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Nowhere Dense Classes of Graphs

Definition [N&set¥il, Ossona de Mendez, 2011]

A class C is nowhere dense, if for every r there
exists k such C that does not contain the
r-subdivided clique of size k as a subgraph.

Figure: The 2-subdivided Kj.
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Theorem [Grohe, Kreutzer, Siebertz, 2014]

Let C be a monotone class of graphs. If C is nowhere dense, then FO model checking
on C can be done in time f(p, ) - n'*¢ for every € > 0. Otherwise it is AW[*]-hard.
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FO Transductions

To go beyond sparse classes, we need to shift from monotone to hereditary classes.
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FO Transductions

To go beyond sparse classes, we need to shift from monotone to hereditary classes.
How to produce well behaved hereditary classes from sparse classes?

Transductions = coloring + interpreting + taking an induced subgraph

©(x,y) := Red(x) A Red(y) Adist(x,y) =3
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Structural Sparsity and Monadic Stability
Definition

A class C is structurally nowhere dense, if there exists a transduction T and a nowhere
dense class D such that C C T(D).
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Structural Sparsity and Monadic Stability
Definition
A class C is structurally nowhere dense, if there exists a transduction T and a nowhere
dense class D such that C C T(D).
Definition
A class is monadically stable, if it does not transduce the class of all half graphs.
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by by by ... b
Every structurally nowhere dense class is monadically stable.

Conjecture: every monadically stable class is structurally nowhere dense.
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Splitter Game
The radius-r Splitter game is played on a graph Gi. In round /
1. Splitter chooses a vertex v to delete
2. Localizer chooses Gjy1 as a radius-r ball in G; — v.

Splitter wins once G; has size 1.
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The Splitter Game in Nowhere Dense Classes

Theorem [Grohe, Kreutzer, Siebertz, 2013]
A class of graphs C is nowhere dense <

Vr3¢ such that Splitter wins the radius-r game on all graphs from C in £ rounds.

Splitters strategy is efficiently computable and a main ingredient of the nowhere dense
model checking.

Question: Can we find a similar game characterization for monadic stability?
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Flips

Denote by G @ (P, Q) the graph obtained from G by complementing edges between
pairs of vertices from P x Q.

8/18



Flips

Denote by G & (P, Q) the graph obtained from G by complementing edges between
pairs of vertices from P x Q.

T
) §

8/18



Flips

Denote by G & (P, Q) the graph obtained from G by complementing edges between
pairs of vertices from P x Q.

G Go(PQ)

8/18



Flipper Game
The radius-r Splitter game is played on a graph Gi. In round /
1. Splitter chooses a vertex v
2. Localizer chooses Gjyi as a radius-r ball in G — v.

Splitter wins once G; has size 1.

9/18



Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.

Flipper wins once G; has size 1.

9/18



Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

9/18



Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

9/18



Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

9/18



Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

9/18



Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

9/18



Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

9/18



Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

9/18



Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

9/18



Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

9/18



Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

9/18



Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

9/18



Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

9/18



Flipper Game
The radius-r Flipper game is played on a graph Gi. In round i
1. Flipper chooses a flip set F
2. Localizer chooses Gjy1 as a radius-r ball in G; & F.
Flipper wins once G; has size 1.

Example play of the radius-2 Flipper game:

9/18



The Flipper Game in Monadically Stable Classes

Theorem [this paper]
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The Flipper Game in Monadically Stable Classes

Theorem [this paper]
A class of graphs C is monadically stable <

Vr3l such that Flipper wins the radius-r game on all graphs from C in £ rounds.

Flippers moves are computable in time O¢ ,(n?).
We give two proofs.
1. An algorithmic proof showing: monadic stability = Flipper wins

2. A model theoretic proof showing: monadic stability < Flipper wins
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Flip-Flatness

Definition (slightly informal) [Gajarsky, Kreutzer]

A class C is flip-flat if for every radius r, in every large set A we find a still large set B
that is r-independent after performing a constant number of flips.
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Flip-Flatness

Definition (slightly informal) [Gajarsky, Kreutzer]

A class C is flip-flat if for every radius r, in every large set A we find a still large set B
that is r-independent after performing a constant number of flips.

