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The order-property
Fix a logic £ € {FO,MSO}, an L-formula ¢(x,¥), and a graph class C.

 has the order-property on C, if for every £ € N there is a graph G € C and a
sequence 3;, ..., ay of tuples of vertices of G, such that for all i, € [{]

GFy(a,a) < i<
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 has the order-property on C, if for every £ € N there is a graph G € C and a
sequence 3;, ..., ay of tuples of vertices of G, such that for all i, € [{]

GFy(a,a) < i<

Example FO: ¢(x,y) := "N(x) D N(y)"
al a2 a3z a4
a1 <y a2 <y a3 <y a4

b1 ba b3 by

Example MSO: ¥(x1x2, y1y2) := “x1 and x» are not connected after deleting y;"

R g 1o 10 I3 I8 P1P6 = P2P6 = P3P6 =y =y P6P6
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Stability
For a logic L, a graph class C is L-stable, if no L-formula has the order-property on C.

3/18



Stability
For a logic £, a graph class C is L-stable, if no L-formula has the order-property on C.

Examples FO-stability: Nonexamples FO-stability:
e planar graphs e the class of all half-graphs
e map graphs e the class of all 1-subdivided
e bounded tree-width graphs
e bounded degree

3/18



Stability
For a logic £, a graph class C is L-stable, if no L-formula has the order-property on C.

Examples FO-stability: Nonexamples FO-stability:
e planar graphs e the class of all half-graphs
e map graphs e the class of all 1-subdivided
e bounded tree-width graphs
e bounded degree

Examples MSO-stability: Nonexamples MSO-stability:
e bounded tree-depth e the class of all paths

e bounded shrub-depth

3/18



Stability
For a logic £, a graph class C is L-stable, if no L-formula has the order-property on C.

Examples FO-stability: Nonexamples FO-stability:
e planar graphs e the class of all half-graphs
e map graphs e the class of all 1-subdivided
e bounded tree-width graphs
e bounded degree

Examples MSO-stability: Nonexamples MSO-stability:
e bounded tree-depth e the class of all paths

e bounded shrub-depth

Hereditary FO-stable classes are very well-behaved: various combinatorial
characterizations, fpt FO model checking...

3/18



Stability

For a logic £, a graph class C is L-stable, if no L-formula has the order-property on C.

Examples FO-stability:
e planar graphs

map graphs

bounded tree-width

bounded degree

Examples MSO-stability:
e bounded tree-depth

e bounded shrub-depth

Nonexamples FO-stability:
e the class of all half-graphs
e the class of all 1-subdivided
graphs

Nonexamples MSO-stability:
e the class of all paths

Hereditary FO-stable classes are very well-behaved: various combinatorial

characterizations, fpt FO model checking...

Motivating question: Can MSO-stable classes also be combinatorially characterized?
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First main result

A hereditary graph class is MSO-stable iff it has bounded SC-depth
(or equivalently: bounded shrub-depth).
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First main result

Theorem
A hereditary graph class is MSO-stable iff it has bounded SC-depth
(or equivalently: bounded shrub-depth).

SC-depth is a dense analog of tree-depth.
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SC-Depth

SCo :={K1}, SCii1:= set complements of a disjoint unions of graphs from SCj.

SC-depth 0 [+] [«] [«] [«] [+] [+]
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SC-Depth

SCo :={K1}, SCii1:= set complements of a disjoint unions of graphs from SCj.
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Theorem

A hereditary graph class is MSO-stable iff it has bounded SC-depth
(or equivalently: bounded shrub-depth).

Corollary: also hereditary MSO-stable classes are well-behaved:
e fpt MSO model checking,

e poly time graph isomorphism,

e various combinatorial characterizations.
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(or equivalently: bounded shrub-depth).

Corollary: also hereditary MSO-stable classes are well-behaved:
e fpt MSO model checking,
e poly time graph isomorphism,

e various combinatorial characterizations.

bounded SC-depth = MSO-stable mostly follows from combining existing facts.

Main contribution: unbounded SC-depth + hereditary = MSO-unstable.

Next up: a characterizing bounded SC-depth by forbidden induced subgraphs.
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Flips




Flips

is a 3-flip of
is a P-flip of

f01'7D = {Pl,PQ,Pg}
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A class C has bounded SC-depth iff there is t € N such that C excludes
all flipped H; and all flipped tP; as induced subgraphs.
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H; = half-graph of order t;  flipped H; = {P1, P>}-flip of H;.

-~ NN RN . 7. 7

tP; = disjoint union of t many P;; flipped tP; = flip of tP; respecting layers.

Next up: large flipped H; and tP; = large SC-depth 8/18



Lemma

Every set complement of a huge flipped H; contains again a still large flipped H;.
Every set complement of a huge flipped tP; contains again a still large flipped sPs.

By the pigeonhole principle:
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Lemma
Every set complement of a huge flipped H; contains again a still large flipped H;.
Every set complement of a huge flipped tP; contains again a still large flipped sPs.
By the pigeonhole principle:
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Lemma

Every set complement of a huge flipped H; contains again a still large flipped H;.
Every set complement of a huge flipped tP; contains again a still large flipped sPs.

