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Nowhere Dense Classes of Graphs

Definition [Něseťril, Ossona de Mendez, 2011]

A class C is nowhere dense, if for every r there
exists k such C that does not contain the
r -subdivided clique of size k as a subgraph.

Generalizes many notions of sparsity such as:
bounded degree, bounded treewidth, planarity,
excluding a minor, ...

Figure: The 2-subdivided K4.

Theorem [Grohe, Kreutzer, Siebertz, 2014]

Let C be a monotone class of graphs. If C is nowhere dense, then FO model checking
on C can be done in time f (φ, ε) · n1+ε for every ε > 0. Otherwise it is AW[∗]-hard.
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FO Transductions

To go beyond sparse classes, we need to shift from monotone to hereditary classes.

How to produce well behaved hereditary classes from sparse classes?

Transductions =̂ coloring + interpreting + taking an induced subgraph

Tφ

φ(x , y) := Red(x) ∧ Red(y) ∧ dist(x , y) = 3
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Structural Sparsity and Monadic Stability

Definition

A class C is structurally nowhere dense, if there exists a transduction T and a nowhere
dense class D such that C ⊆ T (D).

Definition

A class is monadically stable, if it does not transduce the class of all half graphs.
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. . .

ai ∼ bj ⇔ i ≤ j

Every structurally nowhere dense class is monadically stable.

Conjecture: every monadically stable class is structurally nowhere dense.
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te
n
ta
ti
ve

re
su
lt
20
2
3+

5 / 18



Splitter Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v to delete

2. Localizer chooses Gi+1 as a radius-r ball in Gi − v .

Splitter wins once Gi has size 1.

Example play of the radius-2 Splitter game:
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The Splitter Game in Nowhere Dense Classes

Theorem [Grohe, Kreutzer, Siebertz, 2013]

A class of graphs C is nowhere dense ⇔

∀r∃ℓ such that Splitter wins the radius-r game on all graphs from C in ℓ rounds.

Splitters strategy is efficiently computable and a main ingredient of the nowhere dense
model checking.

Question: Can we find a similar game characterization for monadic stability?
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Flips

Denote by G ⊕ (P,Q) the graph obtained from G by complementing edges between
pairs of vertices from P × Q.
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Flipper Game

The radius-r Splitter game is played on a graph G1. In round i

1. Splitter chooses a vertex v

2. Localizer chooses Gi+1 as a radius-r ball in G − v .

Splitter wins once Gi has size 1.
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The Flipper Game in Monadically Stable Classes

Theorem [this paper]

A class of graphs C is monadically stable ⇔

∀r∃ℓ such that Flipper wins the radius-r game on all graphs from C in ℓ rounds.

Flippers moves are computable in time OC,r (n2).

We give two proofs.

1. An algorithmic proof showing: monadic stability ⇒ Flipper wins

2. A model theoretic proof showing: monadic stability ⇔ Flipper wins
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Flip-Flatness

G

Definition (slightly informal)

A class C is flip-flat if for every radius r , in every large set A we find a still large set B
that is r -independent after performing a constant number of flips.

Theorem [Dreier, Mählmann, Siebertz, Toruńczyk, 2023]

A class C is flip-flat if and only if it is monadically stable.
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Monadic Stability ⇒ Flipper Wins - Proof Idea

Let A = a1, a2, a3, . . . be the vertices played by Localizer.

If the game continues long enough, we can apply flip-flatness to find a set B ⊆ A
which is 2r -independent after applying constantly many flips F .

12 / 18



Monadic Stability ⇒ Flipper Wins - Proof Idea

Let A = a1, a2, a3, . . . be the vertices played by Localizer.

If the game continues long enough, we can apply flip-flatness to find a set B ⊆ A
which is 2r -independent after applying constantly many flips F .

12 / 18



Monadic Stability ⇒ Flipper Wins - Proof Idea

Let A = a1, a2, a3, . . . be the vertices played by Localizer.

If the game continues long enough, we can apply flip-flatness to find a set B ⊆ A
which is 2r -independent after applying constantly many flips F .

12 / 18



Monadic Stability ⇒ Flipper Wins - Proof Idea

Let A = a1, a2, a3, . . . be the vertices played by Localizer.

If the game continues long enough, we can apply flip-flatness to find a set B ⊆ A
which is 2r -independent after applying constantly many flips F .

12 / 18



Monadic Stability ⇒ Flipper Wins - Proof Idea

Let A = a1, a2, a3, . . . be the vertices played by Localizer.

