Model Checking on Interpretations of Classes of Bounded Local Cliquewidth

Édouard Bonnet, Jan Dreier, Jakub Gajarský, Nikolas Mählmann, Stephan Kreutzer, Pierre Simon, Szymon Toruńczyk

LICS 2022, 04.08.2022
The FO Model Checking Problem

Problem: Given a graph G and an FO sentence ψ, decide whether $G \models \psi$.

Example: G contains a dominating set of size k

$$\psi = \exists x_1 \ldots \exists x_k \forall y : \bigvee_{i \in [k]} (y = x_i \lor y \sim x_i).$$
The FO Model Checking Problem

Problem: Given a graph G and an FO sentence ψ, decide whether

$$G \models \psi.$$

Example: G contains a dominating set of size k

$$\psi = \exists x_1 \ldots \exists x_k \forall y : \bigvee_{i \in [k]} (y = x_i \lor y \sim x_i).$$

Runtime: On the class of all graphs the naive $n^{\lvert \psi \rvert}$ algorithm seems best possible.

Question: On which classes is FO model checking fpt, i.e., solvable in time $f(\psi) \cdot n^c$?
Classes of Bounded Local Cliquewidth

- The cliquewidth $cw(G)$ of a graph G is a measure for how well it decomposes.
Classes of Bounded Local Cliquewidth

- The cliquewidth $cw(G)$ of a graph G is a measure for how well it decomposes.

$B = G[N_r(v)]$

- A class C has bounded local cliquewidth if there exists a function $lcw: \mathbb{N} \rightarrow \mathbb{N}$ s.t. every radius-r ball B in a graph from C has $cw(B) \leq lcw(r)$.

- FO model checking is fpt.
Classes of Bounded Local Cliquewidth

- The cliquewidth $cw(G)$ of a graph G is a measure for how well it decomposes.

- A class C has bounded local cliquewidth if there exists a function $lcw : \mathbb{N} \rightarrow \mathbb{N}$ s.t. every radius-r ball B in a graph from C has $cw(B) \leq lcw(r)$.

- FO model checking is fpt.

- Examples: bd. (local) treewidth, planar graphs, bd. degree
\[\varphi(x, y) = \text{Purple}(x) \land \text{Red}(y) \land \text{dist}(x, y) \leq 2 \]
Conjecture

If FO model checking is fpt on a class \mathcal{C}, then for every formula φ, it is also fpt on the class $\mathcal{I}_\varphi(\mathcal{C}) = \{\mathcal{I}_\varphi(G) : G \in \mathcal{C}\}$.

So far this conjecture was proven for:

- classes of bd. cliquewidth ✓ (trivial)
- classes of bd. degree ✓ (Gajarský et al., 2018)
Conjecture

If FO model checking is fpt on a class \(C \), then for every formula \(\varphi \), it is also fpt on the class \(I_{\varphi}(C) = \{I_{\varphi}(G) : G \in C\} \).

So far this conjecture was proven for:

- classes of bd. cliquewidth ✓ (trivial)
- classes of bd. degree ✓ (Gajarský et al., 2018)
- and now:

Theorem (Our Result)

FO model checking is fpt on interpretations of classes of bounded local cliquewidth.
Computing Preimages

Idea: Use tractability of base class \mathcal{C}.

Problem: Calculating a preimage $G \in \mathcal{C}$ from $H = \mathcal{I}_\varphi(G)$ is hard even for squares!
Computing Preimages

Idea: Use tractability of base class \mathcal{C}.

Problem: Calculating a preimage $G \in \mathcal{C}$ from $H = \mathcal{I}_\varphi(G)$ is hard even for squares!

Goal: Find a preimage G' from another tractable class \mathcal{C}' such that

$$\mathcal{I}_{\varphi'}(G') = H = \mathcal{I}_\varphi(G).$$
Bounded Range Interpretations

Lemma (Gajarský et al., 2020; Nešetřil et al., 2021)

Every interpretation I_φ is equivalent to a composition of

1. a local part: a bounded range interpretation $I_{\varphi'}$
2. a global part: a bounded number of flips.
Bounded Range Interpretations

Lemma (Gajarský et al., 2020; Nešetřil et al., 2021)

Every interpretation \mathcal{I}_φ is equivalent to a composition of

1. a local part: a bounded range interpretation $\mathcal{I}_{\varphi'}$
2. a global part: a bounded number of flips.

