Combinatorial Characterizations for Monadically Stable and Monadically NIP Graph Classes

Nikolas Mählmann\(^1\)

joint work with: Jan Dreier\(^2\), Sebastian Siebertz\(^3\), Szymon Toruńczyk\(^4\)

AlMoTh 2024 - 29.02.2024

\(^1\)University of Bremen
\(^2\)TU Wien
\(^3\)University of Bremen
\(^4\)University of Warsaw
The FO Model Checking Problem

Problem: Given a graph G and an FO sentence φ, decide whether $G \models \varphi$.

Example: G contains a dominating set of size k iff.

$$G \models \exists x_1 \ldots \exists x_k \forall y : \bigvee_{i \in [k]} (y = x_i \lor y \sim x_i).$$
The FO Model Checking Problem

Problem: Given a graph G and an FO sentence φ, decide whether

$$G \models \varphi.$$

Example: G contains a dominating set of size k iff.

$$G \models \exists x_1 \ldots \exists x_k \forall y : \bigvee_{i \in [k]} (y = x_i \lor y \sim x_i).$$

Question: On which classes is FO model checking fixed-parameter tractable, i.e., solvable in time $f(\varphi) \cdot n^c$?
Nowhere Dense Classes of Graphs

Definition [Něsetřil, Ossona de Mendez, 2011]

A class C is nowhere dense, if for every r there exists k such C that does not contain the r-subdivided clique of size k as a subgraph.

Figure: The 2-subdivided K_4.
Definition [Něsetřil, Ossona de Mendez, 2011]

A class C is *nowhere dense*, if for every r there exists k such C that does not contain the r-subdivided clique of size k as a subgraph.

Generalizes many notions of sparsity such as: bounded degree, bounded treewidth, planarity, excluding a minor, ...
Nowhere Dense Classes of Graphs

Definition [Něsetřil, Ossona de Mendez, 2011]

A class C is **nowhere dense**, if for every r there exists k such C that does not contain the r-subdivided clique of size k as a subgraph.

Generalizes many notions of sparsity such as: bounded degree, bounded treewidth, planarity, excluding a minor, ...

![Figure: The 2-subdivided K_4.](image)

Theorem [Grohe, Kreutzer, Siebertz, 2014]

Let C be a *monotone* class of graphs. If C is nowhere dense, then FO model checking on C can be done in time $f(\varphi, \varepsilon) \cdot n^{1+\varepsilon}$ for every $\varepsilon > 0$. Otherwise it is AW[*]-hard.
To go beyond sparse classes, we need to shift from monotone to *hereditary* classes.
FO Transductions

To go beyond sparse classes, we need to shift from monotone to *hereditary* classes.

How to produce well behaved hereditary classes from sparse classes?
FO Transductions

To go beyond sparse classes, we need to shift from monotone to *hereditary* classes.

How to produce well behaved hereditary classes from sparse classes?

Transductions \equiv coloring + interpreting + taking an induced subgraph

$$\varphi(x, y) := \text{Red}(x) \land \text{Red}(y) \land \text{dist}(x, y) = 3$$
Monadic Stability and Monadic NIP

Definition

A class C is *structurally nowhere dense*, if there exists a transduction T and a nowhere dense class D such that $C \subseteq T(D)$.

Definition

A class is *monadically stable*, if it does not transduce the class of all half graphs.

Definition

A class is *monadically NIP*, if it does not transduce the class of all graphs.
Monadic Stability and Monadic NIP

Definition

A class C is **structurally nowhere dense**, if there exists a transduction T and a nowhere dense class \mathcal{D} such that $C \subseteq T(\mathcal{D})$.

Definition

A class is **monadically stable**, if it does not transduce the class of all half graphs.

\[a_i \sim b_j \iff i \leq j \]
Monadic Stability and Monadic NIP

Definition

A class C is **structurally nowhere dense**, if there exists a transduction T and a nowhere dense class D such that $C \subseteq T(D)$.

Definition

A class is **monadically stable**, if it does not transduce the class of all half graphs.

A class is **monadically NIP**, if it does not transduce the class of all graphs.
Theorem

Model checking is **fixed-parameter tractable** on classes that are

- nowhere dense
 [Grohe, Kreutzer, Siebertz, 2014]
- structurally nowhere dense
 [Dreier, Mählmann, Siebertz, 2023]
- monadically stable
 [Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023]
Theorem

Model checking is **fixed-parameter tractable** on classes that are
- nowhere dense
- structurally nowhere dense
- monadically stable

[Grohe, Kreutzer, Siebertz, 2014]
[Dreier, Mählmann, Siebertz, 2023]
[Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023]

Theorem [Dreier, Mählmann, Toruńczyk, 2024]

Model checking is **AW[\ast]−hard** on every hereditary class that is **not** monadically NIP.
Theorem [Grohe, Kreutzer, Siebertz, 2014]
Model checking is fixed-parameter tractable on classes that are
- nowhere dense
- structurally nowhere dense
- monadically stable

Theorem [Dreier, Mählmann, Siebertz, 2023]
Model checking is $\text{AW}[*]$-hard on every hereditary class that is not monadically NIP.

