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Goal: lift algorithmic results to dense classes of graphs.
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Monadic Stability

Definition (Monadic stability)

A class of graphs C is monadically stable if there exists no interpretation, that
interprets the class of all half graphs in colorings of C.

The half graph of order k:

ay as as e ag
E(ai,b]-) X} S]

b1 bz b3 e bk



Monadic Stability

Definition (Monadic stability)

A class of graphs C is monadically stable if there exists no interpretation, that
interprets the class of all half graphs in colorings of C.

The half graph of order k:
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Definition (Monadic NIP)

A class of graphs C is monadically NIP if there exists no interpretation, that interprets
the class of all graphs in colorings of C.
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Definition (Monadic NIP, alternative definition)

A class of graphs C is monadically NIP if there exists no interpretation, that interprets
the class of all one-subdivided bicliques in colorings of C.
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Our Results I: Regularity

Theorem (Our result, simplified)

For every monadically stable class C, there exist a
real 8, s.t. for every sufficiently large graph G € C
there exists an equipartition into parts of size n°,
s.t. after omitting one element from each part:

1. Every part is a clique or an independent set.
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Our Results I: Regularity

Theorem (Our result, simplified)

For every monadically stable class C, there exist a
real 9, s.t. for every sufficiently large graph G € C
there exists an equipartition into parts of size n°,
s.t. after omitting one element from each part:

1. Every part is a clique or an independent set.

2. For every two parts A and B, after omitting
one vertex per part, A and B semi-induce
e a subgraph of a matching, or
e a supergraph of a co-matching.
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Our Results Il: Ramsey Numbers

Ramsey’s Theorem

Every graph contains an independent set or clique of size Q(log(n)).

Theorem (Ajtai, Komlés, Szemerédi, 1980)

Every graph that excludes Ks, contains an independent set size at least

Q(n=7 - log(n)+1).

Theorem (Our result)

For every monadically stable class C of graphs which excludes K, there exist a rea/

0 > 0 s.t. every graph G € C contains an independent set of size at least Q(ns—1 1+6).



Our Results IlI: Bicliques in Subdivisions

Theorem

For every monadically stable class C and integer r, there exists a real 6 > 0, such that

every graph G € C that contains sd,(Ky ) as a subgraph, also contains Kino1,rne7 @S @
subgraph.
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Theorem

For every monadically stable class C and integer r, there exists a real § > 0, such that

every graph G € C that contains sd,(Ky ) as a subgraph, also contains Kino1,rne7 @S @
subgraph.




Powers of Nowhere Dense Graphs

Powers: The dth power G9 of a graph G is obtained by adding an edge to any pair of
vertices in G, that are at distance at most d.

Example: a graph and its second power:

|
N

Taking fixed powers preserves monadic stability but not sparsity.
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Powers: The dth power G? of a graph G is obtained by adding an edge to any pair of
vertices in G, that are at distance at most d.

Example: a graph and its second power:

I
N

Taking fixed powers preserves monadic stability but not sparsity.

Corollary (Fabianski et al., 2019)

INDEPENDENT SET and DOMINATING SET are fixed-parameter tractable on powers
of nowhere dense graphs.




Our Results IV: Polynomial Kernels in Powers of Nowhere Dense Graphs

Theorem (Our result)

For every nowhere dense class C and integer d, INDEPENDENT SET and DOMINATING
SET parameterized by solution size k admit a polynomial kernel on C¢.

Kernels: we efficiently compute from G € C a graph H s.t.
e G hasa DS of size k iff. H has a DS of size k + 1,



Our Results 1V: Polynomial Kernels in Powers of Nowhere Dense Graphs

Theorem (Our result)

For every nowhere dense class C and integer d, INDEPENDENT SET and DOMINATING
SET parameterized by solution size k admit a polynomial kernel on C¢.
Kernels: we efficiently compute from G € C a graph H s.t.

e G hasa DS of size k iff. H has a DS of size k + 1,

e H has size at most kf, for some t depending on C and d.



Towards Algorithms for Monadically Stable Classes

A crucial ingredient of our proof: powers of nowhere dense graphs do not contain big
co-matchings.

Finding fpt algorithms for INDEPENDENT SET and DOMINATING SET on monadically
stable classes is still an open problem. However...



Towards Algorithms for Monadically Stable Classes

A crucial ingredient of our proof: powers of nowhere dense graphs do not contain big
co-matchings.

Finding fpt algorithms for INDEPENDENT SET and DOMINATING SET on monadically
stable classes is still an open problem. However...

Theorem (Dreier, NM, Siebertz, 2022+)

The first-order model checking problem is fixed parameter tractable in interpretations
of nowhere dense classes.



Summary

Regularity:

&

Bicliques in Subdivisions:

Ramsey Numbers:

Theorem

For every monadically stable class C of
graphs which excludes Ks, there exist a real
0 > 0 s.t. every graph G € C contains an

1
independent set of size at least Q(n+11°).

Kernels:

Theorem

For every nowhere dense class C and integer
d, INDEPENDENT SET and DOMINATING
SET parameterized by solution size k admit
a polynomial kernel on C€.
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©(x1,...,xx) € A has a constant truth value for every k-element subsequence of /.
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The Main Tool: Indiscernible Sequences

Definition
A sequence | = (vi,...,vy) of vertices in a graph is A-indiscernible if every formula
©(x1,...,xx) € A has a constant truth value for every k-element subsequence of /.

I = (V1)7 V3)7 V5, V67) Vg, Vo, . . )
G = (va, va, v7)

Example: a {E(x,y)}-indiscernible sequence is either a clique or an independent set.
For every (monadically) stable class C and formula set A there exists 0 < 6 < 1, s.t.
every sequence of length n contains a A-indiscernible sequence

e which has length at least n’ for some 0 < § < 1, [Malliaris, Shelah, 2011]

e and which can be extracted efficiently. [Kreutzer, Rabinovich, Siebertz, 2018]



Indiscernible Sequences in Monadically Stable Classes

For every {nowhere dense, monadically stable, monadically NIP} class there exist a set
A, s.t. every sufficiently long A-indiscernible sequence witnesses one of the following
connection patterns with regard to every vertex in the graph:

homogenous single exception single alternation

¢ o 6 o o o o o » « o e o o o o »
nowhere dense

monadically stable

monadically NIP

[Kreutzer, Rabinovich, Siebertz, 2018], [Dreier, NM, Toruriczyk, Siebertz, 2022], [Blumensath, 2011]



