Forbidden Induced Subgraphs for Bounded Shrub-Depth and the Expressive Power of MSO

Nikolas Mählmann

27th February 2025, AlMoTh 2025

The order-property

Fix a logic $\mathcal{L} \in \{FO, MSO\}$, an \mathcal{L} -formula $\varphi(\bar{x}, \bar{y})$, and a graph class \mathcal{C} .

 φ has the *order-property* on \mathcal{C} , if for every $\ell \in \mathbb{N}$ there is a graph $G \in \mathcal{C}$ and a sequence $\bar{a}_i, \ldots, \bar{a}_\ell$ of tuples of vertices of G, such that for all $i, j \in [\ell]$

$$G \models \varphi(\bar{a}_i, \bar{a}_j) \Leftrightarrow i \leq j.$$

The order-property

Fix a logic $\mathcal{L} \in \{FO, MSO\}$, an \mathcal{L} -formula $\varphi(\bar{x}, \bar{y})$, and a graph class \mathcal{C} .

 φ has the *order-property* on \mathcal{C} , if for every $\ell \in \mathbb{N}$ there is a graph $G \in \mathcal{C}$ and a sequence $\bar{a}_i, \ldots, \bar{a}_\ell$ of tuples of vertices of G, such that for all $i, j \in [\ell]$

$$G \models \varphi(\bar{a}_i, \bar{a}_j) \quad \Leftrightarrow \quad i \leq j.$$

Example FO: $\varphi(x,y) := "N(x) \supseteq N(y)"$

$$a_1 \prec_{\varphi} a_2 \prec_{\varphi} a_3 \prec_{\varphi} a_4$$

The order-property

Fix a logic $\mathcal{L} \in \{FO, MSO\}$, an \mathcal{L} -formula $\varphi(\bar{x}, \bar{y})$, and a graph class \mathcal{C} .

 φ has the *order-property* on \mathcal{C} , if for every $\ell \in \mathbb{N}$ there is a graph $G \in \mathcal{C}$ and a sequence $\bar{a}_i, \ldots, \bar{a}_\ell$ of tuples of vertices of G, such that for all $i, j \in [\ell]$

$$G \models \varphi(\bar{a}_i, \bar{a}_j) \Leftrightarrow i \leq j.$$

Example FO: $\varphi(x, y) := "N(x) \supseteq N(y)"$

$$a_1 \prec_{\varphi} a_2 \prec_{\varphi} a_3 \prec_{\varphi} a_4$$

Example MSO: $\psi(x_1x_2, y_1y_2) := "x_1 \text{ and } x_2 \text{ are not connected after deleting } y_1"$

$$p_1$$
 p_2 p_3 p_4 p_5 p_6

$$p_1p_6 \prec_{\psi} p_2p_6 \prec_{\psi} p_3p_6 \prec_{\psi} \cdots \prec_{\psi} p_6p_6$$

For a logic \mathcal{L} , a graph class \mathcal{C} is \mathcal{L} -stable, if no \mathcal{L} -formula has the order-property on \mathcal{C} .

For a logic \mathcal{L} , a graph class \mathcal{C} is \mathcal{L} -stable, if no \mathcal{L} -formula has the order-property on \mathcal{C} .

Examples FO-stability:

- planar graphs
- map graphs
- bounded tree-width
- bounded degree

Nonexamples FO-stability:

- the class of all half-graphs
- the class of all 1-subdivided graphs

For a logic \mathcal{L} , a graph class \mathcal{C} is \mathcal{L} -stable, if no \mathcal{L} -formula has the order-property on \mathcal{C} .

Examples FO-stability:

- planar graphs
- map graphs
- bounded tree-width
- bounded degree

Examples MSO-stability:

- bounded tree-depth
- bounded shrub-depth

Nonexamples FO-stability:

- the class of all half-graphs
- the class of all 1-subdivided graphs

Nonexamples MSO-stability:

the class of all paths

For a logic \mathcal{L} , a graph class \mathcal{C} is \mathcal{L} -stable, if no \mathcal{L} -formula has the order-property on \mathcal{C} .

