SAT via Recursive Backdoors

Nikolas Mählmann, Sebastian Siebertz, Alexandre Vigny
16.09.2021
(4)

Tractable Base Classes for SAT

SAT is NP-complete.
However there exist tractable base classes of formulas:

- 2CNF: each clause contains at most two literals
- Horn: each clause contains at most one positive literal

Tractable Base Classes for SAT

SAT is NP-complete.
However there exist tractable base classes of formulas:

- 2CNF: each clause contains at most two literals
- Horn: each clause contains at most one positive literal

Real world instances are often less homogenous!

$$
\phi=\left(x_{1_{-}} \vee x_{2_{-}} \vee x_{3_{+}} \vee x_{4_{+}}\right) \wedge\left(x_{4_{+}} \vee x_{5_{+}}\right) \wedge\left(x_{5_{+}} \vee x_{6_{+}}\right) \wedge \ldots
$$

Tractable Base Classes for SAT

SAT is NP-complete.
However there exist tractable base classes of formulas:

- 2CNF: each clause contains at most two literals
- Horn: each clause contains at most one positive literal

Real world instances are often less homogenous!

$$
\phi=\left(x_{1_{-}} \vee x_{2_{-}} \vee x_{3_{+}} \vee x_{4_{+}}\right) \wedge\left(x_{4_{+}} \vee x_{5_{+}}\right) \wedge\left(x_{5_{+}} \vee x_{6_{+}}\right) \wedge \ldots
$$

ϕ is not in 2CNF but very close to 2 CNF .

Backdoors for SAT

A backdoor B of ϕ to \mathcal{C} is a set of variables that reduces ϕ to a formula from \mathcal{C} no matter which assignment is chosen.

Backdoors for SAT

A backdoor B of ϕ to \mathcal{C} is a set of variables that reduces ϕ to a formula from \mathcal{C} no matter which assignment is chosen.

Example:

$$
\phi=\left(x_{1_{-}} \vee x_{2_{-}} \vee x_{3_{+}} \vee x_{4_{+}}\right) \wedge\left(x_{4_{+}} \vee x_{5_{+}}\right) \wedge\left(x_{5_{+}} \vee x_{6_{+}}\right) \wedge \ldots
$$

$\left\{x_{1}, x_{2}\right\}$ is a backdoor of ϕ to 2 CNF .

Backdoors for SAT

A backdoor B of ϕ to \mathcal{C} is a set of variables that reduces ϕ to a formula from \mathcal{C} no matter which assignment is chosen.

Example:

$$
\phi=\left(x_{1_{-}} \vee x_{2_{-}} \vee x_{3_{+}} \vee x_{4_{+}}\right) \wedge\left(x_{4_{+}} \vee x_{5_{+}}\right) \wedge\left(x_{5_{+}} \vee x_{6_{+}}\right) \wedge \ldots
$$

$\left\{x_{1}, x_{2}\right\}$ is a backdoor of ϕ to 2 CNF .

$$
\begin{aligned}
& \phi\left[x_{1_{+}}, x_{2_{+}}\right]= \\
& \phi\left[x_{1_{-}}, x_{2_{+}}\right]= \\
& \phi\left[x_{1_{+}}, x_{2_{-}}\right]= \\
& \phi\left[x_{1_{-}}, x_{2_{-}}\right]=
\end{aligned}
$$

Backdoors for SAT

A backdoor B of ϕ to \mathcal{C} is a set of variables that reduces ϕ to a formula from \mathcal{C} no matter which assignment is chosen.

Example:

$$
\phi=\left(x_{1-} \vee x_{2_{-}} \vee x_{3_{+}} \vee x_{4_{+}}\right) \wedge\left(x_{4_{+}} \vee x_{5_{+}}\right) \wedge\left(x_{5_{+}} \vee x_{6_{+}}\right) \wedge \ldots
$$

$\left\{x_{1}, x_{2}\right\}$ is a backdoor of ϕ to 2CNF.

$$
\begin{aligned}
& \phi\left[x_{1_{+}}, x_{2_{+}}\right]=\left(x_{3_{+}} \vee x_{4_{+}}\right) \wedge\left(x_{4_{+}} \vee x_{5_{+}}\right) \wedge\left(x_{5_{+}} \vee x_{6_{+}}\right) \wedge \ldots \\
& \phi\left[x_{1_{-}}, x_{2_{+}}\right]= \\
& \phi\left[x_{1_{+}}, x_{2_{-}}\right]= \\
& \phi\left[x_{1_{-}}, x_{2_{-}}\right]=
\end{aligned}
$$

Backdoors for SAT

A backdoor B of ϕ to \mathcal{C} is a set of variables that reduces ϕ to a formula from \mathcal{C} no matter which assignment is chosen.

