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Generelles
» EinfGhrungsvorlesung zum Masterprofil S & Q

» 6 ETCS-Punkte

» Vorlesung:

» Montag 12 - 14 Uhr (MZH 1110)
» Ubung:

» Dienstag 12 - 14 Uhr (MZH 1110)

» Material (Folien, Artikel, Ubungsblatter) auf der Homepage:

http://www.informatik.uni-bremen.de/~cxl/lehre/ssqg.wsl7

Systeme hoher Sicherheit und Qualitat, WS 17/18 -3-



http://www.informatik.uni-bremen.de/~cxl/lehre/ssq.ws17
http://www.informatik.uni-bremen.de/~cxl/lehre/ssq.ws17
http://www.informatik.uni-bremen.de/~cxl/lehre/ssq.ws17
http://www.informatik.uni-bremen.de/~cxl/lehre/ssq.ws17

Vorlesung

» Foliensatze als Kernmaterial
» Sind auf Englisch (Notationen!)
» Nach der Vorlesung auf der Homepage verfugbar

» Ausgewahlte Fachartikel als Zusatzmaterial
» Auf der Homepage verlinkt (ggf. in StudIP)

» Bucher nur fur einzelne Teile der Vorlesung verfugbar:

» Nancy Leveson: Engineering a Safer World

» Ericson: Hazard Analysis Techniques for System Safety

» Nilson, Nilson: Principles of Program Analysis

» Winskel: The Formal Semantics of Programming Languages

» Zum weiteren Stobern:
» Wird im Verlauf der Vorlesung bekannt gegeben
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Ubungen

» Ubungsblatter:

» ,Leichtgewichte” Ubungsblatter, die in der Ubung
bearbeitet und schnell korrigiert werden konnen.
» Ubungsblatter vertiefen Vorlesungsstoff.

» Bewertung gibt schnell Feedback.

» Ubungsbetrieb:
» Gruppen bis zu 3 Studentinnen

» Ausgabe der Ubungsblatter Dienstag in der Ubung
Zeitgleich auf der Homepage
Erstes Ubungsblatt: ndchste Woche (24.10.2017)
» Bearbeitung: wahrend der Ubung
» Abgabe: bis Dienstag abend
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Prufungsform

» Bewertung der Ubungen:
» A (sehr gut (1.0) - nichts zu meckern, nur wenige Fehler)
» B (gut (2.0) - kleine Fehler, im grof3en und ganzen gut)
» C (befriedigend (3.0) - grol3ere Fehler oder Mangel)
» Nicht bearbeitet (oder zu viele Fehler)

» Prufungsleistung:
» Teilnahme am Ubungsbetrieb (20%)
Ubungen keine Voraussetzung
» Mundliche Prufung am Ende des Semesters (80%)
Einzelprifung, ca. 20- 30 Minuten
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Ziel der Vorlesung

» Methoden und Techniken zur Entwicklung
sicherheitskritischer Systeme

» Uberblick Uber verschiedene Mechanismen

d.h. auch Uberblick tber vertiefende Veranstaltungen

Theorie reaktiver Systeme

Grundlagen der Sicherheitsanalyse und des Designs
Formale Methoden der Softwaretechnik

EinfGhrung in die Kryptographie
Qualitatsorientierter Systementwurf

Test von Schaltungen und Systemen
Informationssicherheit -- Prozesse und Systeme

vV v v vYvyyy

» Verschiedene Dimensionen
» Hardware vs. Software
» Security vs. Safety
» Qualitat der Garantien
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Objectives

» This is an introductory lecture for the topics

Quality - Safety - Security

» Bird's eye view of everything relevant related to the development of
systems of high quality, high safety or high security.

» The lecture reflects the fundamentals of the research focus quality, safety
& security at the department of Mathematics and Computer Science (FB3)
at the University of Bremen. This is one of the three focal points of
computer science at FB3, the other two being Digital Media and Artificial
Intelligence, Robotics & Cognition.

» This lecture is read jointly (and in turns) by Dieter Hutter, Christoph Luth,
and Jan Peleska.

» The choice of material in each semester reflects personal preferences.
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Why bother with
Quality, Safety, and Security ?
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Friday October 7,2011
By Daily Express Reporter

AN accounting error yesterday forced outsourcing
specialist Mouchel into a major profits warning and
sparked the resignation of its chief executive.
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Ariane 5

» Ariane 5 exploded on its virgin flight (Ariane Flight 501) on
4.6.1996.

» How could that happen?
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What Went Wrong With Ariane Flight 501?

1) Self-destruction due to instability;

Instability due to wrong steering movements (rudder);

On-board computer tried to compensate for (assumed) wrong trajectory;
Trajectory was calculated wrongly because own position was wrong;
Own position was wrong because positioning system had crashed,;

) Positioning system had crashed because transmission of sensor data to
ground control failed with integer overflow;

(7) Integer overflow occurred because values were too high;

(8) Values were too high because positioning system was integrated
unchanged from predecessor model, Ariane-4;

(9) This assumption was not documented because it was satisfied tacitly with
Ariane-4.

(10)Positioning system was redundant, but both systems failed (systematic
error).

(11)Transmission of data to ground control also not necessary.
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Railway Accident in Bad Aibling 2016

» Two trains collided on a single-track line close to Bad Aibling

» Human error ?
= cf. Nancy Leveson: Engineering a Safer World
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WMailOnline
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Latest Headlines | Science | Pictures

Planes are at risk of cyber attack through
their Wi-Fi and entertainment systems, says
hacker, prompting fears for aircraft security

« Security researcher Ruben Santamarta says he has figured out how to hack
the satellite communications on passenger jets through their WiFi

+« Communications can also be hacked through inflight entertainment systems

« Santamarta is scheduled to lay out the technical details of his research at
this week's Black Hat hacking conference in Las Vegas

By REUTERS

PUBLISHED: 19:44 GMT, 4 August 2014 | UPDATED: 10:57 GMT, 5 August 2014

from: Daily Mail Aug. 2014

_ (e /2003

from: c't /2003 (Heise Verlag)

Systeme hoher Sicherheit und Qualitat, WS 17/18 -14 -




¢

/,/ is: WPA2: Forscherentd: x ( & WPA2security introu X \\

L C (Y | & Secure | https://www.heise.de/security/meldung/WPA2-F... BF ¥

i Apps @@ Online B8 Footie MM Funnies @ Live Feeds

-

(/I) heise Secun’fy News > Hintergrund Foren Events

Security > News > 7-Tage-News > 2017 > KW 42 > WPA2: Forscher entdecken Schwachstelle in WLAN-Vers

WPA2: Forscher entdecken Schwachstelle in WLAN-
Verschliisselung

16.10.2017 11:02Uhr - Dennis Schirrmacher of )) vorlesen

Sicherheitsforscher haben offenbar kritische Liicken im Sicherheitsstandard WPA2
entdeckt. Sie geben an, dass sich so Verbindungen belauschen lassen.

Mehrere Sicherheitsliicken bedrohen den Sicherheitsstandard WPA2, der WLAN-
Verbindungen absichert und Lauscher aussperrt. Mittels der KRACK getauften Attacke
sollen Angreifer WPA2 aufbrechen, belauschen und manipulieren konnen, warnen
diverse Sicherheitsforscher. Das geht aus verschiedenen Medienberichten hervor.

Frisch auf den Tisch, ein
Evergreen zum Thema
,Sicherheitslicken in
taglich genutzten
Protokollen...”

Heise Security, 17.10.2017
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What is Safety and Security?

» Safety:

» product achieves acceptable levels of risk or harm to
people, business, software, property or the environment
In a specified context of use

» Threats from “inside”

Avoid malfunction of a system (e.g. planes, cars,
railways...)

» Security:

» Product is protected against potential attacks from
people, environment etc.

» Threats from “outside”
Analyze and counteract the abilities of an attacker
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Software Development Models

» Definition of software development process and documents

Requirements
Analysis

» Examples:
» Waterfall Model
» V-Model

» Model-Driven
Architectures

» Agile Development
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Formal Software Development

formal specifications
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Verification and Validation

» Verification: have we built the system right?
» i.e. correct with respect to a reference artefact
specification document
reference system
Model

» Validation: have we built the right system
» i.e. adequate for its intended operation?
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V&V Methods

» Testing
» Test case generation, black- vs. white box
» Hardware-in-the-loop testing: integrated HW/SW system is tested
» Software-in-the-loop testing: only software is tested
» Program runs using symbolic values
» Simulation
» An executable model is tested with respect to specific properties
» This is also called Model-in-the-Loop Test
» Static/dynamic program analysis
» Dependency graphs, flow analysis
» Symbolic evaluation
» Model checking
» Automatic proof by reduction to finite state problem
» Formal Verification
» Symbolic proof of program properties
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Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards
03: The Software Development Process
04. Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with OCL

07: Testing

08: Static Program Analysis

09-10: Software Verification

11-12: Model Checking

13: Conclusions

vV v v Vv VvV Vv Vv Vv VvV YVY
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What is Quality?
» Quality is the collection of its characteristic properties

» Quality model: decomposes the high-level definition by
associating attributes (also called characteristics, factors, or
criteria) to the quality conception

» Quality indicators associate metric values with quality
criteria, expressing “how well” the criteria have been fulfilled
by the process or product.

» The idea is that to measure quality, with fés‘“’?\
the aim of continuously improving it. (e ks *x\%}?“
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Quality Criteria: Different ,,Dimensions” of Quality

» For the development of artifacts quality criteria can be
measured with respect to the

» development process (process quality)
» final product (product quality)

» Another dimension for structuring quality conceptions is

» Correctness: the consistency with the product and its
associated requirements specifications

» Effectiveness: the suitability of the product for its
intended purpose
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Quality Criteria (cont.)