Conjecture
A hereditary class has fpt model checking iff it is monadically NIP.
Agenda

Goals for today:

1. Define and motivate mon. stable and mon. NIP classes. ✓
2. Give combinatorial structure characterizations of the two.
 - Build the foundation for fpt model checking.
 - Reveal connections to nowhere denseness and other graph parameters.
3. Give combinatorial non-structure characterizations of the two.
 - Various hardness results are implied.
Characterizing Nowhere Denseness: Uniform Quasi-Wideness

A class C is uniformly quasi-wide if for every radius r, in every large set A we find a still large set B that is r-independent after removing a set S of constantly many vertices.

Theorem [Nèsetřil, Ossona de Mendez, 2011]
A class C is uniformly quasi-wide if and only if it is nowhere dense.
Characterizing Nowhere Denseness: Uniform Quasi-Wideness

A class C is uniformly quasi-wide if for every radius r, in every large set A we find a still large set B that is r-independent after removing a set S of constantly many vertices.

Theorem [Nčesetřil, Ossona de Mendez, 2011] A class C is uniformly quasi-wide if and only if it is nowhere dense.
Characterizing Nowhere Denseness: Uniform Quasi-Wideness

A class C is uniformly quasi-wide if for every radius r, in every large set A we find a still large set B that is r-independent after removing a set S of constantly many vertices.

Theorem [Nesetril, Ossona de Mendez, 2011]

A class C is uniformly quasi-wide if and only if it is nowhere dense.
Uniform Quasi-Wideness (slightly informal)

A class C is uniformly quasi-wide if for every radius r, in every large set A we find a still large set B that is r-independent after removing a set S of constantly many vertices.

Theorem [Nesetril, Ossona de Mendez, 2011]

A class C is uniformly quasi-wide if and only if it is nowhere dense.
Uniform Quasi-Wideness (slightly informal)

A class C is *uniformly quasi-wide* if for every radius r, in every large set A we find a still large set B that is r-independent after removing a set S of constantly many vertices.
Uniform Quasi-Wideness: Example
Uniform Quasi-Wideness: Example

$r < 1$
Uniform Quasi-Wideness: Example
Uniform Quasi-Wideness: Example

\[r < 4 \]
Uniform Quasi-Wideness: Example
Uniform Quasi-Wideness: Example
Uniform Quasi-Wideness: Example

\[r < 6 \]
Uniform Quasi-Wideness: Example
Characterizing Nowhere Denseness: Uniform Quasi-Wideness

Uniform Quasi-Wideness (slightly informal)

A class C is *uniformly quasi-wide* if for every radius r, in every large set A we find a still large set B that is r-independent after removing a set S of constantly many vertices.

Theorem [Něsetřil, Ossona de Mendez, 2011]

A class C is uniformly quasi-wide if and only if it is nowhere dense.
Theorem [Nesetril, Ossona de Mendez, 2011]

A class C is uniformly quasi-wide if and only if it is nowhere dense.

Question: Similar combinatorial characterizations for monadic stability/NIP?
Theorem [Něsetřil, Ossona de Mendez, 2011]

A class \mathcal{C} is uniformly quasi-wide if and only if it is nowhere dense.

Question: Similar **combinatorial characterizations** for monadic stability/NIP?

Denote by $G \oplus (P, Q)$ the graph obtained from G by complementing edges between pairs of vertices from $P \times Q$.
Theorem [Nesetřil, Ossona de Mendez, 2011]

A class C is uniformly quasi-wide if and only if it is nowhere dense.

Question: Similar **combinatorial characterizations** for monadic stability/NIP?

Denote by $G \oplus (P, Q)$ the graph obtained from G by complementing edges between pairs of vertices from $P \times Q$.
Characterizing Monadic Stability: Flip-Flatness

A class C is flip-flat if for every radius r, in every large set A we find a still large set B that is r-independent after performing a set F of constantly many flips.

Theorem [Dreier, Mählmann, Siebertz, Toruńczyk, 2022]

A class C is flip-flat if and only if it is monadically stable.
Characterizing Monadic Stability: Flip-Flatness

A class C is flip-flat if for every radius r, in every large set A we find a still large set B that is r-independent after performing a set F of constantly many flips.

Theorem [Dreier, Mählmann, Siebertz, Toruńczyk, 2022] A class C is flip-flat if and only if it is monadically stable.
Flip-Flatness (slightly informal) [Gajarský, Kreutzer]

A class C is flip-flat if for every radius r, in every large set A we find a still large set B that is r-independent after performing a set F of constantly many flips.