Examples FO-stability:

- planar graphs
- map graphs
- bounded tree-width
- bounded degree

Examples MSO-stability:

- bounded tree-depth
- bounded shrub-depth

Nonexamples FO-stability:

- the class of all half-graphs
- the class of all 1-subdivided graphs

Nonexamples MSO-stability:

the class of all paths

Hereditary FO-stable classes are very well-behaved: fpt FO model checking, various combinatorial characterizations [see my talk from AIMoTh 2024].

For a logic \mathcal{L} , a graph class \mathcal{C} is \mathcal{L} -stable, if no \mathcal{L} -formula has the order-property on \mathcal{C} .

Examples FO-stability:

- planar graphs
- map graphs
- bounded tree-width
- bounded degree

Examples MSO-stability:

- bounded tree-depth
- bounded shrub-depth

Nonexamples FO-stability:

- the class of all half-graphs
- the class of all 1-subdivided graphs

Nonexamples MSO-stability:

the class of all paths

Hereditary FO-stable classes are very well-behaved: fpt FO model checking, various combinatorial characterizations [see my talk from AIMoTh 2024].

Motivating question: Can MSO-stable classes also be combinatorially characterized?

First Main Result

Theorem

A hereditary graph class is MSO-stable iff it has bounded shrub-depth (or equivalently: bounded SC-depth).

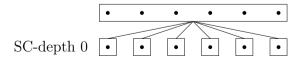
First Main Result

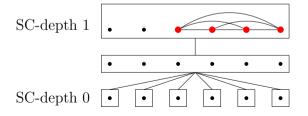
Theorem

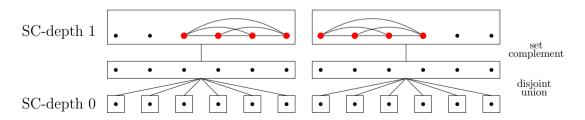
A hereditary graph class is MSO-stable iff it has bounded shrub-depth (or equivalently: bounded SC-depth).

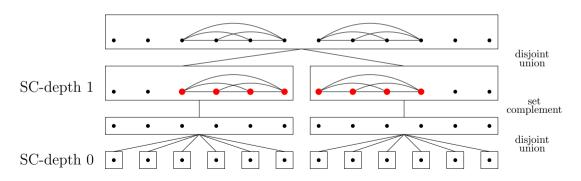
The SC-depth of a class is functionally equivalent to its shrub-depth.

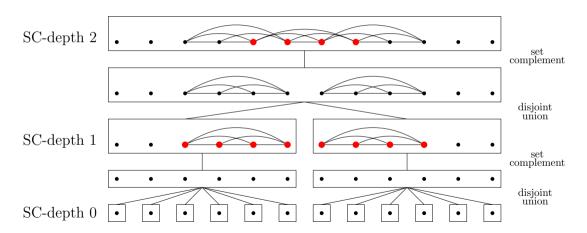
SC-depth is a dense analog of tree-depth.











A hereditary graph class is MSO-stable iff it has bounded shrub-depth (or equivalently: bounded SC-depth).

This means also hereditary MSO-stable classes are well-behaved. For instance:

- fpt MSO model checking,
- poly time graph isomorphism,
- various combinatorial characterizations.

A hereditary graph class is MSO-stable iff it has bounded shrub-depth (or equivalently: bounded SC-depth).

This means also hereditary MSO-stable classes are well-behaved. For instance:

- fpt MSO model checking,
- poly time graph isomorphism,
- various combinatorial characterizations.

bd shrub-depth ⇒ MSO-stable mostly follows from combining existing facts.

Main contribution: unbd shrub-depth + hereditary \Rightarrow MSO-unstable.

A hereditary graph class is MSO-stable iff it has bounded shrub-depth (or equivalently: bounded SC-depth).

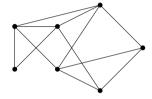
This means also hereditary MSO-stable classes are well-behaved. For instance:

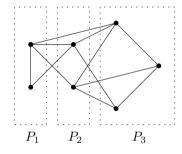
- fpt MSO model checking,
- poly time graph isomorphism,
- various combinatorial characterizations.