» A third dimension structures quality according to product
properties:
» Functional properties: the specified services to be
delivered to the users

» Structural properties: architecture, interfaces,
deployment, control structures

» Non-functional properties: usability, safety, reliability,
availability, security, maintainability, guaranteed worst-
case execution time (WCET), costs, absence of run-time
errors, ...
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Quality (ISO/IEC 25010/12)

» “Systems and software engineering — Systems and software
Quality Requirements and Evaluation (SQuaRE) — System and
software quality models”

» Quality model framework (replaces the older ISO/IEC
9126)

» Product quality model
» Categorizes system/software product quality properties
» Quality in use model

» Defines characteristics related to outcomes of interaction
with a system

» Quality of data model
» Categorizes data quality attributes
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Product Quality Model

Product
Quality
Functional Performance AP e . . S fme Pl s
suitability efficiency Compatibility Usability Reliability Security Maintainability Portability
Appropriateness
recognizability
Time behavior Learnability ; Confidentiality Modularity
Completeness Resource Co-existence Operability Avslt:gltm Integrity Reusability Adaptability
Correctness utilization Interoperability User error Fault tolerar):ce Non-repudiation Analysability Installability
ARG B Capacity protection Recoverabilit Accountability Modifiability Replaceability
User interface Y Authenticity Testability
aesthetics
Accessibility
Source: ISO/IEC FDIS 25010
. . . . - ' ke
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Our Focus of Interest

Functional
suitability

Completeness
Correctness
Appropriateness

Performance
efficiency

Time behavior
Resource
utilization
Capacity

Compatibility

Co-existence
Interoperability

Appropriateness
recognizability

User interface

Reliability

Maturity
Availability
Fault tolerance
Recoverability

How can we ,guarantee” safety and security ?
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Security

Confidentiality
Integrity
Non-repudiation
Accountability
Authenticity

Maintainability

Modularity
Reusability
Analysability
Modifiability
Testability

Source:

Portability

Adaptability
Installability
Replaceability

ISO/IEC FDIS 25010
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System Quality Life Cycle Model

" Requirements

System
Quiality in System
Use Model Quality in Use
Requirements
Computer System
System " Quality
and Requirements
Software
Product
Quality
Model Software Product
—> Quality
Requirements

Quality in Use Needs

Verification
Validation

Verification
Validation
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System
Quality in Use

Computer System
Quality

Software Product
Quality

Implementation
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Quality in Use Model

Effectiveness Efficiency Satisfaction

Usefulness Trust Pleasure
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Other Norms and Standards

» SO 9001 (DIN 1SO 9000-4):

» Standardizes definition and supporting principles
necessary for a quality system to ensure products meet
requirements

» “Meta-Standard”

» CMM (Capability Maturity Model), Spice (ISO 15504)
» Standardizes maturity of development process
» Level 1 (initial);: Ad-hoc
» Level 2 (repeatable): process dependent on individuals
» Level 3 (defined): process defined & institutionalized
» Level 4 (managed). measured process
» Level 5 (optimizing): improvement feed back into process
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Summary

» Quality
» collection of characteristic properties
» quality indicators measuring quality criteria

» Relevant aspects of quality here
» Functional suitability
» Reliability
» Security

» Next week
» Concepts of Safety, Legal Requirements, Certification
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Legal Requirements -
Norms and Standards
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Organisatorisches

» Vorlesung und Ubung nachste Woche (30.10.2017 und
31.10.2017) fallen aus!

» Reformationstag, Brickentag.
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Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards
03: The Software Development Process
04. Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with OCL

07: Testing

08: Static Program Analysis

09-10: Software Verification

11-12: Model Checking

13: Conclusions

vV v v Vv VvV Vv Vv Vv YVYy
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Why bother with norms?

» If you want (or need to) to write safety-criticial software
then you need to adhere to state-of-the-art practice
as encoded by the relevant norms & standards.

» The bad news:

» As a qualified professional, you may become personally
liable if you deliberately and intentionally (grob
vorsdtzlich) disregard the state of the art or do not comply
to the rules (= norms, standards) that were to be applied.

» The good news:

» Pay attention here and you will be delivered from these
evils.

mrE
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Because in case of failure...

» Whose fault is it? Who pays for it? (“Produkthaftung”)
» European practice: extensive regulation
» American practice: judicial mitigation (lawsuits)

» Standards often put a lot of emphasis on process and
traceability (auditable evidence).
Who decided to do what, why, and how?

» What are norms relevant to safety and security?
Examples:

Safety: IEC 61508 - Functional safety

» specialised norms for special domains

Security: IEC 15408 - Common criteria

« In this context: “cybersecurity”, not “guns and gates”

» What is regulated by such norms?

Systeme hoher Sicherheit und Qualitat, WS 17/18 -5-
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Functional Safety:

IEC 61508 and friends




What is Safety?

» Absolute definition:

» ,Safety is freedom from accidents or losses.”
Nancy Leveson, ,Safeware: System safety and computers”

» But is there such a thing as absolute safety?

» Technical definition:

» Sicherheit: Freiheit von unvertretbaren Risiken”
IEC 61508-4:2001, 83.1.8

=y
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Legal Grounds

» The machinery directive: The Directive 2006/42/EC of the
European Parliament and of the Council of 17 May 2006 on
machinery, and amending Directive 95/16/EC (recast)

» Scope:

» Machineries (with a drive system and movable parts)
» Objective:

» Market harmonization (not safety)
» Structure:

» Sequence of whereas clauses (explanatory)

» followed by 29 articles (main body)

» and 12 subsequent annexes (detailed information about
particular fields, e.g. health & safety)

» Some application areas have their own regulations:
» Cars and motorcycles, railways, planes, nuclear plants ...

W
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The Norms and Standards Landscape

» First-tier standards (A-Normen)
» General, widely applicable, no specific area of application
» Example: IEC 61508

» Second-tier standards (B-Normen)
» Restriction to a particular area of application
» Example: ISO 26262 (IEC 61508 for automotive)

» Third-tier standards (C-Normen)
» Specific pieces of equipment
» Example: IEC 61496-3 (“Beruhrungslos wirkende

Schutzeinrichtungen”) The
standards
. quagmire ?
» Always use most specific norm.

S g o
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Norms for the Working Programmer

» |[EC 61508:

» “Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
related Systems (E/E/PE, or E/E/PES)”

» Widely applicable, general, considered hard to understand
> [SO 26262

» Specialisation of 61508 to cars (automotive industry)
» DIN EN 50128:2011

» Specialisation of 61508 to software for railway industry
» RTCA DO 178-B and C (new developments require C):

» “Software Considerations in Airborne Systems and Equipment
Certification”

» Airplanes, NASA/ESA

» |SO 15408:
» “Common Criteria for Information Technology Security Evaluation”
» Security, evolved from TCSEC (US), ITSEC (EU), CTCPEC (Canada)

Systeme hoher Sicherheit und Qualitat, WS 17/18 -10- ' -. :I w



What is regulated by IEC 615087

1. Risk analysis determines the safety integrity level (SIL)
2. Hazard analysis leads to safety requirement specification.
3. Safety requirements must be satisfied by product
» Need to verify that this is achieved.
» SIL determines amount of testing/proving etc.
4. Life-cycle needs to be managed and organised
» Planning: verification & validation plan
» Note: personnel needs to be qualified.
5. All of this needs to be independently assessed.
» SIL determines independence of assessment body.

S g o
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The Seven Parts of IEC 61508

1. General requirements

2. Requirements for E/E/PES safety-related systems
» Hardware rather than software

3. Software requirements

4. Definitions and abbreviations

5. Examples of methods for the determination of safety-
integrity levels

» Mostly informative

6. Guidelines on the application of Part 2 and 3
» Mostly informative

7. Overview of techniques and measures
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The Safety Life Cycle

Concept

e .

Overall scope
definition

Hazard and risk
analysis

v

Overall safety
requirements

v

allocation

Planning

Realisation

e

and

Overall installation

v v | v
Overall planning Safety-related External risk
Overall Overall Overall systems: other reduction
operation and safety installation and =/PE technology facilities
maintenance |l  validation commissioning " Realisation | Restaation VReallsatlon
lanning planning planning (see E/E/PES I
safety lifecycle) :

commissioning

v

Overall safety

validation

v

Back to appropriate
overall safety lifecycle
phase

Overall modification

and retrofit

L Overall operation
i maintenance a. repair

Decommissioning

v

or disposal

Operation

E/E/PES: Electrical/Electronic/Programmable Electronic Safety-related Systems
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Safety Integrity Levels

» What is the risk by operating a system?
» How likely is a failure ?
» What is the damage caused by a failure?

Risk not acceptable

Frequency

Risk acceptable

o
>

Extend of loss

o
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Safety Integrity Levels

» Max. average probabilty of a dangerous failure (per
hour/year) depending on how often it is used

High Demand Low Demand
(more than once a year) (once a year or less)
4 10° < P/hr < 108 10> < P/yr < 104
3 108 < P/hr < 107 104 < Plyr <103
2 10" < P/hr < 10° 103 < P/yr < 1072
1 106 < P/hr < 10° 102 < P/lyr < 101
» Examples:

» High demand: car brakes
» Low demand: airbag control
» Note: SIL only meaningful for specific safety functions.

ol
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Establishing target SIL (Quantitative)

» [EC 61508 does not describe standard procedure to establish a SIL

target, it allows for alternatives.
Maximum tolerable Individual risk

risk of fatality (per annum)

» Quantitative approach

. . -4
» Start with target risk level SfplyRe 10
» Factor in fatality and Public 10°
frequency Broadly acceptable 106
(,Negligible*)

» Example: Safety system for a chemical plant
» Max. tolerable risk exposure: A=10® (per annum)
» Ratio of hazardous events leading to fatality: B= 102
» Risk of failure of unprotected process: C= 1/5 (per annum)
» Then failure on demand : E = A/(B*C)=5*10% so SIL 3

» More examples: airbag, safety system for a hydraulic press
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Establishing Target SIL (Qualitative)

» Qualitative method: risk graph analysis (e.g. DIN 13849)
» DIN EN ISO 13849:1 determines the performance level

PL
P1 a . L.
— Severity of injury:
s S1 - slight (reversible) injury
a } S1 ——— S2 - severe (irreversible) injury
e P1 b
e
b 1 . Occurrence:
Startounkt F2 e F1 - rare occurrence
c 2 - P1 c F2 - frequent occurrence
d 3 F1
4 g Possible avoidance:
e R _ :
| L, 23 p P1 p055|blg
Relation PL to SIL S2 P2 - |mpoSS|b|e
: P2
F2 =
e

Source: Peter Wratil (Wikipedia)
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What does the SIL mean for the
development process?