Theorem [Dreier, Mählmann, Siebertz, Toruńczyk, 2022]

A class C is flip-flat if and only if it is monadically stable.
Flip-Flatness

(slightly informal) [Gajarský, Kreutzer]

A class C is flip-flat if for every radius r, in every large set A we find a still large set B that is r-independent after performing a set F of constantly many flips.

Theorem [Dreier, Mählmann, Siebertz, Toruńczyk, 2022]

A class C is flip-flat if and only if it is monadically stable.
Flip-Flatness (slightly informal) [Gajarský, Kreutzer]

A class C is *flip-flat* if for every radius r, in every large set A we find a still large set B that is r-independent after performing a set F of constantly many flips.
Flip-Flatness: Example
Flip-Flatness: Example
Flip-Flatness: Example
Flip-Flatness: Example
Flip-Flatness: Example
Flip-Flatness: Example
Flip-Flatness (slightly informal) [Gajarský, Kreutzer]

A class C is *flip-flat* if for every radius r, in every large set A we find a still large set B that is r-independent after performing a set F of constantly many flips.

Theorem [Dreier, Mählmann, Siebertz, Toruńczyk, 2022]

A class C is flip-flat if and only if it is monadically stable.
Flip-Flatness: Towards Model Checking

Qualitative properties of monadic stability:

- flip-flatness \rightarrow flipper game
Flip-Flatness: Towards Model Checking

Qualitative properties of monadic stability:

- flip-flatness \rightarrow flipper game

Quantitative properties of monadic stability:

- almost linear neighborhood complexity \rightarrow neighborhood covers
Flip-Flatness: Towards Model Checking

Qualitative properties of monadic stability:

- flip-flatness \rightarrow flipper game

Quantitative properties of monadic stability:

- almost linear neighborhood complexity \rightarrow neighborhood covers

To solve model checking we combine both aspects to build:

- small treelike neighborhood decompositions of bounded depth
A class C is flip-breakable if for every radius r, in every large set S we find two large sets A and B and a flip F of bounded size such that $N_r^G \oplus F(A) \cap N_r^G \oplus F(B) = \emptyset$.

Theorem [Dreier, Mählmann, Toruńczyk, 2024] A class C is flip-breakable if and only if it is monadically NIP.
A class C is flip-breakable if for every radius r, in every large set S we find two large sets A and B and a flip F of bounded size such that $N_r(G \oplus F)(A) \cap N_r(G \oplus F)(B) = \emptyset$.

Theorem [Dreier, Mählmann, Toruńczyk, 2024] A class C is flip-breakable if and only if it is monadically NIP.
A class C is flip-breakable if for every radius r, in every large set S we find two large sets A and B such that $N_r G \oplus F(A) \cap N_r G \oplus F(B) = \emptyset$.

Theorem [Dreier, Mählmann, Toruńcyk, 2024]

A class C is flip-breakable if and only if it is monadically NIP.
Characterizing Monadic NIP: Flip-Breakability

A class C is flip-breakable if for every radius r, in every large set S we find two large sets A and B such that a flip F of bounded size such that $N_r G \oplus F(A) \cap N_r G \oplus F(B) = \emptyset$.

Theorem [Dreier, Mählmann, Toruńczyk, 2024] A class C is flip-breakable if and only if it is monadically NIP.
Flip-Breakability (slightly informal)

A class C is *flip-breakable* if for every radius r, in every large set S we find two large sets A and B that and a flip F of bounded size such that $N_{G+F}^r(A) \cap N_{G+F}^r(B) = \emptyset$.
Flip-Breakability: Example
Flip-Breakability (slightly informal)

A class C is *flip-breakable* if for every radius r, in every large set S we find two large sets A and B that and a flip F of bounded size such that $N_{G \oplus F}^r(A) \cap N_{G \oplus F}^r(B) = \emptyset$.

Theorem [Dreier, Mählmann, Toruńczyk, 2024]

A class C is flip-breakable if and only if it is monadically NIP.
Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.
Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.
2. We demand our resulting set is either flat or broken.
 - flat: pairwise separated; broken: separated into two large sets
Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.
2. We demand our resulting set is either flat or broken.
 - flat: pairwise separated; broken: separated into two large sets
3. Separation means either distance-\(r\) or distance-\(\infty\).
Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.
2. We demand our resulting set is either flat or broken.
 flat: pairwise separated; broken: separated into two large sets
3. Separation means either distance-r or distance-∞.