$\varphi(x, y)$ has range r if $G \models \varphi(u, v)$ implies $\text{dist}_G(u, v) \leq r$.

- $\varphi_1(x, y) = \exists z_1 \neq z_2 : \{z_1, z_2\} \in N(x) \cap N(y)$ has range 2.
- $\varphi_2(x, y) = \neg (x \sim y)$ has unbounded range.
Bounded Range Interpretations

Lemma (Gajarský et al., 2020; Nešetřil et al., 2021)

Every interpretation \mathcal{I}_φ is equivalent to a composition of

1. a local part: a bounded range interpretation $\mathcal{I}_{\varphi'}$
2. a global part: a bounded number of flips.

$\varphi(x, y)$ has range r if $G \models \varphi(u, v)$ implies $\text{dist}_G(u, v) \leq r$.

- $\varphi_1(x, y) = \exists z_1 \neq z_2 : \{z_1, z_2\} \in N(x) \cap N(y)$ has range 2.
- $\varphi_2(x, y) = \neg (x \sim y)$ has unbounded range.

Lemma

If φ has bounded range and C has bounded lcw, then $\mathcal{I}_\varphi(C)$ has bounded lcw aswell.
Applying a bounded number of flips to a graph G:
- Partition $V(G)$ into a bounded number of parts.
- Complement edges running between selected pairs of parts.

Example: We flip (\bullet, \bullet), (\bullet, \bullet), and (\bullet, \bullet):

![Diagram showing the process of applying flips to a graph, with an example of flipping edges between parts.](image-url)
Applying a bounded number of flips to a graph G:
- Partition $V(G)$ into a bounded number of parts.
- Complement edges running between selected pairs of parts.

Example: We flip (\bullet, \bullet), (\bullet, \bullet), and (\bullet, \bullet):

Question: How to partition $V(G)$?
Lemma (Main Lemma)

For every NIP class of graphs \mathcal{C} and interpretation \mathcal{I}_φ, there exist $s, r \in \mathbb{N}$ such that for every $G \in \mathcal{C}$ there exists a set $S \subseteq V(G)$ of size s, s.t. for every pair u, v with distance $\geq r$ in G, whether $G | = \varphi(u, v)$ holds depends only on $\varphi(u, S)$ and $\varphi(v, S)$.

\[
\begin{align*}
\varphi(u, S) &= \varphi(u', S) = \{s_1, s_2\} \\
\varphi(v, S) &= \varphi(v', S) = \{s_4, s_6\}
\end{align*}
\]

$\Rightarrow G | = \varphi(u, v) \iff G | = \varphi(u', v')$.
Lemma (Main Lemma)

For every NIP class of graphs \mathcal{C} and interpretation \mathcal{I}_φ, there exist $s, r \in \mathbb{N}$ s.t. for every $G \in \mathcal{C}$ there exists a set $S \subseteq V(G)$ of size s, for every pair u, v with distance $\geq r$ in G, whether $G \models \varphi(u, v)$ holds depends only on $\varphi(u, S)$ and $\varphi(v, S)$.

$\varphi(u, S) = \varphi(u', S) = \{s_1, s_2\}$ and $\varphi(v, S) = \varphi(v', S) = \{s_4, s_6\} \Rightarrow G \models \varphi(u, v) \iff G \models \varphi(u', v')$.

Lemma (Main Lemma)

For every NIP class of graphs \mathcal{C} and interpretation \mathcal{I}_φ, there exist $s, r \in \mathbb{N}$ s.t. for every $G \in \mathcal{C}$ there exists a set $S \subseteq V(G)$ of size s, s.t. for every pair u, v with distance $\geq r$ in G, whether $G \models \varphi(u, v)$ holds depends only on $\varphi(u, S)$ and $\varphi(v, S)$.
Recovering Flips using Sample Vertices

Lemma (Main Lemma)