» In general:
» ,Competent” personnel
» Independent assessment (,four eyes”)
» SIL 1:
» Basic quality assurance (e.g. ISO 9001)
> SIL 2:
» Safety-directed quality assurance, more tests
» SIL 3:
» Exhaustive testing, possibly formal methods
» Assessment by separate department
> SIL 4.
» State-of-the-art practices, formal methods
» Assessment by separate organization
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Some Terminology

» Error handling:
» Fail-safe (or fail-stop): terminate in a safe state

» Fail operational systems: continue operation, even if their
controllers fail

» Fault tolerant systems: continue with a potentially degraded
service (more general than fail operational systems)

» Safety-critical, safety-relevant (sicherheitskritisch)

» General term -- failure may lead to risk
» Safety function (Sicherheitsfunktion)

» Technical term, that functionality which ensures safety
» Safety-related (sicherheitsgerichtet, sicherheitsbezogen)

» Technical term, directly related to the safety function

S g o
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Increasing SIL by redudancy

» One can achieve a higher SIL by combining independent
systems with lower SIL (,Mehrkanalsysteme®).

» Given two systems A, B with failure probabilities P,, Pg, the
chance for failure of both is (with P.. probablity of common-
cause failures):

Pyp = Pcc + PyPp

» Hence, combining two SIL 3 systems may give you a SIL 4

system.

» However, be aware of systematic errors (and note that IEC
61508 considers all software errors to be systematic).

» Note also that for fail-operational systems you need three
(not two) systems.
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The Software Development Process

» 61508 in principle allows any software lifecycle model, but:

» No specific process model is given, illustrations use a V-
model, and no other process model is mentioned.

» Appx A, B give normative guidance on measures to apply:

» Error detection needs to be taken into account (e.g.
runtime assertions, error detection codes, dynamic
supervision of data/control flow)

» Use of strongly typed programming languages (see table)
» Discouraged use of certain features:

recursion(!), dynamic memory, unrestricted pointers,
unconditional jumps

» Certified tools and compilers must be used or tools
“proven in use”.

g o
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Proven in Use: Statistical Evaluation

» As an alternative to systematic development, statistics about
usage may be employed. This is particularly relevant:

» for development tools (compilers, verification tools etc),
» and for re-used software (modules, libraries).

» The norm (61508-7 Appx. D) is quite brief about this subject.
It states these methods should only be applied by those
“competent in statistical analysis”.

» The problem: proper statistical analysis is more than just
“plugging in numbers”.
» Previous use needs to be to the same specification as
intended use (eg. compiler: same target platform).
» Uniform distribution of test data, indendent tests.

» Perfect detection of failure.

g o
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Proven in Use: Statistical Evaluation

» Statistical statements can only be given with respect to a
confidence level (A =1 — p), usually 1 = 0.99 or 2 = 0.9.

» With this and all other assumptions satisfied, we get the
following numbers from the norm:

» For on-demand: observed demands without failure
(P;: accept. prob. of failure to perform per demand)

» For continuously-operated: observed hours w/o failure
(P,: accept. prob. of failure to perform per hour of opn.)

P, 1=99% 1=90% P, 1=99% 1=90%
1 <1071 46 3 <107° 4.6 - 10° 3-10°
2 <1072 460 30 <107° 4.6 - 10° 3-10°
3 <1073 4600 3000 <1077 4.6 - 107 3-107
4 <1074 46000 30000 <1078 4.6 - 108 3-108

Source: Ladkin, Littlewood: Practical Statistical Evaluation of Critical Software.
mv s
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Table A.2 - Software Architecture

Tabelle A.2 - Softwareentwurf und Softwareentwicklung:
Entwurf der Software-Architektur (siehe 7.4.3)

Verfahren/MaBnahme * siehe SIL1 SiL2 SIL3 SiL4

1 Fehlererkennung und Diagnose C.31 0 + ++ ++
2 Fehlererkennende und -korrigierende Cades c3.2 + + + ++
3a Plausibilititskontrollen {Failure assertion C.3.3 + + + ++

programming)
3b Externe Uberwachungseinrichtungen C.3.4 [¢] + + +
3c Diversitdre Programmierung C.35 + + + ++
3d Regenerationsblicke C.386 + + + +
3e Rickwartsregeneration C3.7 + + + +
3f  Vorwartsregeneration C.3.8 + + + +
3g Regeneration durch Wiederholung C38 + + + ++
3h  Aufzeichnung ausgefiihrier Abschnitte C.3.10 o + + ++
4 Abgestufte Funktionseinschrinkungen C.3.11 + + ++ ++
5 Kinstiiche Intelligenz — Fehlerkorrekiur C.3.12 o - - -
6 Dynamische Rekonfiguration C.3.13 o - - -
7a  Strukturierte Methoden mit z. B. JSD, MAS- c21 ++ ++ o+ ++

COT, SADT und Yourdon.
7b  Semi-formale Methoden Tabelle B.7 + + ++ ++
7¢ Formale Methoden z. B. CCS, CSP, HOL, C.24

LOTOS, OBJ, temporare Logik, VOM und Z

o + + ++
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Table A.4 - Software Desigh & Development

Tabelie A.4 — Softwareentwurf und Softwareentwicklung:
detaillierter Entwurf (siehe 7.4.5 and 7.4.6)

(Dies beinhaltet Software-Systementwurf, Entwurf der Softwaremodule und Codierung)

Systeme hoher Sicherheit und Qualitat, WS 17/18

Verfahren/MaBnahme * siehe SIL1 SIL2 SIL3 SiL4

1a Strukturierte Methoden wie z. B. JSD, MAS- c.2.1 ++ ++ ++ ++

COT, SADT und Yourdon
1b Semi-formale Methoden Tabelle B.7 + ++ + ++
1c Formale Methoden wie z. B. CCS, CSP, c24 ) + + ++

HOL, LOTOS, OBJ, temporare Logik, VDM

und Z
2 Rechnergestiiizte Entwurfswerkzeuge B.3.5 + + ++ ++
3 Defensive Programmierung c.25 0 + ++ ++
4  Modularisierung Tabelle B.9 ++ ++ T ++
5  Entwurfs- und Codierungs-Richtlinien Tabelle B.1 il + 4+ ++
6 Strukturierle Programmierung c27 ++ 4 ++ 4

-25.
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Table A.9 - Software Verification

Tabelle A.9 — Software-Verifikation (siehe 7.9)

Verfahren/Mainahme * siehe SIL1 SIL2 SIL3 SILg

1 Formaler Beweis C.5.13 o + + ++

2 Statistische Tests C.5.1 o + + .

3 Statische Analyse B.6.4 + ++ ++ ++
Tabelle B.8

4 Dynamische Analyse und Test B.6.5 + ++ ++ ++
Tabelle 8.2

5 Software-Komplexitdatsmetriken C.5.14 + + + +
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Table B.1 - Coding Guidelines

Tabelle B.1 — Entwurfs- und Codierungs-Richtlinien

> Ta b l e C 1 ! p rog ramm | ng (Verweisungen aus Tabelle A.4)
| an g ua ge S, me ntl ons: Verfahren/MaBnahme * siehe | SIL1 | siL2 | si3 | si4
1 Verwendung von Codierungs-Richtlinien c.26.2 ++ ++ ++ ++
» A DA’ M O d u | d -2' 2  Keine dynamischen Objekte C.2.8.3 + ++ ++ ++
P a S C a | I/ F O RT RA N 7 71 3a Keine dynamischen Variablen C263 0 + ++ ++
C, P I_/ M I AS S e m b | e r, oo 3b Online-Test der Erzeugung von dynamischen | C.2.6.4 o + ++ ++

Variablen

4 Eingeschrinkte Verwendung von Interrupts C.265 + + ++ ++

> Exa m p | e fo ' a gu i d e | i ne: 5 Eingeschrankte Verwendung von Pointern C266 0 + + ++

’ M I S R A C . 2 O O 4 6 Eingeschrankte Verwendung von Rekursio- C267 ) + T -
I ’ nen
G u I d e | | nes fO r t h e yse 7  Keine unbedingten Spriinge in Programmen c.26.2 + o P v

in héherer Programmiersprache

Of t h e C | a n g u a ge I n ANMERKUNG 1 Die MaBnahmen 2 und 3a brauchen nicht angewendet zu werden, wenn ein Compiler

verwendet wird, der sicherstellt, dass geniigend Speicherplatz flr alle dynamischen Variablen und

C r I t I C a | Syste m S o Objekte vor der Laufzeit zugeteilt wird, oder der Laufzeittests zur korrekten Online-Zuweisung von
Speicherplatz einfligt.

* Es missen dem Sicherheits-Integritatslevel angemessene Verfahren/MaBnahmen ausgewdhit
werden. Alternative oder gleichwertige Verfahren/MaBnahmen sind durch einen Buchstaben hinter der
Nummer gekennzeichnet. Es muss nur eine(s) der alternativen oder gleichwertigen Verfah-
ren/Ma3nahmen eiflllt werden.

