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Sparse Classes of Graphs

© Felix Reidl

Nowhere dense classes enjoy strong
algorithmic and combinatorial properties:

• fpt FO model checking
[Grohe, Kreutzer, Siebertz, 2014]

• dominating set kernels

• distance 1: almost linear
[Drange et al., 2016]

• distance r : polynomial
[Kreutzer, Rabinovich, Siebertz, 2018]]

But they fail to capture even simple dense
classes! (e.g. the class of all cliques)

Goal: lift algorithmic results to dense classes of graphs.
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Interpretations

Iφ,δ

G+ Iφ,δ(G
+)

φ(x , y) = Red(x) ∧ Red(y) ∧ dist(x , y) = 3

δ(x) = ¬Green(x)



Monadic Stability

Definition (Monadic stability)

A class of graphs C is monadically stable if there exists no interpretation, that
interprets the class of all half graphs in colorings of C.

The half graph of order k :
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Definition (Monadic NIP)

A class of graphs C is monadically NIP if there exists no interpretation, that interprets
the class of all graphs in colorings of C.
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Monadic NIP

Definition (Monadic NIP, alternative definition)

A class of graphs C is monadically NIP if there exists no interpretation, that interprets
the class of all one-subdivided bicliques in colorings of C.
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Dense Classes of Graphs
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Our Results I: Regularity

Theorem (Our result, simplified)

For every monadically stable class C, there exist a
real δ, s.t. for every sufficiently large graph G ∈ C
there exists an equipartition into parts of size nδ,
s.t. after omitting one element from each part:

1. Every part is a clique or an independent set.

2. For every two parts A and B, after omitting
one vertex per part, A and B semi-induce

• a subgraph of a matching, or

• a supergraph of a co-matching.
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Our Results II: Ramsey Numbers

Ramsey’s Theorem

Every graph contains an independent set or clique of size Ω(log(n)).

Theorem (Ajtai, Komlós, Szemerédi, 1980)

Every graph that excludes Ks , contains an independent set size at least

Ω(n
1

s−1 · log(n)
s−2
s−1 ).

Theorem (Our result)

For every monadically stable class C of graphs which excludes Ks , there exist a real

δ > 0 s.t. every graph G ∈ C contains an independent set of size at least Ω(n
1

s−1
+δ).
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Our Results III: Bicliques in Subdivisions

Theorem

For every monadically stable class C and integer r , there exists a real δ > 0, such that
every graph G ∈ C that contains sdr (Kn,n) as a subgraph, also contains K⌈nδ⌉,⌈nδ⌉ as a
subgraph.
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Powers of Nowhere Dense Graphs

Powers: The dth power Gd of a graph G is obtained by adding an edge to any pair of
vertices in G , that are at distance at most d .

Example: a graph and its second power:

Taking fixed powers preserves monadic stability but not sparsity.

Corollary (Fabianski et al., 2019)

Independent Set and Dominating Set are fixed-parameter tractable on powers
of nowhere dense graphs.
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Our Results IV: Polynomial Kernels in Powers of Nowhere Dense Graphs

Theorem (Our result)

For every nowhere dense class C and integer d, Independent Set and Dominating
Set parameterized by solution size k admit a polynomial kernel on Cd .

Kernels: we efficiently compute from G ∈ C a graph H s.t.

• G has a DS of size k iff. H has a DS of size k + 1,

• H has size at most kt , for some t depending on C and d .
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Towards Algorithms for Monadically Stable Classes

A crucial ingredient of our proof: powers of nowhere dense graphs do not contain big
co-matchings.

Finding fpt algorithms for Independent Set and Dominating Set on monadically
stable classes is still an open problem. However...

Theorem (Dreier, NM, Siebertz, 2022+)

The first-order model checking problem is fixed parameter tractable in interpretations
of nowhere dense classes.
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Summary

Regularity: Ramsey Numbers:

Theorem

For every monadically stable class C of
graphs which excludes Ks , there exist a real
δ > 0 s.t. every graph G ∈ C contains an

independent set of size at least Ω(n
1

s−1
+δ).

