Combinatorial and Algorithmic Aspects of Monadic Stability

Jan Dreier, <u>Nikolas Mählmann</u>, Amer E. Mouawad, Sebastian Siebertz, Alexandre Vigny

ISAAC 2022, 20.12.2022

Nowhere dense classes enjoy strong algorithmic and combinatorial properties:

• fpt FO model checking [Grohe, Kreutzer, Siebertz, 2014]

Nowhere dense classes enjoy strong algorithmic and combinatorial properties:

- fpt FO model checking [Grohe, Kreutzer, Siebertz, 2014]
- dominating set kernels
 - distance 1: almost linear [Drange et al., 2016]
 - distance r: polynomial [Kreutzer, Rabinovich, Siebertz, 2018]]

Nowhere dense classes enjoy strong algorithmic and combinatorial properties:

- fpt FO model checking [Grohe, Kreutzer, Siebertz, 2014]
- dominating set kernels
 - distance 1: almost linear [Drange et al., 2016]
 - distance r: polynomial [Kreutzer, Rabinovich, Siebertz, 2018]]

But they fail to capture even simple dense classes! (e.g. the class of all cliques)

Nowhere dense classes enjoy strong algorithmic and combinatorial properties:

- fpt FO model checking [Grohe, Kreutzer, Siebertz, 2014]
- dominating set kernels
 - distance 1: almost linear [Drange et al., 2016]
 - distance r: polynomial [Kreutzer, Rabinovich, Siebertz, 2018]]

But they fail to capture even simple dense classes! (e.g. the class of all cliques)

Goal: lift algorithmic results to dense classes of graphs.

Interpretations

$$\varphi(x, y) = \text{Red}(x) \land \text{Red}(y) \land \text{dist}(x, y) = 3$$

$$\delta(x) = \neg \text{Green}(x)$$

Monadic Stability

Definition (Monadic stability)

A class of graphs $\mathcal C$ is monadically stable if there exists no interpretation, that interprets the class of **all half graphs** in colorings of $\mathcal C$.

The half graph of order k:

Monadic Stability

Definition (Monadic stability)

A class of graphs $\mathcal C$ is monadically stable if there exists no interpretation, that interprets the class of **all half graphs** in colorings of $\mathcal C$.

The half graph of order k:

Definition (Monadic NIP)

A class of graphs C is monadically NIP if there exists no interpretation, that interprets the class of **all graphs** in colorings of C.

Definition (Monadic NIP, alternative definition)

Dense Classes of Graphs

nowhere dense	\subsetneq monadically stable	\subsetneq monadically NIP
Uł	Uł	U
bd. sparse tww	\subsetneq bd. stable twinwidth	\subsetneq bd. twinwidth
Uł	Uł	U
bd. treewidth	\subsetneq bd. stable cliquewidth	\subsetneq bd. cliquewidth

Our Results I: Regularity

Theorem (Our result, simplified)

For every monadically stable class C, there exist a real δ , s.t. for every sufficiently large graph $G \in C$ there exists an equipartition into parts of size n^{δ} , s.t. after omitting one element from each part:

1. Every part is a clique or an independent set.

Our Results I: Regularity

Theorem (Our result, simplified)

For every monadically stable class C, there exist a real δ , s.t. for every sufficiently large graph $G \in C$ there exists an equipartition into parts of size n^{δ} , s.t. after omitting one element from each part:

- 1. Every part is a clique or an independent set.
- 2. For every two parts A and B, after omitting one vertex per part, A and B semi-induce
 - a subgraph of a matching, or

Our Results I: Regularity

Theorem (Our result, simplified)

For every monadically stable class C, there exist a real δ , s.t. for every sufficiently large graph $G \in C$ there exists an equipartition into parts of size n^{δ} , s.t. after omitting one element from each part:

- 1. Every part is a clique or an independent set.
- 2. For every two parts A and B, after omitting one vertex per part, A and B semi-induce
 - a subgraph of a matching, or
 - a supergraph of a co-matching.

Our Results II: Ramsey Numbers

Ramsey's Theorem

Every graph contains an independent set or clique of size $\Omega(\log(n))$.

Our Results II: Ramsey Numbers

Ramsey's Theorem

Every graph contains an independent set or clique of size $\Omega(\log(n))$.