Systeme hoher Sicherheit und Qualitat, WS 17/18 - 27 -




Table B.5 - Modelling

Tabelle B.5 — Modellierung

(Verweisung aus der Tabelle A.7)

Vertahren/Mafinahme * siehe SiL1 SiL2 SIL3 SiL4
1 Datenflussdiagramme c.2.2 + + + +
2 Zustandsibergangsdiagramme B.23.2 o + ++ ++
3 Formale Methoden C24 o + + ++
4 Modellierung der Leistungstéhigkeit c5.20 + ++ ++ ++
5 Petri-Netze B.23.3 o + ++ ++
6 Prototypenerstellung/Animation C.5.17 + + T +
7 Strukturdiagramme c.23 + + ¥ ++

Einklang stehen.

ANMERKUNG  Sollte eine spezielles Verfahren in dieser Tabelle nicht vorkommen, darf nicht
angenommen werden, dass dieses nicht in Betracht gezogen werden darf. Es sollte zu dieser Norm in

werden.

* Es mussen dem Sicherheits-Integritatslevel angemessene Verfahren/Ma3nahmen ausgewahit
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Certification

» Certification is the process of showing conformance to a
standard.

» Conformance to IEC 61508 can be shown in two ways:

» either that an organization (company) has in principle the
ability to produce a product conforming to the standard,

» or that a specific product (or system design) conforms to
the standard.

» Certification can be done by the developing company (self-
certification), but is typically done by an notified body.

» In Germany, e.g. the TUVs or Berufsgenossenschaften;

» In Britain, professional role (ISA) supported by IET/BCS;
» Also sometimes (e.g. DO-178B) called "qualification’.

=y
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Security:

IEC 15408
The Common Criteria




Common Criteria (IEC 15408 )

» Established in 1996 as a harmonization of various norms to
evaluate security properties of IT products and systems
(e.g. ITSEC (Europe), TCSEC (US, “orange book”), CTCPEC
(Canada))

» Basis for evaluation of security properties of IT products (or
parts of) and systems (the Target of Evaluation TOE).

» The CC is useful as a guide for the development of products
or systems with IT security functions and for the procurement
of commercial products and systems with such functions.

¢% Common Criteria

. ' am
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General Model

» Security is concerned with the
protection of assets. Assets are
entities that someone places

Owners - — value
Value upon. wish to minimise

impose|

Countermeasures

\

» Threats give rise to risks to the
assets, based on the likelihood
of a threat being realized and its ¥

Risk

\ J

impact on the assets Throat agonts
» (IT and non-IT) Counter- T theas H @ = Assets
measures are imposed to f

wish to abuse and/or may damage

reduce the risks to assets.

. ' am
Systeme hoher Sicherheit und Qualitat, WS 17/18 -32- . = J @



Security Goals

» Protection of information from unauthorized disclosure,
modification, or loss of use:

» confidentiality, integrity, and availability
» may also be applicable to aspects

» Focus on threats to that information arising from human
activities, whether malicious or otherwise, but may be
applicable to some non-human threats as well.

» In addition, the CC may be applied in other areas of IT, but

makes no claim of competence outside the strict domain of IT
security.

g o
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Concept of Evaluation

Evaluation

Owners provides

require Yy

> Confidence

are
that
Countermeasures p——— Sufficient

and
are therefore
minimise
Corrrect ———— Risk
and
therefore to l
minimise
Assets
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Security Environment

« Laws, organizational security policies, customs, expertise and
knowledge relevant for TOE

«  Context in which the TOE is intended to be used.

»  Threats to security that are, or are held to be, present in the
environment.

» A statement of applicable organizational security policies would
identify relevant policies and rules.

« Assumptions about the environment
of the TOE are considered as axiomatic
for the TOE evaluation.
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Security Objectives

» Identification of all of the security concerns
» Aspects addressed directly by the TOE or by its environment.

» Incorporating engineering judgment, security policy, economic
factors and risk acceptance decisions.

» Analysis of the security environment results in security objectives
that counter the identified threats and address identified
organizational security policies and assumptions.

» The security objectives for the environment would be implemented
within the IT domain, and by non-technical or procedural means.

» Only the security objectives for the TOE and its IT environment are
addressed by IT security requirements

g o
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Threats and Their Risks

» Threats to security of the assets relevant to the TOE.
» in terms of a threat agent,
» a presumed attack method,

» any vulnerabilities that are the foundation for the
attack, and

» identification of the asset under attack.

» Risks to security. Assess each threat
» Dby its likelihood developing into an actual attack,
» its likelihood proving successful, and
» the consequences of any damage that may result.

m o
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Security Requirements

» Refinement of security objectives into
» Requirements for TOE and
» Requirements for the environment

» Functional requirements
» Functions in support for security of IT-system
» E.g. identification & authentication, cryptography,...

» Assurance Requirements

» Establishing confidence in security functions
» Correctness of implementation
» E.g. development, life cycle support, testing, ...

S g o
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Security Functions

» The statement of TOE security functions shall cover the IT
security functions and shall specify how these functions satisfy
the TOE security functional requirements. This statement shall
include a bi-directional mapping between functions and
requirements that clearly shows which functions satisfy which
requirements and that all requirements are met.

» Starting point for design process.

. am
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Security Functional Components

» Class FAU: Security audit

» Class FCO: Communication

» Class FCS: Cryptographic support

» Class FDP: User data protection

» Class FIA: Identification and authentication
» Class FMT: Security management

» Class FPR: Privacy

» Class FPT: Protection of the TSF

» Class FRU: Resource utilisation

» Class FTA: TOE access

» Class FTP: Trusted path/channels
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Security Functional Components

» Content and presentation of the functional requirements

Class Name

Family 1 1l H2H3
Family 2

12 3]
Family 3 e z T4

FDP: User Data Protection

FDP_IFF: Information flow control functions 3 4 5

< [0
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FDP - Information Flow Control

FDP_IFC.1 Subset information flow control
Hierarchical to: No other components.

Dependencies: FDP_IFF.1 Simple security attributes

FDP_IFC.1.1 The TSF shall enforce the [assignment: information flow control SFP] on
[assignment: list of subjects, information, and operations that cause controlled information
to flow to and from controlled subjects covered by the SFP].

FDP_IFC.2 Complete information flow control
Hierarchical to: FDP_IFC.1 Subset information flow control

Dependencies: FDP_IFF.1 Simple security attributes

FDP_IFC.2.1 The TSF shall enforce the [assignment: information flow control SFP] on
[assignment: list of subjects and information] and all operations that cause that
information to flow to and from subjects covered by the SFP.

FDP_IFC.2.2 The TSF shall ensure that all operations that cause any information in the
TOE to flow to and from any subject in the TOE are covered by an information flow
control SFP.

g o
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Assurance Requirements

Assurance Approach

“The CC philosophy is to provide assurance based upon an
evaluation (active investigation) of the IT product that is to be
trusted. Evaluation has been the traditional means of providing
assurance and is the basis for prior evaluation criteria
documents. “

CC, Part 3, p.15
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Assurance Requirements

» Concerning actions of the developer, evidence
produced and actions of the evaluator.

» Examples:
» Rigor of the development process

» Search for and analysis of the impact of
potential security vulnerabilities.

» Degree of assurance

» varies for a given set of functional
requirements

» typically expressed in terms of increasing
levels of rigor built with assurance
components.

» Evaluation assurance levels (EALS)
constructed using these components.
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Part 3 Assurance levels

Evaluation assurance level

EAL name

Objectives

Application notes

[

Assurance component

I R PP ST |
Component identification,
e —a—=

:Olz_L'f[:CmfeS_ —

Aggli%titinges: 1
Dependencies _

L

:l____l

— ararara

-
Assurance element | 3
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Assurance Components

» Class APE: Protection Profile evaluation
» Class ASE: Security Target evaluation

» Class ADV: Development

» Class AGD: Guidance documents

» Class ALC: Life-cycle support

» Class ATE: Tests

» Class AVA: Vulnerability assessment

» Class ACO: Composition
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Evaluation Assurance Level

» EALs define levels of
assurance (no guarantees)

Functionally tested
Structurally tested
Methodically tested and checked

Methodically designed, tested, and
reviewed

Semi-formally designed and tested

6. Semi-formally verified design and
tested

7. Formally verified design and tested

N =

U

EALS - EAL7 require formal methods
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Assurance
class

Assurance
Family

Assurance Components by Evaluation
Assurance Level
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documents

AGD OPE

AGD PRE

Life-cycle
support

ALC CMC

ALC CMS

[R R R -

ALC DEL

(R R[S ., -,

ALC DVS

[ Y [ V) [ V) ey s Y

— | = o | o [ ==

— | e | = =

Nv—-t:.Uun—-.—Uub—iMNuﬂ—ﬁ

rq.—u.u.»—»—c\»—mrqo\.—?_ﬁ

ALC FLR

ALC 1.CD

[y

ALC TAT

Security
Target
evaluation

ASE CCL

ASE ECD
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Assurance Components
Example: Development

ADV_FSP.1 Basic functional specification

EAL-1:

EAL-2:

EAL-3:

EAL-4:

EAL-5:

EAL-6:

(TSFI: Interface of the TOE Security Functionality (TSF), SFR: Security Functional Requirement)

... The functional specification shall describe the purpose and method of use for
each SFR-enforcing and SFR-supporting TSFI.

... The functional specification shall completely represent the TSF.

+ ... The functional specification shall summarize the SFR-supporting and
SFR-non-interfering actions associated with each TSFI.

+ ... The functional specification shall describe all direct error messages that
may result from an invocation of each TSFI.

... The functional specification shall describe the TSFI using a semi-formal style.

