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Theorem: For every tree T there is a vertex v such that every component of T −v
contains at most n/2 vertices. [folklore]
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Theorem: For every tree T and vertex subset Q there is a vertex v such that
every component of T − v contains at most |Q|/2 vertices from Q. [folklore]
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Definition: A graph class C has balanced separators if there is k ∈ N such that
for every G ∈ C and Q ⊆ V (G ), there is a set S ⊆ V (G ) of size at most k such that
each connected component of G − S contains at most |Q|/2 vertices from Q.

Theorem: A graph class has balanced separators iff it has bounded tree-width.
[Robertson and Seymour]
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balanced separators
⇐⇒

bounded tree-width
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Definition: A graph class C has balanced r-local separators if there is k ∈ N
such that for every G ∈ C and Q ⊆ V (G ), there is a set S ⊆ V (G ) of size at most
k such that every r-ball in G − S contains at most |Q|/2 vertices from Q.
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Definition: A graph class has balanced local separators if it has balanced r -local
separators for every r ∈ N.

Theorem: A graph class has balanced local separators iff it is nowhere dense.
[Nešeťril and Ossona de Mendez]

Nowhere denseness is a very general notion of graph sparseness, generalizing:

• bounded tree-width
• bounded degree
• planarity

• bounded genus
• excluded minors
• ...
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How about dense graphs?

We need stronger operations than vertex deletions...
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Flips

P1 P2 P3 P1 P2 P3

is a 3-flip of
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Definition: A graph class C has balanced flip-separators if there is k ∈ N such
that for every G ∈ C and Q ⊆ V (G ), there is a k-flip such that each connected
component of H contains at most |Q|/2 vertices from Q.
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Definition: A graph class C has balanced r-local flip-separators if there is k ∈ N
such that for every G ∈ C and Q ⊆ V (G ), there is a k-flip H of G such that every
r-ball in H contains at most |Q|/2 vertices from Q.
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Dependence

Definition: Fix L ∈ {FO,MSO}. A graph class C is L-dependent if every L-
formula φ(x̄ , ȳ) has bounded VC-dimension on C.

Example: a graph where edge relation E (x , y) has VC-dimension 3.

V = {1, 2, 3}

U = 2{1,2,3}

Intuitively: If C is L-dependent then no fixed L-formula encodes all bipartite graphs
in C.
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Theorem: A hereditary graph class has balanced local flip-separators
iff it is FO-dependent. [this paper]

FO-dependence generalizes: nowhere denseness, clique-width, FO-stability, twin-width

Theorem: For every hereditary FO-dependent class C, r ∈ N, ε > 0 there is k ∈ N
such that for every weighted graph G ∈ C, there is a k-flip H of G such that every
r -ball in H has weight at most an ε-fraction of the total weight. [this paper]

Proof uses:

• Ramsey Properties: Flip-breakability [Dreier, Mählmann, Toruńczyk]

• Gaifman Locality for FO

• A new lemma to combine flips...
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Deletion-separators are easy to combine

G− S1

G− S2
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Deletion-separators are easy to combine

G− S1

G− S2

G− (S1 ∪ S2)
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How to combine flip-separators?
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How to combine flip-separators?

How to flip the parts???

flip H1 of G

flip H2 of G
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How to combine flip-separators?

How to flip the parts???

flip H1 of G

flip H2 of G

Lemma: Let H1, . . . ,Hℓ be k-flips of a graph G . There exists an f (ℓ, k)-flip H⋆

of G such that for every r ∈ N and v ∈ V (G )

the radius r -ball around v in H⋆ ⊆
⋂
i

the radius 6r -ball around v in Hi .
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