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The order-property
Fix a logic L ∈ {FO,MSO}, an L-formula φ(x̄ , ȳ), and a graph class C.

φ has the order-property on C, if for every ℓ ∈ N there is a graph G ∈ C and a
sequence āi , . . . , āℓ of tuples of vertices of G , such that for all i , j ∈ [ℓ]

G |= φ(āi , āj) ⇔ i ≤ j .

Example FO: φ(x , y) := “N(x) ⊇ N(y)”

a1 a2 a3 a4

b1 b2 b3 b4

a1 ≺φ a2 ≺φ a3 ≺φ a4

Example MSO: ψ(x1x2, y1y2) := “x1 and x2 are not connected after deleting y1”

p1 p2 p3 p4 p5 p6 p1p6 ≺ψ p2p6 ≺ψ p3p6 ≺ψ · · · ≺ψ p6p6
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Stability
For a logic L, a graph class C is L-stable, if no L-formula has the order-property on C.

Examples FO-stability:
• planar graphs
• map graphs
• bounded tree-width
• bounded degree

Nonexamples FO-stability:
• the class of all half-graphs
• the class of all 1-subdivided
graphs

Examples MSO-stability:
• bounded tree-depth
• bounded shrub-depth

Nonexamples MSO-stability:
• the class of all paths

Hereditary FO-stable classes are very well-behaved: various combinatorial
characterizations, fpt FO model checking...

Motivating question: Can MSO-stable classes also be combinatorially characterized?
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First main result

Theorem

A hereditary graph class is MSO-stable iff it has bounded SC-depth
(or equivalently: bounded shrub-depth).

SC-depth is a dense analog of tree-depth.
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SC-Depth

SC0 := {K1}, SCk+1 := set complements of a disjoint unions of graphs from SCk .

SC-depth 0
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SC-Depth

SC0 := {K1}, SCk+1 := set complements of a disjoint unions of graphs from SCk .
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Theorem

A hereditary graph class is MSO-stable iff it has bounded SC-depth
(or equivalently: bounded shrub-depth).

Corollary: also hereditary MSO-stable classes are well-behaved:

• fpt MSO model checking,

• poly time graph isomorphism,

• various combinatorial characterizations.

bounded SC-depth ⇒ MSO-stable mostly follows from combining existing facts.

Main contribution: unbounded SC-depth + hereditary ⇒ MSO-unstable.

Next up: a characterizing bounded SC-depth by forbidden induced subgraphs.
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Flips

P1 P2 P3 P1 P2 P3

is a 3-flip of
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is a 3-flip of

is a P-flip of
for P = {P1, P2, P3}
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Theorem

A class C has bounded SC-depth iff there is t ∈ N such that C excludes
all flipped Ht and all flipped tPt as induced subgraphs.

Ht = half-graph of order t; flipped Ht = {P1,P2}-flip of Ht .

tPt = disjoint union of t many Pt ; flipped tPt = flip of tPt respecting layers.

L1 L2 L3 L4 L5 L6 L7 L8

Next up: large flipped Ht and tPt ⇒ large SC-depth
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Lemma

Every set complement of a huge flipped Ht contains again a still large flipped Hs .
Every set complement of a huge flipped tPt contains again a still large flipped sPs .

By the pigeonhole principle:

large flipped Ht or tPt ⇒ unbounded SC-depth ✓

unbounded SC-depth ⇒ large flipped Ht or tPt : uses techniques from FO-stability
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Characterizing SC-depth by forbidden induced subgraphs

Theorem

A class C has bounded SC-depth iff there is t ∈ N such that C excludes
all flipped Ht and all flipped tPt as induced subgraphs.
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Hereditary + unbounded SC-depth ⇒ MSO-unstable

Theorem

Every hereditary class of unbounded SC-depth FO-interprets the class of all paths.

The interpretation Iδ,φ is defined by a formulas δ(x), φ(x , y) for domain and edges.

Example: δ(x) := deg(x) > 2 and φ(x , y) := dist(x , y) ≤ 3

G Iδ,ϕ(G)

Iδ,ϕ
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Interpreting paths in half-graphs

Domain formula δ(x) = “x has a neighbor that has a twin”.

Edge formula “φ(x , y) = the neighborhood of x and y differs in exactly one vertex”.
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Interpreting Pt an induced subgraph of a flipped 5Pt

δ

¬δ

Domain formula δ(x) = “x has no twins”.

To undo flips: Classify vertices by neighborhood in ¬δ.

Theorem

A hereditary graph class is MSO-stable iff it has bounded SC-depth.
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Main theorem

Theorem

For every hereditary graph class C, the following are equivalent.
1. C has bounded SC-depth (equivalently shrub-depth).
2. There is a t ∈ N such that C excludes all flipped Ht and all flipped tPt .
3. C does not FO-interpret the class of all paths.
4. C is MSO-stable.
5. ???
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The expressive power of MSO

FO and MSO have the same expressive power on a graph class C if for every
MSO-sentence φ there is an FO-sentence ψ such that for all G ∈ C:

G |= φ⇔ G |= ψ.

Theorem [Gajarský and Hliněný; 2015]

FO and MSO have the same expressive power on every class of bounded SC-depth.

We show:

Theorem

MSO is more expressive than FO on every hereditary class of unbounded SC-depth.
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Separating MSO and FO on flipped half-graphs

We first separate MSO and FO on the class of paths.

Even length on paths is expressible in MSO:

Quantify 2-coloring and check if the endpoints have different colors.

Even length on paths is not expressible in FO. (Ehrenfeucht-Fräıssé Games)

(In)expressibility lifts to flipped half-graphs. ✓
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Separating MSO and FO on flipped tPt

The previous trick does not work on tPts:

The flipped tPt in C could be totally different from the flipped (t + 1)Pt+1 in C.

Instead, we separate two induced subgraphs of the same flipped tPt :

FO cannot distinguish between the above two graphs (Hanf Locality), but MSO can.
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Summary

Theorem

For every hereditary graph class C, the following are equivalent.
1. C has bounded SC-depth (equivalently shrub-depth).
2. There is a t ∈ N such that C excludes all flipped Ht and all flipped tPt .
3. C does not FO-interpret the class of all paths.
4. C is MSO-stable.
5. FO and MSO have the same expressive power on C.

Thank you for listening! You might also enjoy my second talk:

Separability Properties of Monadically Dependent Graph Classes

Time: today 17:15, last talk of last ICALP track B session.
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