... The developer shall provide a formal presentation of the functional
specification of the TSF. The formal presentation of the functional specification
of the TSF shall describe the TSFI using a formal style, supported by informal,
explanatory text where appropriate.
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Summary

» Norms and standards enforce the application of the state-of-

the-art when developing software which is safety-critical or
security-critical.

» Wanton disregard of these norms may lead to personal
liability.
» Norms typically place a lot of emphasis on process.

» Key question are traceability of decisions and design, and
verification and validation.

» Different application fields have different norms:
» |IEC 61508 and its specializations, e.g. DO-178B.
» |[EC 15408 (,Common Criteria”)

. ' am
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Further Reading

» Terminology for dependable systems:

» |. C. Laprie et al.: Dependability: Basic Concepts and
Terminology. Springer-Verlag, Berlin Heidelberg New York
(1992).

» Literature on safety-critical systems:

» Storey, Neil: Safety-Critical Computer Systems. Addison
Wesley Longman (1996).

» Nancy Levenson: Safeware - System Safety and
Computers. Addison-Wesley (1995).

» A readable introduction to IEC 61508:

» David Smith and Kenneth Simpson: Functional Safety. 2"d
Edition, Elsevier (2004).
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Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards
03: The Software Development Process
04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with OCL

07: Testing

08: Static Program Analysis

09-10: Software Verification

11-12: Model Checking

13: Conclusions

vV v v v VvV vV vV VvV VY
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Software Development Process

» A software development process is the structure imposed on
the development of a software product.

» We classify processes according to models which specify
» the artefacts of the development, such as

the software product itself, specifications, test
documents, reports, reviews, proofs, plans etc;

» the different stages of the development;

» and the artefacts associated to each stage.
» Different models have a different focus:

» Correctness, development time, flexibility.
» What does quality mean in this context?

» What is the output? Just the software product, or more?
(specifications, test runs, documents, proofs...)
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Artefacts in the Development Process

Planning:

« Document plan Possible formats:

« V&V plan « Documents:

« QM plan « Word documents
« Test plan « Excel sheets

Project manual «  Wiki text

« Database (Doors)
« Models:;
« UML/SysML

Specifications:
* Requirements
« System specification

« Module specification diagrams
» User documents - Formal languages: Z,
HOL, etc.

Implementation:

« Source code
« Models
« Documentation Verification & validation:
« Code review protocols
« Test cases, procedures,
and test results
« Proofs

« Matlab/Simulink or
similar diagrams
« Source code
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Waterfall Model (Royce 1970)

» Classical top-down sequential workflow with strictly
separated phases.

Requirement
Design
Implementation
Verification

Maintenance

» Unpractical as actual workflow (no feedback between
phases), but even the original paper did not really suggest
this.
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Spiral Model (Bohm, 1986)

» Incremental development guided by risk factors
» Four phases:

» Determine objectives

» Analyse risks

» Development and test

» Review, plan next iteration

1.Determine
objectives

Review

Cumulative cost

2. ldentify and
resolve risks

Progress
.

» See e.g.
» Rational Unified Process (RUP)

4. Plan the
next iteration

Release

» Drawbacks:

Implementation

3. Development
and Test

» Risk identification is the key, and can be quite difficult
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Model-Driven Development (MDD, MDE)

» Describe problems on abstract level using a modeling language
(often a domain-specific language), and derive implementation by
model transformation or run-time interpretation.

» Often used with UML (or its DSLs, eg. SysML)

CM —>| PIM —>{ PSM ——>| Code

» Variety of tools:

» Rational tool chain, Enterprise Architect, Rhapsody, Papyrus,
Artisan Studio, MetaEdit+, Matlab/Simulink/Stateflow*

» EMF (Eclipse Modelling Framework)
» Strictly sequential development
» Drawbacks: high initial investment, limited flexibility

* Proprietary DSL - not related to UML
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Agile Methods

» Prototype-driven development
» E.g. Rapid Application Development
» Development as a sequence of prototypes
» Ever-changing safety and security requirements

» Agile programming
» E.g. Scrum, extreme programming
» Development guided by functional requirements
» Process structured by rules of conduct for developers

» Rules capture best practice
» Less support for non-functional requirements

» Test-driven development

» Tests as executable specifications: write tests first
» Often used together with the other two
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V-Model

» Evolution of the waterfall model:

» Each phase is supported by a corresponding testing
phase (verification & validation)

» Feedback between next and previous phase
» Standard model for public projects in Germany
» ... but also a general term for models of this ,shape”

Cngaing
Support

Operational

Requirements Review/Test

: ol - onoonoeosee - :
Analysis Testing
High Level | . ... . »| Integration
Design Testing
Detailed . Unit
Specifications Testing

Coding
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Software Development Models

N
7

Flexibility
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from S. Paulus: Sichere Software

W

Prototype-based Agile
developments Methods
Spiral model
V-model
Waterfall _
model Model-driven
developement
Structure
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Development Models for
Safety-Critical Systems
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Development Models for Critical Systems

» Ensuring safety/security needs structure.

» ...but too much structure makes developments
bureaucratic, which is in itself a safety risk.

» Cautionary tale: Ariane-5
» Standards put emphasis on process.
» Everything needs to be planned and documented.
» Key issues: auditability, accountability, traceability.

» Best suited development models are variations of the V-
model or spiral model.

» A new trend?
» V-Model for initial developments of a new product

» Agile models (e.g. Scrum) for maintenance and product
extensions
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Auditability and Accountability

» Version control and configuration management is mandatory
in safety-critical development (auditability).

» Keeping track of all artifacts contributing to a particular
instance (build) of the system (configuration), and their
versions.

» Repository keeps all artifacts in all versions,

» Centralised: one repository vs. distributed (every developer
keeps own repository)

» General model: check out - modify - commit

» Concurrency: enforced lock, or merge after commit.
» Well-known systems:

» Commercial: ClearCase, Perforce, Bitkeeper...

» Open Source: Subversion (centr.); Git, Mercurial (distr.)
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Traceability

» The idea of being able to follow requirements (in particular,
safety requirements) from requirement spec to the code (and
possibly back).

» On the simplest level, an Excel sheet with (manual) links to
the program.

» More sophisticated tools include DOORS.
» Decompose requirements, hierarchical requirements

» Two-way traceability: from code, test cases, test
procedures, and test results back to requirements

» E.g. DO-178B requires all code derives from requirements

Systeme hoher Sicherheit und Qualitat, WS 17/18 -15- ' - ;I w



Development Model in IEC 61508

» [EC 61508 in principle allows any development model, but:

» It requires safety-directed activities in each phase of the
life cycle (safety life cycle).

» Development is one part of the life cycle.
» The only development model mentioned is a V-model:

E!EJ'P!ES safety . Soﬂw.are safety Validation Validation
requirements I reguirements testing
specification specification

Integration testing
E ES (components, subsystems
architecture “

| Validated
software

Software
architecture

Software system|-s--------ccccccccocax
design
:
Module Module
design testing
I
1

and programmable
electronics)

Integration
testing
{module)

CODING

— Qutput
-==-- Jerification
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The Safety Life Cycle (IEC 61508)

n Concept

e .

Overall scope
definition

v

Hazard and risk
analysis

Overall safety
requirements

Planning

Realisation

allocation

e
v v

Safety-related ‘ External risk

systems: other reduction
technology _ facilities

Realisation Realisation

v

Overall planning

Overall Overall Overall
operation and safety installation and
maintenance s validation commissioning

lanning planning planning

" Realisation |
(see E/E/PES
safety lifecycle)

Overall installation 0 \
and commissioning
v
Back to appropriate
Overall safety overall safety lifecycle
validation phase

L Overall operation s Overall modification
el maintenance a. repair = and retrofit

v

16 [
E/E/PES: Electrical/Electronic/Programmable Electronic Safety-related Systems

L < Y

Operation
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Development Model in DO-178B

» DO-178B defines different processes in the SW life cycle:
» Planning process

» Development process, structured in turn into
Requirements process
Design process
Coding process
Integration process

» Verification process

» Quality assurance process

» Configuration management process
» Certification liaison process

» There is no conspicuous diagram, but the Development Process has
sub-processes suggesting the phases found in the V-model as well.

» Implicit recommendation of the V-model.
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Development Model for Hardware

Specification

A 4

System Model

\ 4

RTL Model

A 4

Gate Level

\ 4

Layout

A 4

Transistor Level

\ 4

Silicone
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connections
(“Schaltplan™) _
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Register-Transfer-Ebene: Verilog

During chip design:
Description of the
connections between
different modules, such
as logic gates and
memory blocks
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Development Model for Hardware

[ L b « D
Specification “ > ( )
N J Property Check
\ 4 \ J
a N e D
System Model X . Simulation
) J
- Y N
RTL Model Emulation
(& )/
Gate Level
Layout Equivalence Check J

A 4

Transistor Level

A 4

Silicone

Test ]
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Basic Notions of Formal
Software Development
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Formal Software Development

» In a formal development, properties are stated in a rigorous way
with a precise mathematical semantics.

» Formal specification requirements can be proven.
» Advantages:
» Errors can be found early in the development process.
» High degree of confidence into the system.
» Recommend use of formal methods for high SILs/EALSs.
» Drawbacks:
» Requires a lot of effort and is thus expensive.
» Requires qualified personnel (that would be you).
» There are tools which can help us by
» finding (simple) proofs for us (model checkers), or
» checking our (more complicated) proofs (theorem provers).
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Formal Semantics

» States and transitions between them:

4 X 7 A X

X=y+ Z:=y-

y 3 Ly 3 e, » System run
z 8 z 8 z 1

So S S,

» Operational semantics describes relation between states
and transitions:

SFe—n SoFy+4—7

SEX:=e — s[x/n] hence: SoFx:=y+4 — s,

» Formal proofs; e.g. proving

x:=y+4;z:=y-2 yields the same final state as
Z:=y-2,x:=y+4
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Semantics of Programs and Requirements

» Set of all possible system runs

X
X=y+4 z2:=y-2

<
W
N
<
o W
<
W
v

v
A
A 4

v
A A
\ 4

A A

v
A
A 4

» Requirements related to safety and security:
» Requirements on single states?
» Requirements on system runs ?
» Requirements on sets of system runs ?