<table>
<thead>
<tr>
<th></th>
<th>flatness</th>
<th>breakability</th>
</tr>
</thead>
<tbody>
<tr>
<td>dist-r</td>
<td>flip-monadic stability</td>
<td>monadic NIP</td>
</tr>
<tr>
<td></td>
<td>deletion-</td>
<td>nowhere denseness</td>
</tr>
<tr>
<td>dist-∞</td>
<td>flip-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>deletion-</td>
<td></td>
</tr>
</tbody>
</table>
1. We modify a graph using either flips or vertex deletions.

2. We demand our resulting set is either flat or broken.

 flat: pairwise separated; broken: separated into two large sets

3. Separation means either distance-r or distance-∞.

<table>
<thead>
<tr>
<th></th>
<th>flatness</th>
<th>breakability</th>
</tr>
</thead>
<tbody>
<tr>
<td>dist-r</td>
<td>flip-</td>
<td>monadic stability</td>
</tr>
<tr>
<td></td>
<td>deletion-</td>
<td>monadic NIP</td>
</tr>
<tr>
<td>dist-∞</td>
<td>flip-</td>
<td>nowhere denseness</td>
</tr>
<tr>
<td></td>
<td>deletion-</td>
<td>nowhere denseness</td>
</tr>
</tbody>
</table>
Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.

2. We demand our resulting set is either flat or broken.
 - flat: pairwise separated; broken: separated into two large sets

3. Separation means either distance-r or distance-∞.

<table>
<thead>
<tr>
<th>dist-r</th>
<th>flip-</th>
<th>deletion-</th>
<th>flatness</th>
<th>breakability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>monadic stability</td>
<td>nowhere denseness</td>
<td>monadic NIP</td>
<td>nowhere denseness</td>
</tr>
<tr>
<td>dist-∞</td>
<td>flip-</td>
<td>bd. shrubdepth</td>
<td>bd. cliquewidth</td>
<td></td>
</tr>
</tbody>
</table>
Variants of Flip-Breakability

1. We modify a graph using either flips or vertex deletions.

2. We demand our resulting set is either flat or broken.

 flat: pairwise separated; broken: separated into two large sets

3. Separation means either distance-r or distance-∞.

<table>
<thead>
<tr>
<th></th>
<th>flatness</th>
<th>breakability</th>
</tr>
</thead>
<tbody>
<tr>
<td>dist-r</td>
<td>flip-</td>
<td>monadic stability</td>
</tr>
<tr>
<td></td>
<td>deletion-</td>
<td>nowhere denseness</td>
</tr>
<tr>
<td>dist-∞</td>
<td>flip-</td>
<td>bd. shrubdepth</td>
</tr>
<tr>
<td></td>
<td>deletion-</td>
<td>bd. treedepth</td>
</tr>
</tbody>
</table>
Goals for today:

1. Define and motivate mon. stable and mon. NIP classes. ✓
2. Give combinatorial structure characterizations of the two. ✓
 - Build the foundation for fpt model checking. ✓
 - Reveal connections to nowhere denseness and other graph parameters. ✓
3. Give combinatorial non-structure characterizations of the two.
 - Various hardness results are implied.
Characterizing Monadic NIP by Forbidden Induced Subgraphs

\[\text{star } r \text{-crossing} = r\text{-subdivided biclique} \]
Characterizing Monadic NIP by Forbidden Induced Subgraphs

star r-crossing

clique r-crossing

= r-subdivided biclique
Characterizing Monadic NIP by Forbidden Induced Subgraphs

star r-crossing

$= r$-subdivided biclique

clique r-crossing

half-graph r-crossing
Characterizing Monadic NIP by Forbidden Induced Subgraphs

comparability grid

comparability grid
Characterizing Monadic NIP by Forbidden Induced Subgraphs

Theorem [Dreier, Mählmann, Toruńczyk, 2024]

Let C be a graph class. Then C is monadically NIP if and only if for every $r \geq 1$ there exists $k \in \mathbb{N}$ such C excludes as induced subgraphs
- all layerwise flipped star r-crossings of order k, and
- all layerwise flipped clique r-crossings of order k, and
- all layerwise flipped half-graph r-crossings of order k, and
- the comparability grid of order k.

\Rightarrow Model checking is hard on every hereditary graph class that is not monadically NIP.
Characterizing Monadic Stability by Forbidden Induced Subgraphs

Theorem [Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023]

Let C be a graph class. Then C is monadically stable if and only if for every $r \geq 1$ there exists $k \in \mathbb{N}$ such C excludes as induced subgraphs

- all layerwise flipped star r-crossings of order k, and
- all layerwise flipped clique r-crossings of order k, and
- all semi-induced halfgraphs of order k
Summary

<table>
<thead>
<tr>
<th>Structure</th>
<th>Non-Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>m. stable</td>
<td></td>
</tr>
<tr>
<td>m. NIP</td>
<td></td>
</tr>
</tbody>
</table>

Vielen Dank!