Theorem (Ajtai, Komlós, Szemerédi, 1980)

Every graph that excludes K_s , contains an independent set size at least $\Omega(n^{\frac{1}{s-1}} \cdot \log(n)^{\frac{s-2}{s-1}})$.

Our Results II: Ramsey Numbers

Ramsey's Theorem

Every graph contains an independent set or clique of size $\Omega(\log(n))$.

Theorem (Ajtai, Komlós, Szemerédi, 1980)

Every graph that excludes K_s , contains an independent set size at least $\Omega(n^{\frac{1}{s-1}} \cdot \log(n)^{\frac{s-2}{s-1}})$.

Theorem (Our result)

For every monadically stable class $\mathcal C$ of graphs which excludes K_s , there exist a real $\delta>0$ s.t. every graph $G\in\mathcal C$ contains an independent set of size at least $\Omega(n^{\frac{1}{s-1}+\delta})$.

Our Results III: Bicliques in Subdivisions

Theorem

For every monadically stable class $\mathcal C$ and integer r, there exists a real $\delta>0$, such that every graph $G\in\mathcal C$ that contains $\mathrm{sd}_r(K_{n,n})$ as a subgraph, also contains $K_{\lceil n^\delta\rceil,\lceil n^\delta\rceil}$ as a subgraph.

Our Results III: Bicliques in Subdivisions

Theorem

For every monadically stable class $\mathcal C$ and integer r, there exists a real $\delta>0$, such that every graph $G\in\mathcal C$ that contains $\mathrm{sd}_r(K_{n,n})$ as a subgraph, also contains $K_{\lceil n^\delta\rceil,\lceil n^\delta\rceil}$ as a subgraph.

Our Results III: Bicliques in Subdivisions

Theorem

For every monadically stable class C and integer r, there exists a real $\delta > 0$, such that every graph $G \in C$ that contains $\mathrm{sd}_r(K_{n,n})$ as a subgraph, also contains $K_{\lceil n^\delta \rceil, \lceil n^\delta \rceil}$ as a subgraph.

Powers of Nowhere Dense Graphs

Powers: The dth power G^d of a graph G is obtained by adding an edge to any pair of vertices in G, that are at distance at most d.

Example: a graph and its second power:

Taking fixed powers preserves monadic stability but not sparsity.

Powers of Nowhere Dense Graphs

Powers: The dth power G^d of a graph G is obtained by adding an edge to any pair of vertices in G, that are at distance at most d.

Example: a graph and its second power:

Taking fixed powers preserves monadic stability but not sparsity.

Corollary (Fabianski et al., 2019)

INDEPENDENT SET and DOMINATING SET are fixed-parameter tractable on powers of nowhere dense graphs.

Our Results IV: Polynomial Kernels in Powers of Nowhere Dense Graphs

Theorem (Our result)

For every nowhere dense class C and integer d, Independent Set and Dominating Set parameterized by solution size k admit a polynomial kernel on C^d .

Kernels: we efficiently compute from $G \in \mathcal{C}$ a graph H s.t.

• G has a DS of size k iff. H has a DS of size k+1,

Our Results IV: Polynomial Kernels in Powers of Nowhere Dense Graphs

Theorem (Our result)

For every nowhere dense class C and integer d, Independent Set and Dominating Set parameterized by solution size k admit a polynomial kernel on C^d .

Kernels: we efficiently compute from $G \in \mathcal{C}$ a graph H s.t.

- G has a DS of size k iff. H has a DS of size k+1,
- H has size at most k^t , for some t depending on C and d.

Towards Algorithms for Monadically Stable Classes

A crucial ingredient of our proof: powers of nowhere dense graphs do not contain big co-matchings.

Finding fpt algorithms for INDEPENDENT SET and DOMINATING SET on monadically stable classes is still an open problem. However...

Towards Algorithms for Monadically Stable Classes

A crucial ingredient of our proof: powers of nowhere dense graphs do not contain big co-matchings.

Finding fpt algorithms for INDEPENDENT SET and DOMINATING SET on monadically stable classes is still an open problem. However...

Theorem (Dreier, NM, Siebertz, 2022+)

The first-order model checking problem is fixed parameter tractable in interpretations of nowhere dense classes.

Summary

Regularity:

Bicliques in Subdivisions:

Ramsey Numbers:

Theorem

For every monadically stable class $\mathcal C$ of graphs which excludes K_s , there exist a real $\delta>0$ s.t. every graph $G\in\mathcal C$ contains an independent set of size at least $\Omega(n^{\frac{1}{s-1}+\delta})$.