Alpern & Schneider (1985, 1987)
Clarkson & Schneider (2008)

Systeme hoher Sicherheit und Qualitat, WS 17/18 -24 - . - :I @



Some Notions

» Let b, t be two traces then
b<tiff 3t".t=b -t i.e. bisafinite prefix of t

» A property is a set of infinite execution traces (like a program)
» Trace t satisfies property P, writtent = P, ifft € P

» A hyperproperty is a set of sets of infinite execution traces (like a
set of programs)

» A system (set of traces) S satisfies Hiff S € H
» An observation Obs is a finite set of finite traces

» Obs < S (Obs is a prefix of S) iff Obs is an observation and
VmeObs. 3teS. mc<t
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Requirements on States: Safety Properties

» Safety property S: ,Nothing bad happens”
» i.e. the system will never enter a bad state

» E.g. “Lights of crossing streets do not go
green at the same time”

» A bad state:

» can be immediately recognized;

» cannot be sanitized by following states.
» S is a safety property iff

> Vt.t&S - (3t ty.t =1t t, >Vits t1-t3 &S)

N N
» »

| |
tl tZ

Systeme hoher Sicherheit und Qualitat, WS 17/18 -26 -




Satisfying Safety Properties

» Safety properties are typically proven by induction
» Base case: initial states are good (= not bad)

» Step case: each transition transforms a good state again
in a good state

» Safety properties can be enforced by run-time monitors

» Monitor checks following state in advance
and allows execution only if it is a good state
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Requirements on Runs: Liveness Properties

» Liveness property L:

» E.g. “my traffic light will go green
eventually *"

» A good thing is always possible and possibly infinite.

» L is a liveness property iff
» V t. finite(t) - 3¢t4. t-t; €L

» i.e. all finite traces t can be extended to a trace in L.

*Achtung: “eventually” bedeutet “irgendwann” oder “schlussendlich”
aber nicht “eventuell”!
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Satisfying Liveness Properties

» Liveness properties cannot (!) be enforced by run-time
monitors.

» Liveness properties are typically proven by the help of
well-founded orderings

» Measure function m on states s

» Each transition decreases m
» t €L if we reach a state with minimal m

» E.g. measure denotes the number of transitions for the light
to go green
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Requirements on Sets of Runs:
Safety Hyperproperties l I

» Safety hyperproperty: ,System never behaves bad”
» No bad thing happens in a finite set of finite traces

> (the prefixes of) different system runs do not exclude each other
» E.g. "“the traffic light cycle is always the same”

» A bad system can be recognized by a bad observation (set of finite
runs)

» A bad observation cannot be sanitized regards less how we
continue it or add additional system runs

» E.g. two system runs having different traffic light cycles

» S is a safety hyperproperty iff
VT¢S. (F0bs<sT.VT. Obs<T =T ¢8S)
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Requirements on Sets of Runs:
Liveness Hyperproperties BB 0. BB

> Liveness hyperproperty S: lII II
»1he system will eventually develop to a good system”

» Considering any finite part of a system behavior, the system
eventually develops into a “good” system (by continuing
appropriately the system runs or adding new system runs)

» E.g."Green light for pedestrians can always be omitted”

» L is liveness hyperproperty iff vT. (3G. T<GAGel)
» Tis a finite set of finite traces (observation)
» Each observation can be explained by a system G satisfying L

» Example:
» Average response time
» Closure operations in information flow control
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Landscape of (Hyper)Properties

» Each (hyper-) property can be represented as a combination of
safety and liveness (hyper-) properties.

Safety
Hyperproperties

Liveness
Hyperproperties

Safety Liveness
Properties Properties Average

Non- Response

Interference
Guaranteed

Invariants Service

Closure

Observational Predicates
determinism
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The Global Picture

Informal Specification

O
O
Satisfies _
Safety/Security
Requirements
Abstract Specification
Decomposition Satisfies -
. 2
...:z...§

Composite Specification Test | = = -
Program analysis
Refinement / o Model checking
Satisfies Formal proof

Decomposition

E—ﬁ atisfies Safety/Security

Requirements

Refined Specification
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Structuring the Development

» Horizontal structuring:

» Modularization into components

» Composition and Decomposition
» Aggregation

» Vertical structuring:

» Abstraction and refinement

from design specification to implementation
» Declarative vs. imparative specification
» Inheritance of properties

» Views:

» Addresses multiple aspects of a system

» Behavioral model, performance model, structural model],
analysis model(e.g. UML, SysML)
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Horizontal Structuring (informal)

» Composition of components
» Dependent on the individual layer of abstraction
» E.g. modules, procedures, functions,...

» Example:

Comm Address/Reporting Flat Panel Disp lays
Flight Managem ent Head up display (HUD)
Cabin Pressure Cntrl HF Radio
Cabin Temp Cntrl Microwave Landing
Comm, Nav/ID Smoke Detection
Airborne Flight Info Window Heat Cntrl W eather
Detection
SATCOM Antenniae o
Integrated Meumatic System (Valves,
Kt Iw"’g’;":&:‘gﬁ: Heat Exchangers, Water Separators)
Interior Lighting - - Alr Data
/ B *gensors

Emergency Power Turbine
Traffic

g e |‘ \
o | @
~\\ L/ AlertCollisi
Exteral Lighting P \ preteimsl
¥
2, Enhanced

- E— 2\ . \ = =, Ground
) o — —— L=< % Prox
S o e I EnvironmentalCntrl | W/3Ming
3 Y £~ e Q
x G £E l‘ - ] < Anti-lee Cntrl
Auxiliary Power Unit < T
APU Cntris > <
APU Start

Wheels/Brakes
Altemators/Generators Anti-Skid/Landing Gear
Variable Speed

Constant Frequency

Air Cycle Machine

ke Detection

Hydraulic Pumps AltematorsiGenerabors

Hydraulic Accumulaors Engine Cntrl

Hydraulic Power Transfer Units Engine Starters

Power Transfer Unit Nacelle Subsystm
Airdrive Unit QilfAir fFuelCoolers

Voice/flight Data Recorders Thrust Reversers
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Modular Structuring of Requirements

Decomposition of requirements

Verification of requirements

Component 1 Component n
Guarantees Guarantees

Composition of guarantees

System Guarantees
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Mutual Dependencies: Assume/Guarantee

» Safety requirement: Queue does not loose any items.

Producer
in

s

al

Loop:
ifs1=a1{
send(x, in); sT =nots1}

» Components depend on each other!

» |nitialization ?

Systeme hoher Sicherheit und Qualitat, WS 17/18

Queue

Fixed capacity
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ifs1!=aland |g| <max {
enqg(qg, in); al =notal;}

ifs2=a2and |q| >0 {
deq(q, out); s2!=nots2}

out

S2

a2

Consumer

Loop:
if s2 1= a2 then {

read(y, out); a2 = not a2;

consume(y) }

(Y



Composition of Security Guarantees

Only complete bicycles are allowed to pass the gate.

Secure'! Secure!
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Composition of Security Guarantees

Only complete bicycles are allowed to pass the gate.

Insecure!
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Vertical Structuring - Refinement

» |dea: start at an abstract description and add
details step by step

From abstract specification to an implementation

» What shall be refined?
» Algorithm: algebraic refinement
» Data: data refinement
» Process: process refinement
» Events: action refinement
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Algebraic Refinement

Stack empty: stack; push(int, stack):stack

pop(stack):stack

pop(empty) = empty; pop(push(x,y)) =y

Refinement Satisfies

Implementing  li_empty = nil
stacks by lists li_push(x, y) = cons(x, y)
li_pop(x) = tail(x)

List nil: list cons(int, list):list
first(list):int tail(list):int

first(nil) = -1 first(cons(x, y)) = x
tail(nil) = nil tail(cons(x, y)) =y
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To prove:

li_pop(li_empty) = li_empty
Li_pop(li_push(x, y)) =y

Refinement preserves
properties of stack by
transitivity of the logic !
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Even More Refinements

» Data refinement

» Abstract datatype is ,implemented” in terms of the
more concrete datatype
» Simple example: define stack with lists
» Process refinement
» Process is refined by excluding certain runs

» Refinement as a reduction of underspecification by
eliminating possible behaviours

» Action refinement
» Action is refined by a sequence of actions

» E.g. astub for a procedure is refined to an executable
procedure
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Conclusion & Summary

» Software development models: structure vs. flexibility

» Safety standards such as IEC 61508, DO-178B suggest
development according to V-model.

» Specification and implementation linked by verification
and validation.

» Variety of artefacts produced at each stage, which have to
be subjected to external review.

» Safety / Security Requirements
» Properties: sets of traces
» Hyperproperties: sets of properties
» Structuring of the development:
» Horizontal - e.g. composition
» Vertical - refinement (e.g. algebraic, data, process...)
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Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards
03: The Software Development Process
04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with OCL

07: Testing

08: Static Program Analysis

09-10: Software Verification

11-12: Model Checking

13: Conclusions

vV v v v vV vV Vv vV VvV VY
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Hazard Analysis in the Development Cycle

Software safety Validation
requirements
specification

E/E/PES safety
requirements
| specification

Validation

| Validated
testing

software

[ E/E/PES Software

architecture “ arch ltecture -------------------------------

and programmable
electronics)

Software system(«@-------------------- Integration
(module)

Integration testing
(components, subsystems

CODING

Systeme hoher Sicherheit und Qualitat, WS 17/18 -3-



The Purpose of Hazard Analysis

System Safety
Hazard Analysis
systematically

Hazard deit:ermlnes c:a\ list of
Analysis safety requirements.

