SAT via Recursive Backdoors

 $\underline{Nikolas}$ Mählmann, Sebastian Siebertz, Alexandre Vigny

16.09.2021

University of Bremen SAT is NP-complete.

However there exist tractable base classes of formulas:

- 2CNF: each clause contains at most two literals
- Horn: each clause contains at most one positive literal

SAT is NP-complete.

However there exist tractable base classes of formulas:

- 2CNF: each clause contains at most two literals
- Horn: each clause contains at most one positive literal

Real world instances are often less homogenous!

 $\phi = (x_{1-} \lor x_{2-} \lor x_{3+} \lor x_{4+}) \land (x_{4+} \lor x_{5+}) \land (x_{5+} \lor x_{6+}) \land \dots$

SAT is NP-complete.

However there exist tractable base classes of formulas:

- 2CNF: each clause contains at most two literals
- Horn: each clause contains at most one positive literal

Real world instances are often less homogenous!

 $\phi = (x_{1-} \lor x_{2-} \lor x_{3+} \lor x_{4+}) \land (x_{4+} \lor x_{5+}) \land (x_{5+} \lor x_{6+}) \land \dots$

 ϕ is not in 2CNF but very *close* to 2CNF.

A *backdoor* B of ϕ to C is a set of variables that reduces ϕ to a formula from C **no matter which assignment is chosen**.

A *backdoor* B of ϕ to C is a set of variables that reduces ϕ to a formula from C **no matter which assignment is chosen**. Example:

 $\phi = (x_{1_-} \lor x_{2_-} \lor x_{3_+} \lor x_{4_+}) \land (x_{4_+} \lor x_{5_+}) \land (x_{5_+} \lor x_{6_+}) \land \dots$ {x₁, x₂} is a backdoor of ϕ to 2CNF.

A *backdoor* B of ϕ to C is a set of variables that reduces ϕ to a formula from C **no matter which assignment is chosen**. Example:

 $\phi = (x_{1_-} \lor x_{2_-} \lor x_{3_+} \lor x_{4_+}) \land (x_{4_+} \lor x_{5_+}) \land (x_{5_+} \lor x_{6_+}) \land \dots$ {x₁, x₂} is a backdoor of ϕ to 2CNF.

$$\phi[x_{1+}, x_{2+}] = \\ \phi[x_{1-}, x_{2+}] = \\ \phi[x_{1+}, x_{2-}] = \\ \phi[x_{1-}, x_{2-}] =$$

A *backdoor* B of ϕ to C is a set of variables that reduces ϕ to a formula from C **no matter which assignment is chosen**. Example:

 $\phi = (x_{1_-} \lor x_{2_-} \lor x_{3_+} \lor x_{4_+}) \land (x_{4_+} \lor x_{5_+}) \land (x_{5_+} \lor x_{6_+}) \land \dots$ $\{x_1, x_2\} \text{ is a backdoor of } \phi \text{ to 2CNF.}$

$$\phi[x_{1_{+}}, x_{2_{+}}] = (x_{3_{+}} \lor x_{4_{+}}) \land (x_{4_{+}} \lor x_{5_{+}}) \land (x_{5_{+}} \lor x_{6_{+}}) \land \dots$$

$$\phi[x_{1_{-}}, x_{2_{+}}] =$$

$$\phi[x_{1_{+}}, x_{2_{-}}] =$$

A *backdoor* B of ϕ to C is a set of variables that reduces ϕ to a formula from C **no matter which assignment is chosen**. Example:

$$\phi = (x_{1_{-}} \lor x_{2_{-}} \lor x_{3_{+}} \lor x_{4_{+}}) \land (x_{4_{+}} \lor x_{5_{+}}) \land (x_{5_{+}} \lor x_{6_{+}}) \land ...$$

{x₁, x₂} is a backdoor of ϕ to 2CNF.

$$\begin{split} \phi[x_{1_+}, x_{2_+}] &= (x_{3_+} \lor x_{4_+}) \land (x_{4_+} \lor x_{5_+}) \land (x_{5_+} \lor x_{6_+}) \land \dots \\ \phi[x_{1_-}, x_{2_+}] &= (x_{4_+} \lor x_{5_+}) \land (x_{5_+} \lor x_{6_+}) \land \dots \\ \phi[x_{1_+}, x_{2_-}] &= (x_{4_+} \lor x_{5_+}) \land (x_{5_+} \lor x_{6_+}) \land \dots \\ \phi[x_{1_-}, x_{2_-}] &= (x_{4_+} \lor x_{5_+}) \land (x_{5_+} \lor x_{6_+}) \land \dots \end{split}$$

A *backdoor* B of ϕ to C is a set of variables that reduces ϕ to a formula from C **no matter which assignment is chosen**. Example:

$$\phi = (x_{1_{-}} \lor x_{2_{-}} \lor x_{3_{+}} \lor x_{4_{+}}) \land (x_{4_{+}} \lor x_{5_{+}}) \land (x_{5_{+}} \lor x_{6_{+}}) \land ...$$

{x₁, x₂} is a backdoor of ϕ to 2CNF.