For every NIP class of graphs \mathcal{C} and interpretation \mathcal{I}_φ, there exist $s, r \in \mathbb{N}$ s.t. for every $G \in \mathcal{C}$ there exists a set $S \subseteq V(G)$ of size s, s.t. for every pair u, v with distance $\geq r$ in G, whether $G \models \varphi(u, v)$ holds depends only on $\varphi(u, S)$ and $\varphi(v, S)$.

\[
\varphi(u, S) = \varphi(u', S) = \{s_1, s_2\} \quad \text{and} \quad \varphi(v, S) = \varphi(v', S) = \{s_4, s_6\}
\]

\[
\Rightarrow G \models \varphi(u, v) \iff G \models \varphi(u', v').
\]
The Final Model Checking Algorithm

Algorithm:

1. Guess the set of sample vertices S. n^s choices
The Final Model Checking Algorithm

Algorithm:
1. Guess the set of sample vertices S. n^s choices
2. Partition the vertices of G according to S. 2^s parts
The Final Model Checking Algorithm

Algorithm:

1. Guess the set of sample vertices S.
 \(n^s \) choices

2. Partition the vertices of G according to S.
 \(2^s \) parts

3. Guess between which parts to flip.
 \(2^{2^s} \) choices
The Final Model Checking Algorithm

Algorithm:
1. Guess the set of sample vertices S. \hspace{1cm} \text{n^s choices}
2. Partition the vertices of G according to S. \hspace{1cm} \text{2s parts}
3. Guess between which parts to flip. \hspace{1cm} \text{2^{2^s} choices}
4. Evaluate a rewritten version of ψ on the flipped graph.
The Final Model Checking Algorithm

Algorithm:
1. Guess the set of sample vertices S. \(n^s \) choices
2. Partition the vertices of G according to S. \(2^s \) parts
3. Guess between which parts to flip. \(2^{2^s} \) choices
4. Evaluate a rewritten version of ψ on the flipped graph.

Takeaway:
- Interpretations...
 - ...are a flexible framework to manipulate graphs
 - ...are composed of a local part and some flips
- We show how to efficiently reverse the flips
- This results in fpt FO model checking for interpretations of bounded local cliquewidth
 - “an fpt algorithm for a huge class of problems on lots of interesting graph classes”
Classes of Bounded Cliquewidth

- The cliquewidth $cw(G)$ of a graph G is a treelike decomposition measure.
- A class C has bounded cliquewidth if there exists an integer w such that for all $G \in C$ we have $cw(G) \leq w$.
- FO model checking runs in time $f(\varphi, cw(G)) \cdot n^3$.

by David Eppstein under CC0
The Locality Method

Some complexity measures are locally closed:

- planar \text{= locally planar}
- bd. degree \text{= locally bd. degree}
- nowhere dense \text{= locally nowhere dense}

Some are not:

- bd. cliquewidth \subset \text{bd. local cliquewidth}
- bd. treewidth \subset \text{bd. local treewidth}
- bd. expansion \subset \text{locally bd. expansion}

Theorem (Frick and Grohe, 2001)

If FO model checking is solvable in time \(f(\psi, C) \cdot n^c \) for every class \(C \) with property \(\mathcal{P} \), then it is also fpt on every class with locally \(\mathcal{P} \).
Model Checking Interpretations

Some complexity measures are closed under interpretations:

- bd. cliquewidth $= \mathcal{I}(\text{bd. cliquewidth})$
- bd. shrubdepth $= \mathcal{I}(\text{bd. shrubdepth})$
- bd. twinwidth $= \mathcal{I}(\text{bd. twinwidth})$

Some are not:

- bd. local cliquewidth $\subsetneq \mathcal{I}(\text{bd. local cliquewidth})$
- planar $\subsetneq \mathcal{I}(\text{planar})$
- nowhere dense $\subsetneq \mathcal{I}(\text{nowhere dense})$

Conjecture

*If FO model checking is fpt on a class \mathcal{C}, then for every interpretation \mathcal{I}, it is also fpt on the class $\mathcal{I}(\mathcal{C}) = \{\mathcal{I}(G) : G \in \mathcal{C}\}$.**
Lemma

If \mathcal{I} has bounded range and \mathcal{C} has bounded lcw, then $\mathcal{I}(\mathcal{C})$ has bounded lcw as well.