The realization of the
safety requirements by
the software product
must be verified.

TVaIidation

Safety Validated
Requirements Software

_ Verification The product must be
\ validated wrt. the
safety requirements.

Software Development
(V-Model)
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Hazard Analysis...

» provides the basic foundations for system safety.

» is performed to identify hazards, hazard effects, and hazard
causal factors.

» is used to determine system risk, to determine the
significance of hazards, and to establish design measures
that will eliminate or mitigate the identified hazards.

» is used to systematically examine systems, subsystems,
facilities, components, software, personnel, and their
interrelationships.

Clifton Ericson: Hazard Analysis Techniques for System Safety.
Wiley-Interscience, 2005.
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Form and Output of Hazard Analysis

The output of hazard analysis is a list of safety
requirements and documents detailing how these were
derived.

» Because the process is informal, it can only be checked by
reviewing.

» It is therefore critical that
» standard forms of analysis are used,
» documents have a standardized form, and
» all assumptions are documented.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -6 - ' - J w



Classification of Requirements

» Requirements to ensure:
» Safety
» Security

» Requirements for:
» Hardware

» Software

» Characteristics / classification of requirements:
» according to the type of a property
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Classification of Hazard Analysis

» Top-down methods start with an anticipated hazard and
work backwards from the hazard event to potential causes
for the hazard.

» Good for finding causes for hazard,;

» good for avoiding the investigation of “non-relevant”
errors,;

» bad for detection of missing hazards.

» Bottom-up methods consider “arbitrary” faults and resulting
errors of the system, and investigate whether they may finally
cause a hazard.

» Properties are complementary to top-down properties;

» Not easy with software where the structure emerges
during development.
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Hazard Analysis Methods

» Fault Tree Analysis (FTA) - top-down

» Event Tree Analysis (ETA) - bottom-up

» Failure Modes and Effects Analysis (FMEA) - bottom up
» Cause Consequence Analysis - bottom up

» HAZOP Analysis - bottom up
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Fault Tree Analysis
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Fault Tree Analysis (FTA)

» Top-down deductive failure analysis (of undesired states)
» Define undesired top-level event (UE);

» Analyze all causes affecting an event to construct fault
(sub)tree;

» Evaluate fault tree.

E1 intermediate event D AND gate

external event Q OR gate

undeveloped event O INHIBIT gate

E21 E22 E23

<
(D ﬁh (D conditioning event PRIORITY AND
e

vE ) gate
| basic event @ EXCLUSIVE OR
E31 E32 E33 gate
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FTA: Cut Sets

» A cut set is a set of events that cause the top UE to occur
(also called a fault path).

» Cut sets reveal critical and weak links in a system.
» Extension- probabilistic fault trees:

» Annotate events with probabilities;

» Calculate probabilities for cut sets.

» We do not pursue this further here, as it is mainly useful
for hardware faults.

» Cut sets can be calculated top down or bottom up.
» MOCUS algorithm (Ericson, 2005)
» Corresponds to the DNF of underlying formula.

» What happens to priority AND, conditioning and
inhibiting events (modelled as implication?).
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Fault-Tree Analysis: Process Overview

Understand system design

Define top undesired event

Establish boundaries (scope)

Construct fault tree

Evaluate fault tree (cut sets, probabilities)
Validate fault tree (check if correct and complete)
Modify fault tree (if required)

Document analysis

O No U A WD =
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Fault Tree Analysis: First Simple Example

» Consider a simple fire protection system connected to
smoke/heat detectors.

Fire protection system fails:
Fire, but no deluge water

E1

[

Fire was not
detected.

E2

Deluge water was
not released

n

E3

Smoke detection
4 failed.

E

Heat detection
failed.
5
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Fault Tree Analysis: Another Example
E1

« Alamp warning about low
level of brake fluid.

- Top undesired event:

warning lamp off despite
low level of fluid.

I

Switch coniacts
fail to close

Float switch

Primary

Secondary switch Secondary
fuse fallure switch
Batter failura tailure
y S2 4 S3
Source: N. Storey, Safety-Critical Computer Systems.
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Fault Tree Analysis: Final Example

Laser achivated
ooty | E1

A laser is operated from a control computer

system.

= The laser is connected via a relay and a
power driver, and protected by a cover
switch.

= Top Undesired Event:
Laser activated without explicit command
from computer system.

”~ \
1." v

24V
T TaEl

R ———
(= |

L |
Relay <
T

" ™ ~
Lover
=
g oV MICroswitcn

Power
driver

= Frimary
Computer g ‘ Laser driver

system : 4 system

—_— ¥

Source: N. Storey, Safety-Critical Computer Systems.
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FTA - Conclusions

» Advantages:
» Structured, rigorous, methodical approach;

» Can be effectively performed and computerized,
commercial tool support;

» Easy to learn, do, and follow;

» Combines hardware, software, environment, human
interaction.

» Disadvantages:

» Can easily become time-consuming and a goal in itself
rather than a tool if not careful;

» Modelling sequential timing and multiple phases is
difficult.
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Event Tree Analysis
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Event Tree Analysis (ETA)

» Bottom-up method
» Applies to a chain of cooperating activities

» Investigates the effect of activities failing while the chain is
processed

» Depicted as binary tree; each node has two leaving edges:

» Activity operates correctly

» Activity fails
» Useful for calculating risks by assigning probabilities to edges
» Complexity: 0(2™)
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Event Tree Analysis - Overview

Input:

» Design knowledge
« Accident histories

ETA Process:

|dentify Accident Scenarios
|dentify IEs (Initiating Events)
|dentify pivotal events
Construct event tree diagrams
Evaluate risk paths

Document process

S

Output:

Mishap outcomes
Outcome risks

« Causal sources
Safety Requirements
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Event Tree Analysis - Example

Cooling System for a Nuclear Power Plant

IE Pivotal Events
Electricity = Emergency  Fission Product Containment

Core Cooling Removal

Outcome

Fission Release

— Available
Available =
— Fails
— Available
— Available
Fails ——
_ Available— _ Fails
Available
P|pe _ — Fails ‘—{ .
Breaks Fails

Very Small

Small
Small
Medium
Large
Very Large

- Fails
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Event Tree Analysis - Another Example

Fire Detection/Suppression System for Office Building

IE Pivotal Events Outcomes Prob.
Fire Detection  Fire Alarms Fire Sprinkler
Working Working Working
YES (P=0.8)  Limited damage 0.00504
~YES (P=0.7)
NO (P=0.2) Extensive damage, 0.00126
People escape
- YES (P=0.9) -
YES (P= 0.8) \l;\i/r:tite(edodT(;nage’ 0.00216
Fire Starts _ -NO (P=0.3) [ PEoP
P=0.01 o
NO (P=0.2) Death/injury, 0.00054
Extensive damage
~ NO (P=0.1) Death/injury, 0.001
Extensive damage
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ETA - Conclusions

» Advantages:
» Structured, rigorous and metodical;
» Can be effectively computerized, tool support is available;
» Easy to learn, do, and follow;

» Combines hardware, software, environment and human
interaction;

» Can be effectively performed on varying levels of system
detail.

» Disadvantages:
» An ETA can only have one IE;
» Can overlook subtle system dependencies;
» Partial success/failure not distinguishable.
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Failure Modes and Effects Analysis (FMEA)

» Analytic approach to review potential failure modes and their
causes.

» Three approaches: functional, structural or hybrid.

» Typically performed on hardware, but useful for software as
well.

» [t analyzes
» the failure mode,
» the failure cause,
» the failure effect,
» its criticality,
» and the recommended action,
and presents them in a standardized table.
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Software Failure Modes

Guide word Deviation Example Interpretation
omission The system produces no output No output in response to change
when it should. Applies to a in input; periodic output missing.
single instance of a service, but
may be repeated.
commission The system produces an output, Same value sent twice in series;
when a perfect system would spurious output, when inputs
have produced none. One must have not changed.
consider cases with both, correct
and incorrect data.
early Output produced before it Really only applies to periodic
should be. events; Output before input is
meaningless in most systems.
late Output produced after it should Excessive latency (end-to-end
be. delay) through the system; late
periodic events.
value Value output is incorrect, butina| Out of range.
(detectable) way, which can be detected by
the recipient.
value Value output is incorrect, butina| Correctin range; but wrong
(undetectable) | way, which cannot be detected. value
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Criticality Classes

» Risk as given by the risk mishap index (MIL-STD-882).

Severity Probability
1. Catastrophic A. Frequent
2. Critical B. Probable
3. Marginal C. Occasional
4. Negligible D. Remote

E. Improbable

» Names vary, principle remains:
» Catastrophic - single failure
» Critical - two failures
» Marginal - multiple failures/may contribute
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PROBABILITY LEVELS

Description | Level Specific Individual Item Fleet or Inventory
Frequent A Likely to occur often in the life of an item. Continuously experienced.
Probable B Will occur several times in the life of an item. Will oceur frequently.