If the game continues long enough, we can apply flip-flatness to find a set B ⊆ A
which is 2r -independent after applying constantly many flips F .

12 / 18



Monadic Stability ⇒ Flipper Wins - Proof Idea

Let A = a1, a2, a3, . . . be the vertices played by Localizer.

If the game continues long enough, we can apply flip-flatness to find a set B ⊆ A
which is 2r -independent after applying constantly many flips F .

12 / 18



Monadic Stability ⇒ Flipper Wins - Proof Idea

Let A = a1, a2, a3, . . . be the vertices played by Localizer.

If the game continues long enough, we can apply flip-flatness to find a set B ⊆ A
which is 2r -independent after applying constantly many flips F .

12 / 18



Monadic Stability ⇒ Flipper Wins - Proof Idea

Let A = a1, a2, a3, . . . be the vertices played by Localizer.

If the game continues long enough, we can apply flip-flatness to find a set B ⊆ A
which is 2r -independent after applying constantly many flips F .

A

12 / 18



Monadic Stability ⇒ Flipper Wins - Proof Idea

Let A = a1, a2, a3, . . . be the vertices played by Localizer.

If the game continues long enough, we can apply flip-flatness to find a set B ⊆ A
which is 2r -independent after applying constantly many flips F .

Ab1 b2

distG⊕F (b1, b2) > 2r

12 / 18



Monadic Stability ⇒ Flipper Wins - Proof Idea

Let A = a1, a2, a3, . . . be the vertices played by Localizer.

If the game continues long enough, we can apply flip-flatness to find a set B ⊆ A
which is 2r -independent after applying constantly many flips F .

Ab1 b2

distG⊕F (b1, b2) > 2r

t

12 / 18



Monadic Stability ⇒ Flipper Wins - Proof Idea

Let A = a1, a2, a3, . . . be the vertices played by Localizer.

If the game continues long enough, we can apply flip-flatness to find a set B ⊆ A
which is 2r -independent after applying constantly many flips F .

Ab1 b2

distG⊕F (b1, b2) > 2r

t

If Flipper had played the flip F at time t then only one of b1 and b2 could have
survived in the graph.

12 / 18



Monadic Stability ⇒ Flipper Wins - Proof Idea

Let A = a1, a2, a3, . . . be the vertices played by Localizer.

If the game continues long enough, we can apply flip-flatness to find a set B ⊆ A
which is 2r -independent after applying constantly many flips F .

Ab1 b2
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If Flipper had played the flip F at time t then only one of b1 and b2 could have
survived in the graph.

Problem: Flipper does not know A at time t.
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Predictable Flip-Flatness

A1

B1

G

ff(A1) = (B1,F1)

ff(A2) = (B2,F2)

|B1 ∩ B2| ≥ 5 ⇒ F1 = F2

F1 = F2 are computable from a five-element subset of B1 ∩ B2 in time O(n2).
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Flippers Winning Strategy

For every 5 element subset P of Localizers previous moves:

1. apply the flips predict(P) for radius 2r

2. let Localizer localize to an r -ball

3. undo predict(P)

Assume Localizer can play enough rounds to apply size 7 flip-flatness

t

A

B

︸ ︷︷ ︸
P

︷ ︸︸ ︷
b1 b2

At time t, P was considered as a subset of Localizers previous moves.

B was flipped 2r -independent and only one of b1, b2 survived. Contradiction!
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Monadic Stability ⇔ Flipper Wins

How to prove Flipper wins ⇒ monadic stability?

The model theoretic proof unravels further characterizations!

mon. stable
existentially
mon. stable

separable
Flipper wins

with restricted rules

Flipper wins

flip-flat

Separability is a model theoretic property.

We show separability ⇒ Flipper wins by a compactness argument.

We use a stricter game variant which allows us to recover flip-flatness.
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Existential Monadic Stability

Definition

A class is existentially monadically stable, if it does not transduce the class of all half
graphs using an existential formula.

A formula is existential if it can be written as

∃x1, . . . , xkψ(x1, . . . , xk)

where ψ is quantifier free.

This is a “weaker” condition than monadic stability, so it is “easier” to show

Flipper wins ⇒ existential monadic stability
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Summary

Definition

A class is monadically stable if it does not transduce
the class of all half graphs using FO logic.

The Flipper game

• formalizes the process of recursive decomposition by flips and localizations,

• characterizes monadic stability,

• is analogous to a game characterization of nowhere density,

• can be proven using methods from either combinatorics or model theory,

• is a key ingredient for algorithmic applications, e.g. FO model checking.
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