Forbidden Induced Subgraphs for Bounded Shrub-Depth and the Expressive Power of MSO

Nikolas Mählmann, University of Bremen

8th July 2025, ICALP 2025

The order-property

Fix a logic $\mathcal{L} \in \{FO, MSO\}$, an \mathcal{L} -formula $\varphi(\bar{x}, \bar{y})$, and a graph class \mathcal{C} .

 φ has the *order-property* on \mathcal{C} , if for every $\ell \in \mathbb{N}$ there is a graph $G \in \mathcal{C}$ and a sequence $\bar{a}_i, \ldots, \bar{a}_\ell$ of tuples of vertices of G, such that for all $i, j \in [\ell]$

$$G \models \varphi(\bar{a}_i, \bar{a}_j) \Leftrightarrow i \leq j.$$

The order-property

Fix a logic $\mathcal{L} \in \{FO, MSO\}$, an \mathcal{L} -formula $\varphi(\bar{x}, \bar{y})$, and a graph class \mathcal{C} .

 φ has the *order-property* on \mathcal{C} , if for every $\ell \in \mathbb{N}$ there is a graph $G \in \mathcal{C}$ and a sequence $\bar{a}_i, \ldots, \bar{a}_\ell$ of tuples of vertices of G, such that for all $i, j \in [\ell]$

$$G \models \varphi(\bar{a}_i, \bar{a}_j) \quad \Leftrightarrow \quad i \leq j.$$

Example FO: $\varphi(x,y) := "N(x) \supseteq N(y)"$

$$a_1 \prec_{\varphi} a_2 \prec_{\varphi} a_3 \prec_{\varphi} a_4$$

The order-property

Fix a logic $\mathcal{L} \in \{FO, MSO\}$, an \mathcal{L} -formula $\varphi(\bar{x}, \bar{y})$, and a graph class \mathcal{C} .

 φ has the *order-property* on \mathcal{C} , if for every $\ell \in \mathbb{N}$ there is a graph $G \in \mathcal{C}$ and a sequence $\bar{a}_i, \ldots, \bar{a}_\ell$ of tuples of vertices of G, such that for all $i, j \in [\ell]$

$$G \models \varphi(\bar{a}_i, \bar{a}_j) \Leftrightarrow i \leq j.$$

Example FO: $\varphi(x, y) := "N(x) \supseteq N(y)"$

$$a_1 \prec_{\varphi} a_2 \prec_{\varphi} a_3 \prec_{\varphi} a_4$$

Example MSO: $\psi(x_1x_2, y_1y_2) := "x_1 \text{ and } x_2 \text{ are not connected after deleting } y_1"$

$$p_1$$
 p_2 p_3 p_4 p_5 p_6

$$p_1p_6 \prec_{\psi} p_2p_6 \prec_{\psi} p_3p_6 \prec_{\psi} \cdots \prec_{\psi} p_6p_6$$

For a logic \mathcal{L} , a graph class \mathcal{C} is \mathcal{L} -stable, if no \mathcal{L} -formula has the order-property on \mathcal{C} .

For a logic \mathcal{L} , a graph class \mathcal{C} is \mathcal{L} -stable, if no \mathcal{L} -formula has the order-property on \mathcal{C} .

Examples FO-stability:

- planar graphs
- map graphs
- bounded tree-width
- bounded degree

Nonexamples FO-stability:

- the class of all half-graphs
- the class of all 1-subdivided graphs

For a logic \mathcal{L} , a graph class \mathcal{C} is \mathcal{L} -stable, if no \mathcal{L} -formula has the order-property on \mathcal{C} .

Examples FO-stability:

- planar graphs
- map graphs
- bounded tree-width
- bounded degree

Examples MSO-stability:

- bounded tree-depth
- bounded shrub-depth

Nonexamples FO-stability:

- the class of all half-graphs
- the class of all 1-subdivided graphs

Nonexamples MSO-stability:

the class of all paths

For a logic \mathcal{L} , a graph class \mathcal{C} is \mathcal{L} -stable, if no \mathcal{L} -formula has the order-property on \mathcal{C} .

