Model Checking on Interpretations of Classes of Bounded Local Cliquewidth

Édouard Bonnet, Jan Dreier, Jakub Gajarský, <u>Nikolas Mählmann</u>, Stephan Kreutzer, Pierre Simon, Szymon Toruńczyk

LICS 2022, 04.08.2022

The FO Model Checking Problem

Problem: Given a graph G and an FO sentence ψ , decide whether

 $G \models \psi$.

Example: G contains a dominating set of size k

$$\psi = \exists x_1 \dots \exists x_k \forall y : \bigvee_{i \in [k]} (y = x_i \lor y \sim x_i).$$

The FO Model Checking Problem

Problem: Given a graph G and an FO sentence ψ , decide whether

$$G \models \psi.$$

Example: G contains a dominating set of size k

$$\psi = \exists x_1 \dots \exists x_k \forall y : \bigvee_{i \in [k]} (y = x_i \lor y \sim x_i).$$

Runtime: On the class of all graphs the naive $n^{|\psi|}$ algorithm seems best possible.

Question: On which classes is FO model checking fpt, i.e., solvable in time $f(\psi) \cdot n^c$?

Classes of Bounded Local Cliquewidth

• The cliquewidth cw(G) of a graph G is a measure for how well it decomposes.

Classes of Bounded Local Cliquewidth

• The cliquewidth cw(G) of a graph G is a measure for how well it decomposes.

- A class C has bounded local cliquewidth if there exists a function *lcw* : N → N s.t. every radius-*r* ball B in a graph from C has *cw*(B) ≤ *lcw*(r).
- FO model checking is fpt.

Classes of Bounded Local Cliquewidth

• The cliquewidth cw(G) of a graph G is a measure for how well it decomposes.

- A class C has bounded local cliquewidth if there exists a function *lcw* : N → N s.t. every radius-*r* ball B in a graph from C has *cw*(B) ≤ *lcw*(r).
- FO model checking is fpt.
- Examples: bd. (local) treewidth, planar graphs, bd. degree

Interpretations

 $\varphi(x, y) = \operatorname{Purple}(x) \wedge \operatorname{Red}(y) \wedge \operatorname{dist}(x, y) \leq 2$

Model Checking Interpretations

Conjecture

If FO model checking is fpt on a class C, then for every formula φ , it is also fpt on the class $\mathcal{I}_{\varphi}(C) = \{\mathcal{I}_{\varphi}(G) : G \in C\}.$

So far this conjecture was proven for:

- classes of bd. cliquewidth \checkmark (trivial)
- classes of bd. degree

√(Gajarský et al., 2018)

Model Checking Interpretations

Conjecture

If FO model checking is fpt on a class C, then for every formula φ , it is also fpt on the class $\mathcal{I}_{\varphi}(C) = \{\mathcal{I}_{\varphi}(G) : G \in C\}.$

So far this conjecture was proven for:

- classes of bd. cliquewidth \checkmark (trivial)
- classes of bd. degree

• and now:

Theorem (Our Result)

FO model checking is fpt on interpretations of classes of bounded local cliquewidth.

 \checkmark (Gajarský et al., 2018)

Idea: Use tractability of base class C.

Problem: Calculating a preimage $G \in C$ from $H = \mathcal{I}_{\varphi}(G)$ is hard even for squares!

Idea: Use tractability of base class C.

Problem: Calculating a preimage $G \in C$ from $H = \mathcal{I}_{\varphi}(G)$ is hard even for squares!

Goal: Find a preimage G' from another tractable class C' such that

$$\mathcal{I}_{\varphi'}(G') = H = \mathcal{I}_{\varphi}(G).$$

Bounded Range Interpretations

Lemma (Gajarský et al., 2020; Nešetřil et al., 2021)

Every interpretation \mathcal{I}_{φ} is equivalent to a composition of

1. a local part: a bounded range interpretation $\mathcal{I}_{\varphi'}$

2. a global part: a bounded number of flips.

Bounded Range Interpretations

Lemma (Gajarský et al., 2020; Nešetřil et al., 2021)

Every interpretation \mathcal{I}_{φ} is equivalent to a composition of

- 1. a local part: a bounded range interpretation $\mathcal{I}_{\varphi'}$
- 2. a global part: a bounded number of flips.

 $\varphi(x, y)$ has range r if $G \models \varphi(u, v)$ implies $\operatorname{dist}_G(u, v) \leq r$.

- $\varphi_1(x,y) = \exists z_1 \neq z_2 : \{z_1, z_2\} \in N(x) \cap N(y)$ has range 2.
- $\varphi_2(x,y) = \neg(x \sim y)$ has unbounded range.

Bounded Range Interpretations

Lemma (Gajarský et al., 2020; Nešetřil et al., 2021)

Every interpretation \mathcal{I}_{φ} is equivalent to a composition of

- 1. a local part: a bounded range interpretation $\mathcal{I}_{\varphi'}$
- 2. a global part: a bounded number of flips.

 $\varphi(x, y)$ has range r if $G \models \varphi(u, v)$ implies $\operatorname{dist}_G(u, v) \leq r$.

- $\varphi_1(x,y) = \exists z_1 \neq z_2 : \{z_1, z_2\} \in N(x) \cap N(y)$ has range 2.
- $\varphi_2(x,y) = \neg(x \sim y)$ has unbounded range.

Lemma

If φ has bounded range and C has bounded lcw, then $\mathcal{I}_{\varphi}(C)$ has bounded lcw aswell.