Bicliques in Subdivisions: Kernels:

Theorem

For every nowhere dense class C and integer
d, Independent Set and Dominating
Set parameterized by solution size k admit
a polynomial kernel on Cd .



The Main Tool: Indiscernible Sequences

Definition

A sequence I = (v1, . . . , vn) of vertices in a graph is ∆-indiscernible if every formula
φ(x1, . . . , xk) ∈ ∆ has a constant truth value for every k-element subsequence of I .



The Main Tool: Indiscernible Sequences

Definition

A sequence I = (v1, . . . , vn) of vertices in a graph is ∆-indiscernible if every formula
φ(x1, . . . , xk) ∈ ∆ has a constant truth value for every k-element subsequence of I .

I = ( v1 , v2 , v3 , v4, v5, v6, v7, v8, v9, . . .)

G |= φ(v1, v2, v3)



The Main Tool: Indiscernible Sequences

Definition

A sequence I = (v1, . . . , vn) of vertices in a graph is ∆-indiscernible if every formula
φ(x1, . . . , xk) ∈ ∆ has a constant truth value for every k-element subsequence of I .

I = (v1, v2 , v3, v4 , v5, v6, v7 , v8, v9, . . .)

G |= φ(v2, v4, v7)



The Main Tool: Indiscernible Sequences

Definition

A sequence I = (v1, . . . , vn) of vertices in a graph is ∆-indiscernible if every formula
φ(x1, . . . , xk) ∈ ∆ has a constant truth value for every k-element subsequence of I .

I = ( v1 , v2 , v3 , v4, v5, v6, v7, v8, v9, . . .)

G ̸|= ψ(v1, v2, v3)



The Main Tool: Indiscernible Sequences

Definition

A sequence I = (v1, . . . , vn) of vertices in a graph is ∆-indiscernible if every formula
φ(x1, . . . , xk) ∈ ∆ has a constant truth value for every k-element subsequence of I .

I = (v1, v2 , v3, v4 , v5, v6, v7 , v8, v9, . . .)

G ̸|= ψ(v2, v4, v7)



The Main Tool: Indiscernible Sequences

Definition

A sequence I = (v1, . . . , vn) of vertices in a graph is ∆-indiscernible if every formula
φ(x1, . . . , xk) ∈ ∆ has a constant truth value for every k-element subsequence of I .

I = (v1, v2 , v3, v4 , v5, v6, v7 , v8, v9, . . .)

G ̸|= ψ(v2, v4, v7)

Example: a {E (x , y)}-indiscernible sequence is either a clique or an independent set.



The Main Tool: Indiscernible Sequences

Definition

A sequence I = (v1, . . . , vn) of vertices in a graph is ∆-indiscernible if every formula
φ(x1, . . . , xk) ∈ ∆ has a constant truth value for every k-element subsequence of I .

I = (v1, v2 , v3, v4 , v5, v6, v7 , v8, v9, . . .)

G ̸|= ψ(v2, v4, v7)

Example: a {E (x , y)}-indiscernible sequence is either a clique or an independent set.

For every (monadically) stable class C and formula set ∆ there exists 0 < δ ≤ 1, s.t.
every sequence of length n contains a ∆-indiscernible sequence

• which has length at least nδ for some 0 < δ ≤ 1, [Malliaris, Shelah, 2011]

• and which can be extracted efficiently. [Kreutzer, Rabinovich, Siebertz, 2018]



Indiscernible Sequences in Monadically Stable Classes
For every {nowhere dense, monadically stable, monadically NIP} class there exist a set
∆, s.t. every sufficiently long ∆-indiscernible sequence witnesses one of the following
connection patterns with regard to every vertex in the graph:

nowhere dense

monadically stable
monadically NIP

homogenous single exception single alternation

[Kreutzer, Rabinovich, Siebertz, 2018], [Dreier, NM, Toruńczyk, Siebertz, 2022], [Blumensath, 2011]