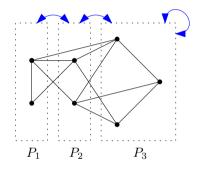
bd shrub-depth ⇒ MSO-stable mostly follows from combining existing facts.

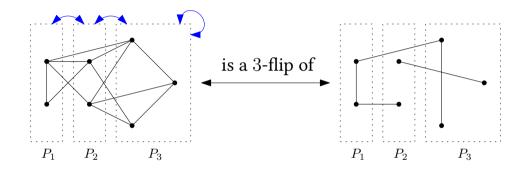
Main contribution: unbd shrub-depth + hereditary \Rightarrow MSO-unstable.

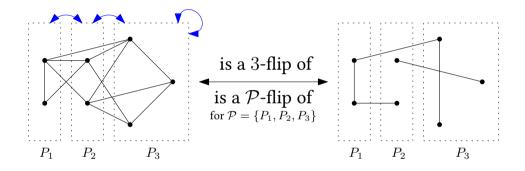
Next up: a characterizing bounded shrub-depth by forbidden induced subgraphs.











A graph class C has bounded shrub-depth if and only if there is $t \in \mathbb{N}$ such that C excludes all flipped H_t and all flipped tP_t as induced subgraphs.

A graph class $\mathcal C$ has bounded shrub-depth if and only if there is $t\in\mathbb N$ such that $\mathcal C$ excludes all flipped H_t and all flipped tP_t as induced subgraphs.

 $H_t = \mathsf{half}\text{-}\mathsf{graph}$ of order t; flipped $H_t = \mathsf{a}\ \{P_1, P_2\}\text{-}\mathsf{flip}$ of H_t .

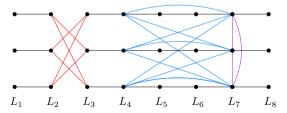
A graph class C has bounded shrub-depth if and only if there is $t \in \mathbb{N}$ such that C excludes all flipped H_t and all flipped tP_t as induced subgraphs.

 $H_t = \text{half-graph of order } t; \quad \text{flipped } H_t = \text{a } \{P_1, P_2\}\text{-flip of } H_t.$

A graph class C has bounded shrub-depth if and only if there is $t \in \mathbb{N}$ such that C excludes all flipped H_t and all flipped tP_t as induced subgraphs.

 $H_t = \text{half-graph of order } t; \quad \text{flipped } H_t = \text{a } \{P_1, P_2\} \text{-flip of } H_t.$

 $tP_t = \text{disjoint union of } t \text{ many } P_t$; flipped $tP_t = \text{a flip of } tP_t \text{ respecting layers.}$



A graph class C has bounded shrub-depth if and only if there is $t \in \mathbb{N}$ such that C excludes all flipped H_t and all flipped tP_t as induced subgraphs.

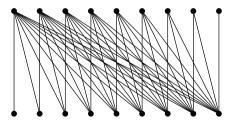
 $H_t = \text{half-graph of order } t; \quad \text{flipped } H_t = \text{a } \{P_1, P_2\} \text{-flip of } H_t.$

 $tP_t = \text{disjoint union of } t \text{ many } P_t$; flipped $tP_t = \text{a flip of } tP_t \text{ respecting layers.}$

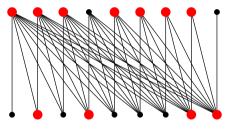


Next up: large flipped H_t and $tP_t \Rightarrow$ large SC-depth

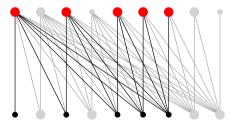
Every set complement of a huge flipped H_t contains again a still large flipped H_s . Every set complement of a huge flipped tP_t contains again a still large flipped sP_s .



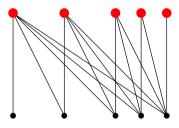
Every set complement of a huge flipped H_t contains again a still large flipped H_s . Every set complement of a huge flipped tP_t contains again a still large flipped sP_s .