Example:

$$
\phi=\left(x_{1_{-}} \vee x_{2_{-}} \vee x_{3_{+}} \vee x_{4_{+}}\right) \wedge\left(x_{4_{+}} \vee x_{5_{+}}\right) \wedge\left(x_{5_{+}} \vee x_{6_{+}}\right) \wedge \ldots
$$

$\left\{x_{1}, x_{2}\right\}$ is a backdoor of ϕ to 2CNF.

$$
\begin{aligned}
& \phi\left[x_{1_{+}}, x_{2_{+}}\right]=\left(x_{3_{+}} \vee x_{4_{+}}\right) \wedge\left(x_{4_{+}} \vee x_{5_{+}}\right) \wedge\left(x_{5_{+}} \vee x_{6_{+}}\right) \wedge \ldots \\
& \phi\left[x_{1_{-}}, x_{2_{+}}\right]=\left(x_{4_{+}} \vee x_{5_{+}}\right) \wedge\left(x_{5_{+}} \vee x_{6_{+}}\right) \wedge \ldots \\
& \phi\left[x_{1_{+}}, x_{2_{-}}\right]=\left(x_{4_{+}} \vee x_{5_{+}}\right) \wedge\left(x_{5_{+}} \vee x_{6_{+}}\right) \wedge \ldots \\
& \phi\left[x_{1_{-}}, x_{2_{-}}\right]=\left(x_{4_{+}} \vee x_{5_{+}}\right) \wedge\left(x_{5_{+}} \vee x_{6_{+}}\right) \wedge \ldots
\end{aligned}
$$

Backdoors for SAT

A backdoor B of ϕ to \mathcal{C} is a set of variables that reduces ϕ to a formula from \mathcal{C} no matter which assignment is chosen.

Example:

$$
\phi=\left(x_{1_{-}} \vee x_{2_{-}} \vee x_{3_{+}} \vee x_{4_{+}}\right) \wedge\left(x_{4_{+}} \vee x_{5_{+}}\right) \wedge\left(x_{5_{+}} \vee x_{6_{+}}\right) \wedge \ldots
$$

$\left\{x_{1}, x_{2}\right\}$ is a backdoor of ϕ to 2CNF.

$$
\begin{aligned}
& \phi\left[x_{1_{+}}, x_{2_{+}}\right]=\left(x_{3_{+}} \vee x_{4_{+}}\right) \wedge\left(x_{4_{+}} \vee x_{5_{+}}\right) \wedge\left(x_{5_{+}} \vee x_{6_{+}}\right) \wedge \ldots \\
& \phi\left[x_{1_{-}}, x_{2_{+}}\right]=\left(x_{4_{+}} \vee x_{5_{+}}\right) \wedge\left(x_{5_{+}} \vee x_{6_{+}}\right) \wedge \ldots \\
& \phi\left[x_{1_{+}}, x_{2_{-}}\right]=\left(x_{4_{+}} \vee x_{5_{+}}\right) \wedge\left(x_{5_{+}} \vee x_{6_{+}}\right) \wedge \ldots \\
& \phi\left[x_{1_{-}}, x_{2_{-}}\right]=\left(x_{4_{+}} \vee x_{5_{+}}\right) \wedge\left(x_{5_{+}} \vee x_{6_{+}}\right) \wedge \ldots
\end{aligned}
$$

We can evaluate a backdoor of size k in time $2^{k} \cdot \operatorname{poly}(|\phi|)$.

Backdoors for SAT

A backdoor B of ϕ to \mathcal{C} is a set of variables that reduces ϕ to a formula from \mathcal{C} no matter which assignment is chosen.

Example:

$$
\phi=\left(x_{1_{-}} \vee x_{2_{-}} \vee x_{3_{+}} \vee x_{4_{+}}\right) \wedge\left(x_{4_{+}} \vee x_{5_{+}}\right) \wedge\left(x_{5_{+}} \vee x_{6_{+}}\right) \wedge \ldots
$$

$\left\{x_{1}, x_{2}\right\}$ is a backdoor of ϕ to 2CNF.

$$
\begin{aligned}
& \phi\left[x_{1_{+}}, x_{2_{+}}\right]=\left(x_{3_{+}} \vee x_{4_{+}}\right) \wedge\left(x_{4_{+}} \vee x_{5_{+}}\right) \wedge\left(x_{5_{+}} \vee x_{6_{+}}\right) \wedge \ldots \\
& \phi\left[x_{1_{-}}, x_{2_{+}}\right]=\left(x_{4_{+}} \vee x_{5_{+}}\right) \wedge\left(x_{5_{+}} \vee x_{6_{+}}\right) \wedge \ldots \\
& \phi\left[x_{1_{+}}, x_{2_{-}}\right]=\left(x_{4_{+}} \vee x_{5_{+}}\right) \wedge\left(x_{5_{+}} \vee x_{6_{+}}\right) \wedge \ldots \\
& \phi\left[x_{1_{-}}, x_{2_{-}}\right]=\left(x_{4_{+}} \vee x_{5_{+}}\right) \wedge\left(x_{5_{+}} \vee x_{6_{+}}\right) \wedge \ldots
\end{aligned}
$$