$$\begin{split} \phi[x_{1_{+}}, x_{2_{+}}] &= (x_{3_{+}} \lor x_{4_{+}}) \land (x_{4_{+}} \lor x_{5_{+}}) \land (x_{5_{+}} \lor x_{6_{+}}) \land \dots \\ \phi[x_{1_{-}}, x_{2_{+}}] &= (x_{4_{+}} \lor x_{5_{+}}) \land (x_{5_{+}} \lor x_{6_{+}}) \land \dots \\ \phi[x_{1_{+}}, x_{2_{-}}] &= (x_{4_{+}} \lor x_{5_{+}}) \land (x_{5_{+}} \lor x_{6_{+}}) \land \dots \\ \phi[x_{1_{-}}, x_{2_{-}}] &= (x_{4_{+}} \lor x_{5_{+}}) \land (x_{5_{+}} \lor x_{6_{+}}) \land \dots \end{split}$$

We can evaluate a backdoor of size k in time $2^k \cdot poly(|\phi|)$. \checkmark

A *backdoor* B of ϕ to C is a set of variables that reduces ϕ to a formula from C **no matter which assignment is chosen**. Example:

$$\phi = (x_{1_{-}} \lor x_{2_{-}} \lor x_{3_{+}} \lor x_{4_{+}}) \land (x_{4_{+}} \lor x_{5_{+}}) \land (x_{5_{+}} \lor x_{6_{+}}) \land ...$$

{x₁, x₂} is a backdoor of ϕ to 2CNF.

$$\begin{split} \phi[x_{1_{+}}, x_{2_{+}}] &= (x_{3_{+}} \lor x_{4_{+}}) \land (x_{4_{+}} \lor x_{5_{+}}) \land (x_{5_{+}} \lor x_{6_{+}}) \land \dots \\ \phi[x_{1_{-}}, x_{2_{+}}] &= (x_{4_{+}} \lor x_{5_{+}}) \land (x_{5_{+}} \lor x_{6_{+}}) \land \dots \\ \phi[x_{1_{+}}, x_{2_{-}}] &= (x_{4_{+}} \lor x_{5_{+}}) \land (x_{5_{+}} \lor x_{6_{+}}) \land \dots \\ \phi[x_{1_{-}}, x_{2_{-}}] &= (x_{4_{+}} \lor x_{5_{+}}) \land (x_{5_{+}} \lor x_{6_{+}}) \land \dots \end{split}$$

We can evaluate a backdoor of size k in time $2^k \cdot poly(|\phi|)$. \checkmark Detecting backdoors to many tractable classes is fpt. \checkmark

Motivation for Recursive Backdoors

handlebars	:	$\{\texttt{straight, riser, drops, wide}\}$				
frameset	:	{city, racing, mtb}				
tire width	:	{21mm, 23mm, 28mm, 30mm, 35mm, 50mm				

Motivation for Recursive Backdoors

handlebars	:	{straight, riser, drops,	wide}
frameset	:	$\{\texttt{city, racing, mtb}\}$	
tire width	:	{21mm, 23mm, 28mm, 30mm,	35mm, 50mm}

Motivation for Recursive Backdoors

handlebars	:	$\{\texttt{straight},$	riser,	drops}
frameset	:	racing		
tire width		{21mm 23mm	28mm)	

 $(x_{1_{+}} \lor x_{2_{-}}) \land (x_{1_{-}} \lor x_{2_{+}} \lor x_{3_{-}}) \land (x_{3_{+}} \lor x_{4_{-}} \lor x_{5_{+}}) \land (x_{4_{+}} \lor x_{5_{-}})$

 $(x_{1_{+}} \lor x_{2_{-}}) \land (x_{1_{-}} \lor x_{2_{+}} \lor x_{3_{-}}) \land (x_{3_{+}} \lor x_{4_{-}} \lor x_{5_{+}}) \land (x_{4_{+}} \lor x_{5_{-}})$

 $(x_{1_{+}} \lor x_{2_{-}}) \land (x_{1_{-}} \lor x_{2_{+}} \lor x_{3_{-}}) \land (x_{3_{+}} \lor x_{4_{-}} \lor x_{5_{+}}) \land (x_{4_{+}} \lor x_{5_{-}})$

 $(x_{1_{+}} \lor x_{2_{-}}) \land (x_{1_{-}} \lor x_{2_{+}} \lor x_{3_{-}}) \land (x_{3_{+}} \lor x_{4_{-}} \lor x_{5_{+}}) \land (x_{4_{+}} \lor x_{5_{-}})$

 $(x_{1_{+}} \lor x_{2_{-}}) \land (x_{1_{-}} \lor x_{2_{+}} \lor x_{3_{-}}) \land (x_{3_{+}} \lor x_{4_{-}} \lor x_{5_{+}}) \land (x_{4_{+}} \lor x_{5_{-}})$

Theorem (Mählmann, Siebertz, Vigny)

- 1. Recursive backdoor evaluation is fpt.
- 2. Recursive backdoor detection to C_0 is fpt.

Theorem (Mählmann, Siebertz, Vigny)

- 1. Recursive backdoor evaluation is fpt.
- 2. Recursive backdoor detection to C_0 is fpt.

Theorem (Jan Dreier, Sebastian Ordyniak, Stefan Szeider)

Recursive backdoor detection to 2CNF is fpt.

Theorem (Mählmann, Siebertz, Vigny)

- 1. Recursive backdoor evaluation is fpt.
- 2. Recursive backdoor detection to \mathcal{C}_0 is fpt.

Theorem (Jan Dreier, Sebastian Ordyniak, Stefan Szeider) *Recursive backdoor detection to 2CNF is fpt.*

Thank you for listening!

Recursive Backdoor Depth

