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Tractable Base Classes for SAT

SAT is NP-complete.

However there exist tractable base classes of formulas:

• 2CNF: each clause contains at most two literals

• Horn: each clause contains at most one positive literal

Real world instances are often less homogenous!

ϕ = (x1− ∨ x2− ∨ x3+ ∨ x4+) ∧ (x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

ϕ is not in 2CNF but very close to 2CNF.
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Backdoors for SAT

A backdoor B of ϕ to C is a set of variables that reduces ϕ to a

formula from C no matter which assignment is chosen.

Example:

ϕ = (x1− ∨ x2− ∨ x3+ ∨ x4+) ∧ (x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

{x1, x2} is a backdoor of ϕ to 2CNF.

ϕ[x1+ , x2+ ] =

(x3+ ∨ x4+) ∧ (x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

ϕ[x1− , x2+ ] =

(x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

ϕ[x1+ , x2− ] =

(x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

ϕ[x1− , x2− ] =

(x4+ ∨ x5+) ∧ (x5+ ∨ x6+) ∧ ...

We can evaluate a backdoor of size k in time 2k · poly(|ϕ|). ✓
Detecting backdoors to many tractable classes is fpt. ✓
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Motivation for Recursive Backdoors

handlebars : {straight, riser, drops, wide}
frameset : {city, racing, mtb}
tire width : {21mm, 23mm, 28mm, 30mm, 35mm, 50mm}
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Recursive Backdoors

(x1+ ∨ x2−) ∧ (x1− ∨ x2+ ∨ x3−) ∧ (x3+ ∨ x4− ∨ x5+) ∧ (x4+ ∨ x5−)
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Results

Theorem (Mählmann, Siebertz, Vigny)

1. Recursive backdoor evaluation is fpt.

2. Recursive backdoor detection to C0 is fpt.

Theorem (Jan Dreier, Sebastian Ordyniak, Stefan Szeider)

Recursive backdoor detection to 2CNF is fpt.

Thank you for listening!
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Recursive Backdoor Depth

Definition (Mählmann, Siebertz, Vigny)

rbdC(G ) =



if G ∈ C:

0

if G ̸∈ C and G is connected:

1 + minx∈var(G)max⋆∈{+,−} rbdC(G [x⋆])

otherwise:

max { rbdC(H) : H connected component of G }


	Appendix

