

Algorithm:

1. Guess the set of sample vertices S . ns choices

2. Partition the vertices of G according to S . 2s parts

3. Guess between which parts to flip. 22
2s
choices

4. Evaluate a rewritten version of ψ on the flipped graph.

Takeaway:

• Interpretations. . .

• . . . are a flexible framework to manipulate graphs
• . . . are composed of a local part and some flips

• We show how to efficiently reverse the flips

• This results in fpt FO model checking for interpretations of
bounded local cliquewidth

• “an fpt algorithm for a huge class of problems on lots of
interesting graph classes”
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Classes of Bounded Cliquewidth

• The cliquewidth cw(G ) of a graph
G is a treelike decomposition
measure.

• A class C has bounded cliquewidth
if there exists an integer w such
that for all G ∈ C we have
cw(G ) ≤ w .

• FO model checking runs in time
f (φ, cw(G )) · n3.

by David Eppstein under CC0



The Locality Method

Some complexity measures are locally closed:

• planar = locally planar

• bd. degree = locally bd. degree

• nowhere dense = locally nowhere dense

Some are not:

• bd. cliquewidth ⊊ bd. local cliquewidth

• bd. treewidth ⊊ bd. local treewidth

• bd. expansion ⊊ locally bd. expansion

Theorem (Frick and Grohe, 2001)

If FO model checking is solvable in time f (ψ, C) · nc for every class
C with property P, then it is also fpt on every class with locally P.



Model Checking Interpretations

Some complexity measures are closed under interpretations:

• bd. cliquewidth = I(bd. cliquewidth)
• bd. shrubdepth = I(bd. shrubdepth)
• bd. twinwidth = I(bd. twinwidth)

Some are not:

• bd. local cliquewidth ⊊ I(bd. local cliquewidth)
• planar ⊊ I(planar)
• nowhere dense ⊊ I(nowhere dense)

Conjecture

If FO model checking is fpt on a class C, then for every
interpretation I, it is also fpt on the class I(C) = {I(G ) : G ∈ C}.



Bounded Range Interpretations of LCW Classes

Lemma

If I has bounded range and C has bounded lcw, then I(C) has
bounded lcw aswell.

Iφ(G)

v

r

G

v

r′Iφ′⊆