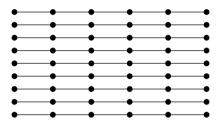
Every set complement of a huge flipped H_t contains again a still large flipped H_s . Every set complement of a huge flipped tP_t contains again a still large flipped sP_s .



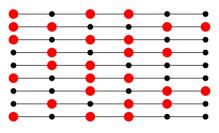
Every set complement of a huge flipped H_t contains again a still large flipped H_s . Every set complement of a huge flipped tP_t contains again a still large flipped sP_s .



Every set complement of a huge flipped H_t contains again a still large flipped H_s . Every set complement of a huge flipped tP_t contains again a still large flipped sP_s .

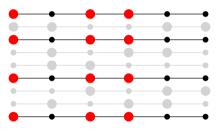


Every set complement of a huge flipped H_t contains again a still large flipped H_s . Every set complement of a huge flipped tP_t contains again a still large flipped sP_s .



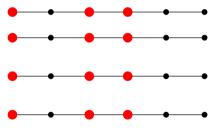
Every set complement of a huge flipped H_t contains again a still large flipped H_s . Every set complement of a huge flipped tP_t contains again a still large flipped sP_s .

By the pigeonhole principle:



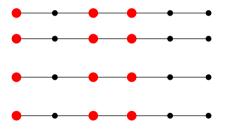
Every set complement of a huge flipped H_t contains again a still large flipped H_s . Every set complement of a huge flipped tP_t contains again a still large flipped sP_s .

By the pigeonhole principle:



Every set complement of a huge flipped H_t contains again a still large flipped H_s . Every set complement of a huge flipped tP_t contains again a still large flipped sP_s .

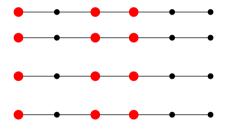
By the pigeonhole principle:



large flipped H_t or $tP_t \Rightarrow$ unbounded SC-depth \checkmark

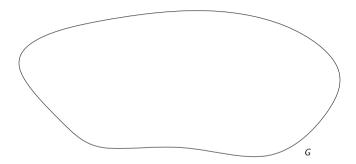
Every set complement of a huge flipped H_t contains again a still large flipped H_s . Every set complement of a huge flipped tP_t contains again a still large flipped sP_s .

By the pigeonhole principle:

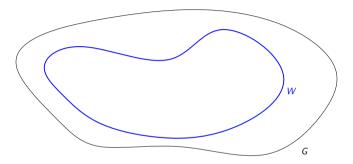


large flipped H_t or $tP_t \Rightarrow$ unbounded SC-depth \checkmark

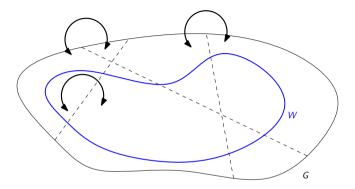
Next up: no large flipped H_t and $tP_t \Rightarrow$ bounded SC-depth



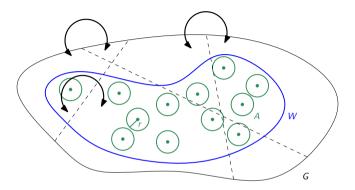
Flip-flatness (slightly informal)



Flip-flatness (slightly informal)



Flip-flatness (slightly informal)



Flip-flatness (slightly informal)

Flip-flatness (slightly informal)

A class C is r-flip-flat if in every large set W we find a still large set A that is r-independent after performing a k-flip of G.

Theorem

For every hereditary graph class C:

- $\mathcal C$ is FO-stable iff $\mathcal C$ is r-flip-flat for every $r \in \mathbb N$. [Dreier, NM, Siebertz, Toruńczyk, 2023]
- ullet C has bd. SC-depth iff C is ∞ -flip-flat. [Dreier, NM, Toruńczyk, 2024] [implied by this work]

Flip-flatness (slightly informal)

A class C is r-flip-flat if in every large set W we find a still large set A that is r-independent after performing a k-flip of G.