We can evaluate a backdoor of size k in time $2^{k} \cdot \operatorname{poly}(|\phi|)$. Detecting backdoors to many tractable classes is fpt. \checkmark

Motivation for Recursive Backdoors

handlebars : \{straight, riser, drops, wide\}
frameset : \{city, racing, mtb\}
tire width : \{21mm, 23mm, $28 \mathrm{~mm}, 30 \mathrm{~mm}, 35 \mathrm{~mm}, 50 \mathrm{~mm}\}$

Motivation for Recursive Backdoors

handlebars : \{straight, riser, drops, wide\}
frameset : \{city, racing, mtb\}
tire width : \{21mm, 23mm, $28 \mathrm{~mm}, 30 \mathrm{~mm}, 35 \mathrm{~mm}, 50 \mathrm{~mm}\}$

Motivation for Recursive Backdoors

handlebars : \{straight, riser, drops\}
frameset : racing
tire width : \{21mm, 23mm, 28 mm$\}$

Recursive Backdoors

$$
\left(x_{1_{+}} \vee x_{2_{-}}\right) \wedge\left(x_{1_{-}} \vee x_{2_{+}} \vee x_{3_{-}}\right) \wedge\left(x_{3_{+}} \vee x_{4_{-}} \vee x_{5_{+}}\right) \wedge\left(x_{4_{+}} \vee x_{5_{-}}\right)
$$

Recursive Backdoors

$$
\left(x_{1_{+}} \vee x_{2_{-}}\right) \wedge\left(x_{1_{-}} \vee x_{2_{+}} \vee x_{3_{-}}\right) \wedge\left(x_{3_{+}} \vee x_{4_{-}} \vee x_{5_{+}}\right) \wedge\left(x_{4_{+}} \vee x_{5_{-}}\right)
$$

Recursive Backdoors

$$
\left(x_{1_{+}} \vee x_{2_{-}}\right) \wedge\left(x_{1_{-}} \vee x_{2_{+}} \vee x_{3_{-}}\right) \wedge\left(x_{3_{+}} \vee x_{4_{-}} \vee x_{5_{+}}\right) \wedge\left(x_{4_{+}} \vee x_{5_{-}}\right)
$$

Recursive Backdoors

$$
\left(x_{1_{+}} \vee x_{2_{-}}\right) \wedge\left(x_{1_{-}} \vee x_{2_{+}} \vee x_{3_{-}}\right) \wedge\left(x_{3_{+}} \vee x_{4_{-}} \vee x_{5_{+}}\right) \wedge\left(x_{4_{+}} \vee x_{5_{-}}\right)
$$

Recursive Backdoors

$$
\left(x_{1_{+}} \vee x_{2_{-}}\right) \wedge\left(x_{1_{-}} \vee x_{2_{+}} \vee x_{3_{-}}\right) \wedge\left(x_{3_{+}} \vee x_{4_{-}} \vee x_{5_{+}}\right) \wedge\left(x_{4_{+}} \vee x_{5_{-}}\right)
$$

Results

Theorem (Mählmann, Siebertz, Vigny)

1. Recursive backdoor evaluation is fpt.
2. Recursive backdoor detection to \mathcal{C}_{0} is fpt.

Results

Theorem (Mählmann, Siebertz, Vigny)

1. Recursive backdoor evaluation is fpt.
2. Recursive backdoor detection to \mathcal{C}_{0} is fpt.

Theorem (Jan Dreier, Sebastian Ordyniak, Stefan Szeider)
Recursive backdoor detection to 2CNF is fpt.

Theorem (Mählmann, Siebertz, Vigny)

1. Recursive backdoor evaluation is fpt.
2. Recursive backdoor detection to \mathcal{C}_{0} is fpt.

Theorem (Jan Dreier, Sebastian Ordyniak, Stefan Szeider) Recursive backdoor detection to 2CNF is fpt.

Thank you for listening!

Recursive Backdoor Depth

Definition (Mählmann, Siebertz, Vigny)

$$
\operatorname{rbd}_{\mathcal{C}}(G)=\left\{\begin{array}{l}
\frac{\text { if } G \in \mathcal{C}:}{0} \\
\frac{\text { if } G \notin \mathcal{C} \text { and } G \text { is connected: }}{1+\min _{x \in \operatorname{var}(G)} \max _{\star \in\{+,-\}} \operatorname{rbd}_{\mathcal{C}}\left(G\left[x_{\star}\right]\right)} \\
\frac{\text { otherwise: }}{\max \left\{\operatorname{rbd}_{\mathcal{C}}(H): H \text { connected component of } G\right\}}
\end{array}\right.
$$