Examples FO-stability:

- planar graphs
- map graphs
- bounded tree-width
- bounded degree

Examples MSO-stability:

- bounded tree-depth
- bounded shrub-depth

Nonexamples FO-stability:

- the class of all half-graphs
- the class of all 1-subdivided graphs

Nonexamples MSO-stability:

the class of all paths

Hereditary FO-stable classes are very well-behaved: various combinatorial characterizations, fpt FO model checking...

For a logic \mathcal{L} , a graph class \mathcal{C} is \mathcal{L} -stable, if no \mathcal{L} -formula has the order-property on \mathcal{C} .

Examples FO-stability:

- planar graphs
- map graphs
- bounded tree-width
- bounded degree

Examples MSO-stability:

- bounded tree-depth
- bounded shrub-depth

Nonexamples FO-stability:

- the class of all half-graphs
- the class of all 1-subdivided graphs

Nonexamples MSO-stability:

the class of all paths

Hereditary FO-stable classes are very well-behaved: various combinatorial characterizations, fpt FO model checking...

Motivating question: Can MSO-stable classes also be combinatorially characterized?

First main result

Theorem

A hereditary graph class is MSO-stable iff it has bounded SC-depth (or equivalently: bounded shrub-depth).

First main result

Theorem

A hereditary graph class is MSO-stable iff it has bounded SC-depth (or equivalently: bounded shrub-depth).

SC-depth is a dense analog of tree-depth.

 $SC_0 := \{K_1\}, \quad SC_{k+1} := set \ complements \ of \ a \ disjoint \ unions \ of \ graphs \ from \ SC_k.$

SC-depth $0 \bullet \bullet \bullet \bullet \bullet$

 $SC_0 := \{K_1\}, SC_{k+1} := set \ complements \ of a \ disjoint unions \ of graphs \ from \ SC_k.$

A hereditary graph class is MSO-stable iff it has bounded SC-depth (or equivalently: bounded shrub-depth).

Corollary: also hereditary MSO-stable classes are well-behaved:

- fpt MSO model checking,
- poly time graph isomorphism,
- various combinatorial characterizations.

A hereditary graph class is MSO-stable iff it has bounded SC-depth (or equivalently: bounded shrub-depth).

Corollary: also hereditary MSO-stable classes are well-behaved:

- fpt MSO model checking,
- poly time graph isomorphism,
- various combinatorial characterizations.

bounded SC-depth ⇒ MSO-stable mostly follows from combining existing facts.

Main contribution: unbounded SC-depth + hereditary \Rightarrow MSO-unstable.

A hereditary graph class is MSO-stable iff it has bounded SC-depth (or equivalently: bounded shrub-depth).

Corollary: also hereditary MSO-stable classes are well-behaved:

- fpt MSO model checking,
- poly time graph isomorphism,
- various combinatorial characterizations.

bounded SC-depth ⇒ MSO-stable mostly follows from combining existing facts.

Main contribution: unbounded SC-depth + hereditary \Rightarrow MSO-unstable.

Next up: a characterizing bounded SC-depth by forbidden induced subgraphs.

Flips

Flips

A class $\mathcal C$ has bounded SC-depth iff there is $t \in \mathbb N$ such that $\mathcal C$ excludes all flipped H_t and all flipped tP_t as induced subgraphs.

A class $\mathcal C$ has bounded SC-depth iff there is $t \in \mathbb N$ such that $\mathcal C$ excludes all flipped H_t and all flipped tP_t as induced subgraphs.

 $H_t = \text{half-graph of order } t; \quad \text{flipped } H_t = \{P_1, P_2\}\text{-flip of } H_t.$

A class $\mathcal C$ has bounded SC-depth iff there is $t \in \mathbb N$ such that $\mathcal C$ excludes all flipped H_t and all flipped tP_t as induced subgraphs.