Theorem

For every hereditary graph class C:

- $\mathcal C$ is FO-stable iff $\mathcal C$ is r-flip-flat for every $r\in\mathbb N$. [Dreier, NM, Siebertz, Toruńczyk, 2023]
- ullet C has bd. SC-depth iff ${\mathcal C}$ is ∞ -flip-flat. [Dreier, NM, Toruńczyk, 2024] [implied by this work]

This is the plan:

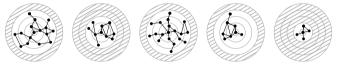
r-flip-flat + no large flipped $tP_t \Rightarrow \infty$ -flip-flat

Apply 2t-flip-flatness. Result: many disjoint radius-t balls in a k-flip.

r-flip-flat + no large flipped $tP_t \Rightarrow \infty$ -flip-flat

Apply 2t-flip-flatness. Result: many disjoint radius-t balls in a k-flip.

Case 1: Many balls whose outermost BFS layer is empty: this is ∞-flip-flatness ✓

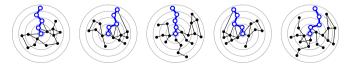


r-flip-flat + no large flipped $tP_t \Rightarrow \infty$ -flip-flat

Apply 2t-flip-flatness. Result: many disjoint radius-t balls in a k-flip.

Case 1: Many balls whose outermost BFS layer is empty: this is ∞-flip-flatness ✓

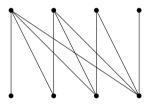
Case 2: Many balls whose outermost layer is non-empty: flipped tP_t ; contradiction!

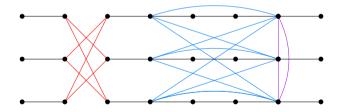


Characterizing shrub-depth by forbidden induced subgraphs

Theorem

A graph class C has bounded shrub-depth if and only if there is $t \in \mathbb{N}$ such that C excludes all flipped H_t and all flipped tP_t as induced subgraphs.





Hereditary + unbounded shrub-depth \Rightarrow MSO-unstable

We are going to show the following stronger statement:

Theorem

Every hereditary class of unbounded shrub-depth FO-interprets the class of all paths.

Hereditary + unbounded shrub-depth \Rightarrow MSO-unstable

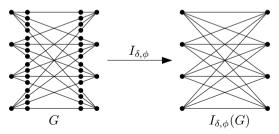
We are going to show the following stronger statement:

Theorem

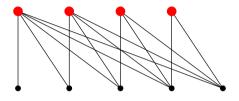
Every hereditary class of unbounded shrub-depth FO-interprets the class of all paths.

The *interpretation* $I_{\delta,\varphi}$ is defined by a formulas $\delta(x)$, $\varphi(x,y)$ for domain and edges.

Example: $\delta(x) := \deg(x) > 2$ and $\varphi(x,y) := \operatorname{dist}(x,y) \le 3$

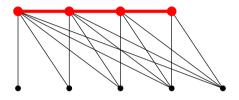


Interpreting paths in half-graphs



Domain formula $\delta(x) = "x$ has a neighbor that has a twin".

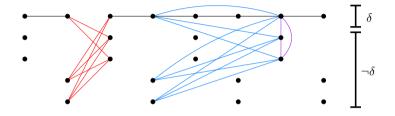
Interpreting paths in half-graphs



Domain formula $\delta(x) = x$ has a neighbor that has a twin.

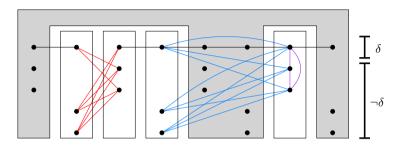
Edge formula " $\varphi(x,y)=$ the neighborhood of x and y differs in exactly one vertex".

Interpreting P_t an induced subgraph of a flipped $5P_t$



Domain formula $\delta(x) = "x \text{ has no twins"}.$

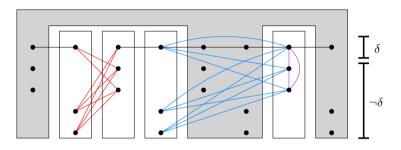
Interpreting P_t an induced subgraph of a flipped $5P_t$



Domain formula $\delta(x) = "x \text{ has no twins}"$.