Kernels:

Theorem

For every nowhere dense class \mathcal{C} and integer d, Independent Set and Dominating Set parameterized by solution size k admit a polynomial kernel on \mathcal{C}^d .

Definition

A sequence $I=(v_1,\ldots,v_n)$ of vertices in a graph is Δ -indiscernible if every formula $\varphi(x_1,\ldots,x_k)\in \Delta$ has a constant truth value for every k-element subsequence of I.

Definition

A sequence $I=(v_1,\ldots,v_n)$ of vertices in a graph is Δ -indiscernible if every formula $\varphi(x_1,\ldots,x_k)\in\Delta$ has a constant truth value for every k-element subsequence of I.

$$I = (\boxed{v_1}, \boxed{v_2}, \boxed{v_3}, v_4, v_5, v_6, v_7, v_8, v_9, \ldots)$$
$$G \models \varphi(v_1, v_2, v_3)$$

Definition

A sequence $I = (v_1, \dots, v_n)$ of vertices in a graph is Δ -indiscernible if every formula $\varphi(x_1, \dots, x_k) \in \Delta$ has a constant truth value for every k-element subsequence of I.

$$I = (v_1, \boxed{v_2}, v_3, \boxed{v_4}, v_5, v_6, \boxed{v_7}, v_8, v_9, \ldots)$$
$$G \models \varphi(v_2, v_4, v_7)$$

Definition

A sequence $I=(v_1,\ldots,v_n)$ of vertices in a graph is Δ -indiscernible if every formula $\varphi(x_1,\ldots,x_k)\in\Delta$ has a constant truth value for every k-element subsequence of I.

$$I = ([v_1], [v_2], [v_3], v_4, v_5, v_6, v_7, v_8, v_9, \ldots)$$

$$G \not\models \psi(v_1, v_2, v_3)$$

Definition

A sequence $I = (v_1, \dots, v_n)$ of vertices in a graph is Δ -indiscernible if every formula $\varphi(x_1, \dots, x_k) \in \Delta$ has a constant truth value for every k-element subsequence of I.

$$I = (v_1, \boxed{v_2}, v_3, \boxed{v_4}, v_5, v_6, \boxed{v_7}, v_8, v_9, \ldots)$$
$$G \not\models \psi(v_2, v_4, v_7)$$

Definition

A sequence $I = (v_1, \dots, v_n)$ of vertices in a graph is Δ -indiscernible if every formula $\varphi(x_1, \dots, x_k) \in \Delta$ has a constant truth value for every k-element subsequence of I.

$$I = (v_1, \boxed{v_2}, v_3, \boxed{v_4}, v_5, v_6, \boxed{v_7}, v_8, v_9, \ldots)$$
$$G \not\models \psi(v_2, v_4, v_7)$$

Example: a $\{E(x,y)\}$ -indiscernible sequence is either a clique or an independent set.

Definition

A sequence $I = (v_1, \dots, v_n)$ of vertices in a graph is Δ -indiscernible if every formula $\varphi(x_1, \dots, x_k) \in \Delta$ has a constant truth value for every k-element subsequence of I.

$$I = (v_1, \boxed{v_2}, v_3, \boxed{v_4}, v_5, v_6, \boxed{v_7}, v_8, v_9, \ldots)$$
$$G \not\models \psi(v_2, v_4, v_7)$$

Example: a $\{E(x,y)\}$ -indiscernible sequence is either a clique or an independent set.

For every (monadically) stable class $\mathcal C$ and formula set Δ there exists $0<\delta\leq 1$, s.t. every sequence of length n contains a Δ -indiscernible sequence

• which has length at least n^{δ} for some $0 < \delta \le 1$,

[Malliaris, Shelah, 2011]

and which can be extracted efficiently.

[Kreutzer, Rabinovich, Siebertz, 2018]

Indiscernible Sequences in Monadically Stable Classes

For every {nowhere dense, monadically stable, monadically NIP} class there exist a set Δ , s.t. every sufficiently long Δ -indiscernible sequence witnesses one of the following connection patterns with regard to every vertex in the graph:

[Kreutzer, Rabinovich, Siebertz, 2018], [Dreier, NM, Toruńczyk, Siebertz, 2022], [Blumensath, 2011]