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The order-property
Fix a logic £ € {FO,MSO}, an L-formula ¢(x,¥), and a graph class C.

 has the order-property on C, if for every £ € N there is a graph G € C and a
sequence 3;, ..., ay of tuples of vertices of G, such that for all i, € [{]

GFy(a,a) < i<
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sequence 3;, ..., ay of tuples of vertices of G, such that for all i, € [{]

GFy(a,a) < i<

Example FO: ¢(x,y) := "N(x) D N(y)"
al a2 a3z a4
a1 <y a2 <y a3 <y a4

b1 ba b3 by

Example MSO: ¥(x1x2, y1y2) := “x1 and x» are not connected after deleting y;"
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Stability
For a logic L, a graph class C is L-stable, if no L-formula has the order-property on C.
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Stability

For a logic £, a graph class C is L-stable, if no L-formula has the order-property on C.

Examples FO-stability:
e planar graphs

map graphs

bounded tree-width

bounded degree

Examples MSO-stability:
e bounded tree-depth

e bounded shrub-depth

Nonexamples FO-stability:
e the class of all half-graphs
e the class of all 1-subdivided
graphs

Nonexamples MSO-stability:
e the class of all paths

Hereditary FO-stable classes are very well-behaved: fpt FO model checking, various
combinatorial characterizations [see my talk from AIMoTh 2024].

Motivating question: Can MSO-stable classes also be combinatorially characterized?
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First Main Result

A hereditary graph class is MSO-stable iff it has bounded shrub-depth
(or equivalently: bounded SC-depth).
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First Main Result

Theorem

A hereditary graph class is MSO-stable iff it has bounded shrub-depth
(or equivalently: bounded SC-depth).

The SC-depth of a class is functionally equivalent to its shrub-depth.

SC-depth is a dense analog of tree-depth.
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SC-Depth
The single vertex graph Ki has SC-depth 0. A graph has SC-depth at most k + 1 if it
is a set complement of a disjoint union of graphs of SC-depth at most k.

SC-depth 0 B E E B E E
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is a set complement of a disjoint union of graphs of SC-depth at most k.
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SC-Depth
The single vertex graph Ki has SC-depth 0. A graph has SC-depth at most k + 1 if it
is a set complement of a disjoint union of graphs of SC-depth at most k.
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Theorem
A hereditary graph class is MSO-stable iff it has bounded shrub-depth

(or equivalently: bounded SC-depth).

This means also hereditary MSO-stable classes are well-behaved. For instance:
e fpt MSO model checking,
e poly time graph isomorphism,

e various combinatorial characterizations.
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e fpt MSO model checking,
e poly time graph isomorphism,
e various combinatorial characterizations.

bd shrub-depth = MSO-stable mostly follows from combining existing facts.

Main contribution: unbd shrub-depth + hereditary = MSO-unstable.

Next up: a characterizing bounded shrub-depth by forbidden induced subgraphs.
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Flips

is a 3-flip of
is a P-flip of

f01'7D = {Pl,PQ,Pg}
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Theorem

A graph class C has bounded shrub-depth if and only if there is t € N such that C
excludes all flipped H; and all flipped tP; as induced subgraphs.
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A graph class C has bounded shrub-depth if and only if there is t € N such that C
excludes all flipped H; and all flipped tP; as induced subgraphs.

H; = half-graph of order t; flipped H; = a {P1, P2}-flip of H;.

-~ NN RN . 7. 7

tP; = disjoint union of t many P;; flipped tP; = a flip of tP; respecting layers.

Next up: large flipped H; and tP; = large SC-depth 8/21



Lemma

Every set complement of a huge flipped H; contains again a still large flipped H;.
Every set complement of a huge flipped tP; contains again a still large flipped sPs.

By the pigeonhole principle:
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Lemma

Every set complement of a huge flipped H; contains again a still large flipped H;.
Every set complement of a huge flipped tP; contains again a still large flipped sPs.

By the pigeonhole principle:
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large flipped H; or tP; = unbounded SC-depth v

Next up: no large flipped H; and tP; = bounded SC-depth
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Flip-flatness

Flip-flatness (slightly informal)

A class C is r-flip-flat if in every large set W we find a still large set A that is
r-independent after performing a k-flip of G.
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For every hereditary graph class C:
e C is FO-stable iff C is r-flip-flat for every r € N.  [Dreier, NM, Siebertz, Toruriczyk, 2023]
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Flip-flatness (slightly informal)

A class C is r-flip-flat if in every large set W we find a still large set A that is
r-independent after performing a k-flip of G.

Theorem

For every hereditary graph class C:

e C is FO-stable iff C is r-flip-flat for every r € N.
e C has bd. SC-depth iff C is co-flip-flat. [Dreier, NM, Toruriczyk, 2024] [implied by this work]

This is the plan:

[Dreier, NM, Siebertz, Toruriczyk, 2023]

no large flipped
Ht and tPt

FO-stable
+ no large flipped tP;:

r-flip-flat Vr
+ no large flipped tP;

.

oo-flip-flat

bounded
SC-depth
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r-flip-flat 4+ no large flipped tP; = oo-flip-flat
Apply 2t-flip-flatness. Result: many disjoint radius-t balls in a k-flip.