Flips

Applying a bounded number of flips to a graph G:

- Partition V(G) into a bounded number of parts.
- Complement edges running between selected pairs of parts.

Example: We flip (\bullet, \bullet) , (\bullet, \bullet) , and (\bullet, \bullet) :

Flips

Applying a bounded number of flips to a graph G:

- Partition V(G) into a bounded number of parts.
- Complement edges running between selected pairs of parts.

Example: We flip (\bullet, \bullet) , (\bullet, \bullet) , and (\bullet, \bullet) :

Question: How to partition V(G)?

Lemma (Main Lemma)

For every NIP class of graphs C and interpretation \mathcal{I}_{ϕ} ,

Lemma (Main Lemma)

For every NIP class of graphs C and interpretation \mathcal{I}_{φ} , there exist $s, r \in \mathbb{N}$ s.t. for every $G \in C$ there exists a set $S \subseteq V(G)$ of size s,

Lemma (Main Lemma)

For every NIP class of graphs C and interpretation \mathcal{I}_{φ} , there exist $s, r \in \mathbb{N}$ s.t. for every $G \in C$ there exists a set $S \subseteq V(G)$ of size s, s.t. for every pair u, v with distance $\geq r$ in G, whether $G \models \varphi(u, v)$ holds depends only on $\varphi(u, S)$ and $\varphi(v, S)$.

Lemma (Main Lemma)

For every NIP class of graphs C and interpretation \mathcal{I}_{φ} , there exist $s, r \in \mathbb{N}$ s.t. for every $G \in C$ there exists a set $S \subseteq V(G)$ of size s, s.t. for every pair u, v with distance $\geq r$ in G, whether $G \models \varphi(u, v)$ holds depends only on $\varphi(u, S)$ and $\varphi(v, S)$.

 $\varphi(u, S) = \varphi(u', S) = \{s_1, s_2\} \text{ and } \varphi(v, S) = \varphi(v', S) = \{s_4, s_6\}$ $\Rightarrow G \models \varphi(u, v) \Leftrightarrow G \models \varphi(u', v').$

Algorithm:

1. Guess the set of sample vertices S.

n^s choices

Algorithm:

- 1. Guess the set of sample vertices S. n^s choices
- 2. Partition the vertices of G according to S.

^s choices 2^s parts

Algorithm:

- 1. Guess the set of sample vertices S.
- 2. Partition the vertices of G according to S.
- 3. Guess between which parts to flip.

```
n<sup>s</sup> choices
2<sup>s</sup> parts
2<sup>2<sup>s</sup></sup> choices
```

Algorithm:

1. Guess the set of sample vertices S. n^s choices

2^s parts 2^{2s} choices

- 2. Partition the vertices of G according to S.
- 3. Guess between which parts to flip.
- 4. Evaluate a rewritten version of ψ on the flipped graph.

Algorithm:

- 1. Guess the set of sample vertices S.
- 2. Partition the vertices of G according to S.
- 3. Guess between which parts to flip.
- 4. Evaluate a rewritten version of ψ on the flipped graph.

Takeaway:

- Interpretations...
 - ... are a flexible framework to manipulate graphs
 - ... are composed of a local part and some flips
- We show how to efficiently reverse the flips
- This results in fpt FO model checking for interpretations of bounded local cliquewidth
 - "an fpt algorithm for a huge class of problems on lots of interesting graph classes"

 n^{s} choices 2^{s} parts $2^{2^{2s}}$ choices

Classes of Bounded Cliquewidth

- The cliquewidth cw(G) of a graph G is a treelike decomposition measure.
- A class C has bounded cliquewidth if there exists an integer w such that for all G ∈ C we have cw(G) ≤ w.
- FO model checking runs in time $f(\varphi, cw(G)) \cdot n^3$.

by David Eppstein under CC0

The Locality Method

Some complexity measures are locally closed:

- planar = locally planar
- bd. degree = locally bd. degree
- nowhere dense = locally nowhere dense

Some are not:

- bd. cliquewidth $\ \ \subseteq$ bd. local cliquewidth
- bd. treewidth $\ \ \, \subsetneq$ bd. local treewidth
- bd. expansion $\ \ \, \subseteq$ locally bd. expansion

Theorem (Frick and Grohe, 2001)

If FO model checking is solvable in time $f(\psi, C) \cdot n^c$ for every class C with property \mathcal{P} , then it is also fpt on every class with locally \mathcal{P} .

Model Checking Interpretations

Some complexity measures are closed under interpretations:

 $= \mathcal{I}(\mathsf{bd. shrubdepth})$

- bd. cliquewidth $= \mathcal{I}(bd. cliquewidth)$
- bd. shrubdepth
- bd. twinwidth $= \mathcal{I}(bd. twinwidth)$

Some are not:

- bd. local cliquewidth $\subseteq \mathcal{I}(bd. local cliquewidth)$
- planar $\subsetneq \mathcal{I}(\mathsf{planar})$
- nowhere dense $\subsetneq \mathcal{I}(nowhere dense)$

Conjecture

If FO model checking is fpt on a class C, then for every interpretation \mathcal{I} , it is also fpt on the class $\mathcal{I}(C) = \{\mathcal{I}(G) : G \in C\}$.

Bounded Range Interpretations of LCW Classes

Lemma

If \mathcal{I} has bounded range and \mathcal{C} has bounded lcw, then $\mathcal{I}(\mathcal{C})$ has bounded lcw aswell.