By the pigeonhole principle:

@ . L ®o—o——o
@ . L ®o—o——o
@ . L ®o—o——o
@ . L ®o—o——o

large flipped H; or tP; = unbounded SC-depth v

unbounded SC-depth = large flipped H; or tP;: uses techniques from FO-stability
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Characterizing SC-depth by forbidden induced subgraphs

Theorem

A class C has bounded SC-depth iff there is t € N such that C excludes
all flipped H; and all flipped tP; as induced subgraphs.

N =
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Hereditary + unbounded SC-depth = MSO-unstable

Every hereditary class of unbounded SC-depth FO-interprets the class of all paths.
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Hereditary 4+ unbounded SC-depth = MSO-unstable

Theorem
Every hereditary class of unbounded SC-depth FO-interprets the class of all paths.

The interpretation ls, is defined by a formulas d(x), ¢(x, y) for domain and edges.

Example: (x) := deg(x) > 2 and ¢(x,y) :=dist(x,y) <3

G I5.4(G)
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Interpreting paths in half-graphs

Domain formula 6(x) = “x has a neighbor that has a twin".
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Interpreting paths in half-graphs

Domain formula 6(x) = “x has a neighbor that has a twin".

Edge formula "p(x, y) = the neighborhood of x and y differs in exactly one vertex”.

12/18



Interpreting P; an induced subgraph of a flipped 5P;

-6

Domain formula §(x) = “x has no twins".
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Interpreting P; an induced subgraph of a flipped 5P;

Py ° <\ —g
[ ] \ 4
. =
?/ e
]
Domain formula 6(x) = “x has no twins".

To undo flips: Classify vertices by neighborhood in —d.

-6
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Interpreting P; an induced subgraph of a flipped 5P;

1o . —e I5
o =
=

N
| ?/ Al |||
% (] [ ]

Domain formula 6(x) = “x has no twins".

To undo flips: Classify vertices by neighborhood in —d.

Theorem
A hereditary graph class is MSO-stable iff it has bounded SC-depth.
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Main theorem

Theorem

For every hereditary graph class C, the following are equivalent.

1. C has bounded SC-depth (equivalently shrub-depth).
There is a t € N such that C excludes all flipped H; and all flipped tP;.
. C does not FO-interpret the class of all paths.

. C is MSO-stable.
?77?7?

SIS

14/18



The expressive power of MSO

FO and MSO have the same expressive power on a graph class C if for every
MSO-sentence ¢ there is an FO-sentence 9 such that for all G € C:

GFee GEY.
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The expressive power of MSO

FO and MSO have the same expressive power on a graph class C if for every
MSO-sentence ¢ there is an FO-sentence 9 such that for all G € C:

GlEee GEY.

Theorem [Gajarsky and Hlingny; 2015]

FO and MSO have the same expressive power on every class of bounded SC-depth.

We show:

Theorem
MSQO is more expressive than FO on every hereditary class of unbounded SC-depth.
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Separating MSO and FO on flipped half-graphs

We first separate MSO and FO on the class of paths.
Even length on paths is expressible in MSO:

Quantify 2-coloring and check if the endpoints have different colors.
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Separating MSO and FO on flipped half-graphs

We first separate MSO and FO on the class of paths.
Even length on paths is expressible in MSO:

Quantify 2-coloring and check if the endpoints have different colors.

Even length on paths is not expressible in FO. (Ehrenfeucht-Fraissé Games)

(In)expressibility lifts to flipped half-graphs. v’
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Separating MSO and FO on flipped tP;

The previous trick does not work on tP;s:

The flipped tP: in C could be totally different from the flipped (t 4+ 1)P¢+1 in C.
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Separating MSO and FO on flipped tP;

The previous trick does not work on tP;s:
The flipped tP: in C could be totally different from the flipped (t 4+ 1)P¢+1 in C.

Instead, we separate two induced subgraphs of the same flipped tP;:

—eo o — — — —o —o o — — — oo
oo o — — — —o—o —eo o o — — — o
9o o o — — — —o—o —eo 90— o —o—o—0—0
o 9o o — — — —o—o o o o — — o
oo o — — — —o—o o o o — — o9
9o o o — — — —o—o —eo 90— o —o—o—0—0
o 9o o — — — —o—o o o o — — o
oo o — — — —o—o e o o — — —

9o o o — — — —o—o o o o — — —

FO cannot distinguish between the above two graphs (Hanf Locality), but MSO can.
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Summary

Theorem

For every hereditary graph class C, the following are equivalent.
1. C has bounded SC-depth (equivalently shrub-depth).
2. There is a t € N such that C excludes all flipped H; and all flipped tP;.
3. C does not FO-interpret the class of all paths.
4. C is MSO-stable.
5. FO and MSO have the same expressive power on C.
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Summary

Theorem

For every hereditary graph class C, the following are equivalent.

1. C has bounded SC-depth (equivalently shrub-depth).

2. There is a t € N such that C excludes all flipped H; and all flipped tP;.
3. C does not FO-interpret the class of all paths.
4
5

. C is MSO-stable.
. FO and MSO have the same expressive power on C.

Thank you for listening! You might also enjoy my second talk:
Separability Properties of Monadically Dependent Graph Classes
Time: today 17:15, last talk of last ICALP track B session.
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