 $H_t = \text{half-graph of order } t; \quad \text{flipped } H_t = \{P_1, P_2\}\text{-flip of } H_t.$

A class $\mathcal C$ has bounded SC-depth iff there is $t \in \mathbb N$ such that $\mathcal C$ excludes all flipped H_t and all flipped tP_t as induced subgraphs.

 $H_t = \text{half-graph of order } t; \quad \text{flipped } H_t = \{P_1, P_2\}\text{-flip of } H_t.$

 $tP_t = \text{disjoint union of } t \text{ many } P_t$; flipped $tP_t = \text{flip of } tP_t \text{ respecting layers.}$

A class C has bounded SC-depth iff there is $t \in \mathbb{N}$ such that C excludes all flipped H_t and all flipped tP_t as induced subgraphs.

 $H_t = \text{half-graph of order } t; \quad \text{flipped } H_t = \{P_1, P_2\}\text{-flip of } H_t.$

 $tP_t = \text{disjoint union of } t \text{ many } P_t$; flipped $tP_t = \text{flip of } tP_t \text{ respecting layers.}$

Next up: large flipped H_t and $tP_t \Rightarrow$ large SC-depth

Every set complement of a huge flipped H_t contains again a still large flipped H_s . Every set complement of a huge flipped tP_t contains again a still large flipped sP_s .

Every set complement of a huge flipped H_t contains again a still large flipped H_s . Every set complement of a huge flipped tP_t contains again a still large flipped sP_s .

Every set complement of a huge flipped H_t contains again a still large flipped H_s . Every set complement of a huge flipped tP_t contains again a still large flipped sP_s .

Every set complement of a huge flipped H_t contains again a still large flipped H_s . Every set complement of a huge flipped tP_t contains again a still large flipped sP_s .

Every set complement of a huge flipped H_t contains again a still large flipped H_s . Every set complement of a huge flipped tP_t contains again a still large flipped sP_s .

Every set complement of a huge flipped H_t contains again a still large flipped H_s . Every set complement of a huge flipped tP_t contains again a still large flipped sP_s .

Every set complement of a huge flipped H_t contains again a still large flipped H_s . Every set complement of a huge flipped tP_t contains again a still large flipped sP_s .

Every set complement of a huge flipped H_t contains again a still large flipped H_s . Every set complement of a huge flipped tP_t contains again a still large flipped sP_s .

Every set complement of a huge flipped H_t contains again a still large flipped H_s . Every set complement of a huge flipped tP_t contains again a still large flipped sP_s .

By the pigeonhole principle:

large flipped H_t or $tP_t \Rightarrow$ unbounded SC-depth \checkmark

Lemma

Every set complement of a huge flipped H_t contains again a still large flipped H_s . Every set complement of a huge flipped tP_t contains again a still large flipped sP_s .

By the pigeonhole principle:

large flipped H_t or $tP_t \Rightarrow$ unbounded SC-depth \checkmark unbounded SC-depth \Rightarrow large flipped H_t or tP_t : uses techniques from FO-stability

Characterizing SC-depth by forbidden induced subgraphs

Theorem

A class $\mathcal C$ has bounded SC-depth iff there is $t \in \mathbb N$ such that $\mathcal C$ excludes all flipped H_t and all flipped tP_t as induced subgraphs.

Hereditary + unbounded SC-depth \Rightarrow MSO-unstable

Theorem

Every hereditary class of unbounded SC-depth FO-interprets the class of all paths.

Hereditary + unbounded SC-depth \Rightarrow MSO-unstable

Theorem

Every hereditary class of unbounded SC-depth FO-interprets the class of all paths.

The interpretation $I_{\delta,\varphi}$ is defined by a formulas $\delta(x)$, $\varphi(x,y)$ for domain and edges.

Example:
$$\delta(x) := \deg(x) > 2$$
 and $\varphi(x, y) := \operatorname{dist}(x, y) \le 3$

Interpreting paths in half-graphs

Domain formula $\delta(x) = "x$ has a neighbor that has a twin".

Interpreting paths in half-graphs

Domain formula $\delta(x) = x$ has a neighbor that has a twin.