 $\pi(x,y)=$ "x and y have the same neighborhood on $\neg\delta$ ". $\pi(x,y)\Leftrightarrow \mathcal{P}(x)=\mathcal{P}(y)$.

Interpreting P_t an induced subgraph of a flipped $5P_t$



Domain formula $\delta(x) = "x \text{ has no twins}".$

 $\pi(x,y)=$ "x and y have the same neighborhood on $\neg\delta$ ". $\pi(x,y)\Leftrightarrow \mathcal{P}(x)=\mathcal{P}(y)$.

Edge formula $\varphi(x,y) = \text{invert } E(x,y) \text{ iff } \mathcal{P}(x) \text{ and } \mathcal{P}(y) \text{ are densely connected.}$

Main theorem

Theorem

For every hereditary graph class C, the following are equivalent.

- 1. C has bounded shrub-depth.
- 2. There is a $t \in \mathbb{N}$ such that C excludes all flipped H_t and all flipped tP_t .
- 3. There is a $t \in \mathbb{N}$ such that C excludes all flipped H_t and all flipped $3P_t$.
- 4. C is MSO-stable.
- 5. C is monadically MSO-stable.
- 6. C is CMSO-stable.
- 7. C is monadically CMSO-stable.
- 8. C does not FO-interpret the class of all paths.
- 9. FO and MSO have the same expressive power on C.

The expressive power of MSO

FO and MSO have the same expressive power on a graph class $\mathcal C$ if for every MSO-sentence φ there is an FO-sentence ψ such that for all $G \in \mathcal C$:

$$G \models \varphi \Leftrightarrow G \models \psi.$$

The expressive power of MSO

FO and MSO have the same expressive power on a graph class $\mathcal C$ if for every MSO-sentence φ there is an FO-sentence ψ such that for all $G \in \mathcal C$:

$$G \models \varphi \Leftrightarrow G \models \psi.$$

Theorem [Gajarský and Hliněný; 2015]

FO and MSO have the same expressive power on every class of bounded shrub-depth.

We show:

Theorem

MSO is more expressive than FO on every hereditary class of unbounded shrub-depth.

Separating MSO and FO on flipped half-graphs

We first separate MSO and FO on the class of paths.

Even length on paths is expressible in MSO:

Quantify an alternating 2-coloring and check if the endpoints have different colors.

Separating MSO and FO on flipped half-graphs

We first separate MSO and FO on the class of paths.

Even length on paths is expressible in MSO:

Quantify an alternating 2-coloring and check if the endpoints have different colors.

Even length on paths is not expressible in FO. (Ehrenfeucht-Fraissé Games)

MSO expressibility and FO inexpressibility both lift to flipped half-graphs.

Separating MSO and FO on flipped tP_t

The previous trick does not work on tP_t s:

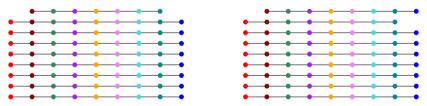
The flipped tP_t in C could be totally different from the flipped $(t+1)P_{t+1}$ in C.

Separating MSO and FO on flipped tP_t

The previous trick does not work on tP_t s:

The flipped tP_t in C could be totally different from the flipped $(t+1)P_{t+1}$ in C.

Instead, we separate two induced subgraphs of the same flipped tP_t :



FO cannot distinguish between the above two graphs (Hanf Locality), but MSO can.

Summary

Theorem

For every hereditary graph class C, the following are equivalent.

- 1. C has bounded shrub-depth.
- 2. There is a $t \in \mathbb{N}$ such that C excludes all flipped H_t and all flipped tP_t .
- 3. There is a $t \in \mathbb{N}$ such that C excludes all flipped H_t and all flipped $3P_t$.
- 4. C is MSO-stable.
- 5. C is monadically MSO-stable.
- 6. C is CMSO-stable.
- 7. C is monadically CMSO-stable.
- 8. C does not FO-interpret the class of all paths.
- 9. FO and MSO have the same expressive power on C.

Vielen Dank!