OOV
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OOV

Case 1: Many balls whose outermost BFS layer is empty: this is co-flip-flatness v/
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r-flip-flat 4+ no large flipped tP; = oo-flip-flat
Apply 2t-flip-flatness. Result: many disjoint radius-t balls in a k-flip.

OOV

Case 1: Many balls whose outermost BFS layer is empty: this is co-flip-flatness v/

Sal L TeV Y

Case 2: Many balls whose outermost layer is non-empty: flipped tP;; contradiction!

e
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Characterizing shrub-depth by forbidden induced subgraphs

Theorem

A graph class C has bounded shrub-depth if and only if there is t € N such that C
excludes all flipped H; and all flipped tP; as induced subgraphs.

N =
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Hereditary 4+ unbounded shrub-depth = MSO-unstable
We are going to show the following stronger statement:

Theorem
Every hereditary class of unbounded shrub-depth FO-interprets the class of all paths.
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Hereditary 4+ unbounded shrub-depth = MSO-unstable
We are going to show the following stronger statement:
Theorem

Every hereditary class of unbounded shrub-depth FO-interprets the class of all paths.

The interpretation ls, is defined by a formulas d(x), ¢(x, y) for domain and edges.

Example: 6(x) := deg(x) > 2 and p(x,y) :=dist(x,y) <3

1
5o
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Interpreting paths in half-graphs

Domain formula 6(x) = “x has a neighbor that has a twin".
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Interpreting paths in half-graphs

Domain formula 6(x) = “x has a neighbor that has a twin".

Edge formula "p(x, y) = the neighborhood of x and y differs in exactly one vertex”.
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Interpreting P; an induced subgraph of a flipped 5P;

=0

Domain formula §(x) = “x has no twins".
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Interpreting P; an induced subgraph of a flipped 5P;
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Domain formula §(x) = “x has no twins".

m(x,y) = "x and y have the same neighborhood on —¢". 7(x,y) < P(x) = P(y).
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Interpreting P; an induced subgraph of a flipped 5P;
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Domain formula §(x) = “x has no twins".

m(x,y) = "x and y have the same neighborhood on —¢". 7(x,y) < P(x) = P(y).

=

Edge formula ¢(x,y) = invert E(x,y) iff P(x) and P(y) are densely connected.
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Main theorem

Theorem

For every hereditary graph class C, the following are equivalent.
1. C has bounded shrub-depth.

2. Thereis a t € N such that C excludes all flipped H; and all flipped tP;.

3. Thereis a t € N such that C excludes all flipped H; and all flipped 3P:.

4. C is MSO-stable.

5. C is monadically MSO-stable.

6. C is CMSO-stable.

7. C is monadically CMSO-stable.

8. C does not FO-interpret the class of all paths.

9. FO and MSO have the same expressive power on C.
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The expressive power of MSO

FO and MSO have the same expressive power on a graph class C if for every
MSO-sentence ¢ there is an FO-sentence 9 such that for all G € C:

GFee GEY.
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The expressive power of MSO

FO and MSO have the same expressive power on a graph class C if for every
MSO-sentence ¢ there is an FO-sentence 9 such that for all G € C:

GlEee GEY.

Theorem [Gajarsky and Hlingny; 2015]

FO and MSO have the same expressive power on every class of bounded shrub-depth.

We show:

Theorem

MSQ is more expressive than FO on every hereditary class of unbounded shrub-depth.
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Separating MSO and FO on flipped half-graphs

We first separate MSO and FO on the class of paths.

Even length on paths is expressible in MSO:

Quantify an alternating 2-coloring and check if the endpoints have different colors.
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Separating MSO and FO on flipped half-graphs

We first separate MSO and FO on the class of paths.
Even length on paths is expressible in MSO:

Quantify an alternating 2-coloring and check if the endpoints have different colors.
Even length on paths is not expressible in FO. (Ehrenfeucht-Fraissé Games)

MSO expressibility and FO inexpressibility both lift to flipped half-graphs.
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Separating MSO and FO on flipped tP;

The previous trick does not work on tP;s:

The flipped tP: in C could be totally different from the flipped (t 4+ 1)P¢+1 in C.
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Separating MSO and FO on flipped tP;

The previous trick does not work on tP;s:
The flipped tP: in C could be totally different from the flipped (t 4+ 1)P¢+1 in C.

Instead, we separate two induced subgraphs of the same flipped tP;:

—eo o — — — —o —o o — — — oo
oo o — — — —o—o —eo o o — — — o
9o o o — — — —o—o —eo 90— o —o—o—0—0
o 9o o — — — —o—o o o o — — o
oo o — — — —o—o o o o — — o9
9o o o — — — —o—o —eo 90— o —o—o—0—0
o 9o o — — — —o—o o o o — — o
oo o — — — —o—o e o o — — —

9o o o — — — —o—o o o o — — —

FO cannot distinguish between the above two graphs (Hanf Locality), but MSO can.
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Summary

Theorem

For every hereditary graph class C, the following are equivalent.
1. C has bounded shrub-depth.

2. There is a t € N such that C excludes all flipped H; and all flipped tP;.

3. Thereis a t € N such that C excludes all flipped H; and all flipped 3P;.

4. C is MSO-stable.

5. C is monadically MSO-stable.

6. C is CMSO-stable.

7. C is monadically CMSO-stable.

8. C does not FO-interpret the class of all paths.

9. FO and MSO have the same expressive power on C.

Vielen Dank!
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