Edge formula " $\varphi(x, y)$ = the neighborhood of x and y differs in exactly one vertex".

Interpreting P_t an induced subgraph of a flipped $5P_t$

Domain formula $\delta(x) = "x \text{ has no twins"}.$

Interpreting P_t an induced subgraph of a flipped $5P_t$

Domain formula $\delta(x) = "x \text{ has no twins"}.$

To undo flips: Classify vertices by neighborhood in $\neg \delta$.

Interpreting P_t an induced subgraph of a flipped $5P_t$

Domain formula $\delta(x) = "x \text{ has no twins}"$.

To undo flips: Classify vertices by neighborhood in $\neg \delta$.

Theorem

A hereditary graph class is MSO-stable iff it has bounded SC-depth.

Main theorem

Theorem

For every hereditary graph class C, the following are equivalent.

- 1. C has bounded SC-depth (equivalently shrub-depth).
- 2. There is a $t \in \mathbb{N}$ such that \mathcal{C} excludes all flipped H_t and all flipped tP_t .
- 3. $\mathcal C$ does not FO-interpret the class of all paths.
- 4. C is MSO-stable.
- 5. ???

The expressive power of MSO

FO and MSO have the same expressive power on a graph class $\mathcal C$ if for every MSO-sentence φ there is an FO-sentence ψ such that for all $G \in \mathcal C$:

$$G \models \varphi \Leftrightarrow G \models \psi.$$

The expressive power of MSO

FO and MSO have the same expressive power on a graph class $\mathcal C$ if for every MSO-sentence φ there is an FO-sentence ψ such that for all $G \in \mathcal C$:

$$G \models \varphi \Leftrightarrow G \models \psi.$$

Theorem [Gajarský and Hliněný; 2015]

FO and MSO have the same expressive power on every class of bounded SC-depth.

We show:

Theorem

MSO is more expressive than FO on every hereditary class of unbounded SC-depth.

Separating MSO and FO on flipped half-graphs

We first separate MSO and FO on the class of paths.

Even length on paths is expressible in MSO:

Quantify 2-coloring and check if the endpoints have different colors.

Separating MSO and FO on flipped half-graphs

We first separate MSO and FO on the class of paths.

Even length on paths is expressible in MSO:

Quantify 2-coloring and check if the endpoints have different colors.

Even length on paths is not expressible in FO. (Ehrenfeucht-Fraissé Games)

(In)expressibility lifts to flipped half-graphs. \checkmark

Separating MSO and FO on flipped tP_t

The previous trick does not work on tP_t s:

The flipped tP_t in C could be totally different from the flipped $(t+1)P_{t+1}$ in C.

Separating MSO and FO on flipped tP_t

The previous trick does not work on tP_t s:

The flipped tP_t in C could be totally different from the flipped $(t+1)P_{t+1}$ in C.

Instead, we separate two induced subgraphs of the same flipped tP_t :

FO cannot distinguish between the above two graphs (Hanf Locality), but MSO can.

Summary

Theorem

For every hereditary graph class C, the following are equivalent.

- 1. C has bounded SC-depth (equivalently shrub-depth).
- 2. There is a $t \in \mathbb{N}$ such that C excludes all flipped H_t and all flipped tP_t .
- 3. $\mathcal C$ does not FO-interpret the class of all paths.
- 4. C is MSO-stable.
- 5. FO and MSO have the same expressive power on C.

Summary

Theorem

For every hereditary graph class C, the following are equivalent.

- 1. C has bounded SC-depth (equivalently shrub-depth).
- 2. There is a $t \in \mathbb{N}$ such that C excludes all flipped H_t and all flipped tP_t .
- 3. C does not FO-interpret the class of all paths.
- 4. C is MSO-stable.
- 5. FO and MSO have the same expressive power on C.

Thank you for listening! You might also enjoy my second talk:

Separability Properties of Monadically Dependent Graph Classes

Time: today 17:15, last talk of last ICALP track B session.