Theorem [Dreier, Mahlmann, Siebertz, Toruriczyk, 2023]

A class C is flip-flat if and only if it is monadically stable.
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Monadic Stability = Flipper Wins - Proof Idea
Let A= a1, ap, a3, ... be the vertices played by Localizer.

If the game continues long enough, we can apply flip-flatness to find a set B C A
which is 2r-independent after applying constantly many flips F.
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Let A= a1, ap, a3, ... be the vertices played by Localizer.
If the game continues long enough, we can apply flip-flatness to find a set B C A

which is 2r-independent after applying constantly many flips F.
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If Flipper had played the flip F at time t then only one of b; and by could have
survived in the graph.
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Monadic Stability = Flipper Wins - Proof Idea

Let A= a1, ap, a3, ... be the vertices played by Localizer.

If the game continues long enough, we can apply flip-flatness to find a set B C A

which is 2r-independent after applying constantly many flips F.

diStG@F(bl, bg) > 2r

o o @ o o

o o ." o
Tbl bo A
t

o o o

If Flipper had played the flip F at time t then only one of b; and by could have
survived in the graph.

Problem: Flipper does not know A at time t.
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Predictable Flip-Flatness
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Predictable Flip-Flatness

Ay

ff(A1) = (B, F1)

ff(A2) = (Ba, F2)

|[BiNB|>5 = FA=FK

F1 = F, are computable from a five-element subset of B; N By in time O(n?).
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Flippers Winning Strategy

For every 5 element subset P of Localizers previous moves:

1. apply the flips predict(P) for radius 2r
2. let Localizer localize to an r-ball

3. undo predict(P)
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Flippers Winning Strategy
For every 5 element subset P of Localizers previous moves:
1. apply the flips predict(P) for radius 2r
2. let Localizer localize to an r-ball
3. undo predict(P)

Assume Localizer can play enough rounds to apply size 7 flip-flatness

At time t, P was considered as a subset of Localizers previous moves.

B was flipped 2r-independent and only one of by, by survived. Contradiction!
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Monadic Stability < Flipper Wins

How to prove Flipper wins = monadic stability?

The model theoretic proof unravels further characterizations!

Flipper wins

existentially Flipper wins
—| separable . .
mon. stable with restricted rules

mon. stable

flip-flat
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Existential Monadic Stability

Definition
A class is existentially monadically stable, if it does not transduce the class of all half
graphs using an existential formula.

A formula is existential if it can be written as
E|X1, N ,ka(Xl, Ce ,Xk)

where 1 is quantifier free.
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Definition
A class is existentially monadically stable, if it does not transduce the class of all half
graphs using an existential formula.

A formula is existential if it can be written as
E|X1, PN ,ka(Xl, Ce ,Xk)

where 1 is quantifier free.

This is a "weaker” condition than monadic stability, so it is “easier” to show

Flipper wins = existential monadic stability
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How to prove Flipper wins = monadic stability?

The model theoretic proof unravels further characterizations!

mon. stable

existentially
mon. stable

separable

Flipper wins
with restricted rules

Flipper wins

Separability is a model theoretic property.

We show separability = Flipper wins by a compactness argument.

flip-flat
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Monadic Stability < Flipper Wins

How to prove Flipper wins = monadic stability?

The model theoretic proof unravels further characterizations!

Flipper wins

existentially Flipper wins
—| separable . .
mon. stable with restricted rules

mon. stable

flip-flat

Separability is a model theoretic property.
We show separability = Flipper wins by a compactness argument.

We use a stricter game variant which allows us to recover flip-flatness.
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Summary

Definition

A class is monadically stable if it does not transduce
the class of all half graphs using FO logic.

The Flipper game

formalizes the process of recursive decomposition by flips and localizations,

characterizes monadic stability,

is analogous to a game characterization of nowhere density,

can be proven using methods from either combinatorics or model theory,

is a key ingredient for algorithmic applications, e.g. FO model checking.
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