Occasional C Likely to occur sometime in the life of an item. Will occur several times.
. : : : e Unlikely, but can reasonably be
Remote D Unlikely, but poessible to occur in the life of an item. expected to ocour.
So unlikely, it can be assumed occurrence may not be . .
Improbable E experienced in the life of an ltem. Unlikely to occur, but possible.
Incapable of occurence. This level is used when potential incapable of aocursnce. This level
Eliminated F hazards are identified and later eliminated. 1S Us‘.}.d el thEI'ItI.'IEH r_'lazards are
identified and later eliminated.
I Severit . I
Description y Mishap Result Criteria
Category
Catastrophic 1 C_oul_c? result in one or more of the following: death, permanent total d!SElblmj,f, irreversible
significant environmental impact, or monetary loss equal to or exceeding $10M.
Could result in one or more of the following: permanent partial disability,injuries or
Critical 5 occupational illness that may result in hospitalization of at least three personnel, reversible
significant environmental impact, or monetary loss equal to or exceeding $1M but less than
S10M.
Could result in one or more of the following: injury or occupational illness resulting in one or
Marginal 3 more lost work day(s), reversible moderate environmental impact, or monetary loss equal to or
exceeding $100K but less than $1M.
Nealiaible 4 Could result in one or more of the following: injury or occupational iliness not resulting in a lost
glig work day, minimal environmental impact, or monetary loss less than $100K.
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FMEA Example: Airbag Control

» Consider an airbag control system, consisting of
» the airbag with gas cartridge;
» a control unit with
Output: Release airbag
Input: Accelerometer, impact sensors, seat sensors, ...
» FMEA:
» Structural: what can be broken?
Mostly hardware faults.

» Functional: how can it fail to perform its intended
function?

Also applicable for software.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -29- ' - :I @



Airbag Control (Structural FMEA)

ID Mode
1 Omission
2 Omission
3 Omission
4 Comm.

Cause

Gas cartridge
empty

Cover does not
detach

Trigger signal
not present in
emergency.

Trigger signal
present in non-
emergency

Systeme hoher Sicherheit und Qualitat, WS 17/18

Effect

Airbag not released in
emergency situation

Airbag not released fully in
emergency situation

Airbag not released in
emergency situation

Airbag released during
normal vehicle operation

-30-

Crit.

C1

C1

C1

C2

Appraisal

SR-56.3

SR-57.9

Ref. To SW-
FMEA

Ref. To SW-
FMEA
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Airbag Control (Functional FMEA)

ID Mode Cause Effect Crit. Appraisal
5-1 Omission  Software Airbag not C1 See 5-1.1, 5-1.2.
terminates released in
abnormally emergency.
5-1.1  Omission - Division by 0 See 5-1 C1 SR-47.3
Static Analysis
5-1.2  Omission - Memory fault See 5-1 C1 SR-47.4
Static Analysis
5-2 Omission  Software does not  Airbag not C1 SR-47.5
terminate released in Termination Proof
emergency.
5-3 Late Computation takes Airbag not C1 SR-47.6
too long. released in WCET Analysis
emergency.
5-4 Comm. Spurious signal Airbag released  C2 SR-49.3
generated in non-
emergency
5-5 Value (u)  Software computes Either of 5-1 or C1 SR-12.1
wrong result 5-4. Formal Verification
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FMEA - Conclusions

» Advantages:
» Easily understood and performed;
» Inexpensive to perform, yet meaningful results;
» Provides rigour to focus analysis;
» Tool support available.
» Disadvantages:
» Focuses on single failure modes rather than combination;
» Not designed to identify hazard outside of failure modes;

» Limited examination of human error, external influences
or interfaces.
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The Seven Principles of Hazard Analysis

Ericson (2005)
1) Hazards, mishaps and risk are not chance events.
2) Hazards are created during design.
3) Hazards are comprised of three components.
4) Hazards and mishap risk is the core safety process.

5) Hazard analysis is the key element of hazard and mishap
risk management.

6) Hazard management involves seven key hazard analysis

types.
7) Hazard analysis primarily encompasses seven hazard
analysis techniques.
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Summary

» Hazard Analysis is the start of the formal development.
» |ts most important output are safety requirements.

» Adherence to safety requirements has to be verified during
development, and validated at the end.

» We distinguish different types of analysis:
» Top-Down analysis (Fault Trees)
» Bottom-up (FMEAs, Event Trees)

» [t makes sense to combine different types of analyses, as
their results are complementary.
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Conclusions

» Hazard Analysis is a creative process, as it takes an informal
input (,system safety”) and produces a formal output (safety
requirements). Its results cannot be formally proven, merely
checked and reviewed.

» Review plays a key role. Therefore,
» documents must be readable, understandable, auditable;

» analysis must be in well-defined and well-documented
format;

» all assumptions must be well documented.
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Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards
03: The Software Development Process
04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with OCL

07: Testing

08: Static Program Analysis

09-10: Software Verification

11-12: Model Checking

13: Conclusions

vV v v vV vV Vv vV VvV VY
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High-Level Design in the Development Cycle

e, 1 || {— | Vit g, Vit
testin
specification specification - software
Integration testing
E"E_‘FPES Snftwara (components, subsystems
architecture - architecture [-----==\-===-==-============--====-= and programmable
electronics)

Software system|g-------------------- Integration
design testing
(module)
|
1

Module Module
design - testing

CODING
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What is a model?

A model is a representation in a certain medium of
something in the same or another medium.
The model captures the important aspects of the

> lefe rent nOtiOﬂS Of mOdE|S thing being modelled from a certain point of view
o . o d . If . h .
N phySICS, phI|OSOphy or and simplifies or omits the rest

Rumbaugh, Jacobson,

Computer SClence Booch: UML Reference Manual.
» Here: an abstraction of a system / a software / a development

» Purposes of models:
» Understanding, communicating and capturing the design
» Organizing decisions / information about a system
» Analyzing design decisions early in the development process
» Analyzing requirements
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An Introduction to SysML
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The Unified Modeling Language (UML)

» Grew out of a wealth of modelling languages in the 1990s
(James Rumbaugh, Grady Booch and Ivar Jacobson at Rational)

» Adopted by the Object Management Group (OMG) in 1997, and
approved as ISO standard in 2005.

» UML 2 consists of
» the superstructure to define diagrams,
» a core meta-model,
» the object constraint language (OCL),
» an interchange format

» UML 2 is not a fixed language, it can be extended and customized
using profiles.

» SysML is a modeling language for systems engineering
» Standardized in 2007 by the OMG (May 2017 at Ver 1.5)
» Standard available at: http://www.omg.org/spec/SysML/About-SysML/
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What for SysML?

» Serving as a standardized notation allowing all stakeholders
to understand and communicate the salient aspects of the
system under development

» the requirements,
» the structure (static aspects), and
» the behavior (dynamic aspects)

» Certain aspects (diagrams) of the SysML are formal, others
are informal

» Important distinction when developing critical systems

» All diagrams are views of one underlying model

Systeme hoher Sicherheit und Qualitat, WS 17/18 -7 - . - :I @



Different Views in SysML

» Structure;

» How is the system constructed?
How does it decompose?

» Behaviour:

» What can we observe? Does it have a state?
» Requirements:

» What are the requirements? Are they met?
» Parametrization:

» What are the constraints (physical/design)?
» ... and possibly more.
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Example: A Cleaning Robot (HooverBot)

» Structure;

» Has an engine, wheels (or tracks?), a vacuum cleaner, a
control computer, a battery...

» Behaviour:

» General: starts, then cleans until battery runs out, returns
to charging station

» Cleaning: moves in irregular pattern, avoids obstacle
» Requirements:

» Must cover floor when possible, battery must last at least
six hours, should never run out of battery, ...

» Constraints:

» Can only clean up to 5 g, can not drive faster than 1m/s,
laws concerning movement and trajectory, ...
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SysML Diagrams

Requirement Diagram *

-

Structural Diagrams

Package Diagram

Block Definition Diagram

Internal Block Diagram

Parametric Diagram

Behavioural Diagrams

Use Case Diagram *

Activity Diagram

State Machine Diagram

Sequence Diagram

* Not considered further.
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Structural Diagrams in SysML
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Block Definition Diagram

» Blocks are the basic building elements of a model
» Models are instances of blocks

» Block definition diagrams model blocks and their relations:
» Inheritance
» Association

» Blocks can also model interface definitions.

» Corresponds to class diagrams in the UML.
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fBIock

5o

Specialisation/ —
generalisation

BDD - Summary of Notation

Block with reference __
properties

«block» «block»
Block1 Block5
values
reqd BlockProperty1 : Real
BlockProperty2 : Real
________ RoleName2
|
«blocky is associated withpe- «block>
Block2 1 1.* Block3
references | RoleName1 parts
RoleName1 : Block3 [1.."] ; RoleName?2 : Block5 [*]
I

ﬁggregation "‘} o

1 Association showing
———————— role name

0.1

«block»
Block4

Block with provided
operation and flow

properties

prov Operation1 ()

operations

in FlowProperty1 : Block6
out FlowProperty2: Real

flowProperties

Instance2 : Block5

BlockProperty2 : Real = 123.4

- - {Instance specification )

1

1

«block»
> Block6

«InterfaceBlock»
Interface

operations
Operation1 () : Real
Operation2 () : Block7

«block»
Block11

Port1 : Blockd

Interface .
————— Provided interface
«block» L
Block9
"""" Required interface
Interface
Port : Block11
: 4
«block» Port1 : Block
Block6 SR
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\ FlowProperty1 : Block6

Item flow j

|
'
|
1

1 FlowProperty2 :

\
\
\

Block with value
properties, one
marked as a
required feature

. _Block with part
property

«block»
Block7

Association block™

_____ Interface block™

«block»

Bl
Real ock12

! Port2 : ~Block4

U
'
1

"\ _ [Portwith two nested ports ™) [Port with flow properties)

-13-

Port with ﬁow properties—
Port2 is conjugated

Quelle: Holt, Perry. SysML for Systems Engineering.
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Example 1: Vehicles

» A vehicle can be a car, or a
bicycle.

» A car has an engine

» A car has 4 wheels,
a bicycle has 2 wheels

» Engines and wheels have
operations and values

» In SysML, engine and wheel
are parts of car and bicycle.
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bdd[package] [‘u’ehicles])

Vehicle

Bicycle

T

1 4 2
Engine Wheel
operations operations
turnOn() : void pressure() . Real

rev() . Real
values
power : Real
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Example 2: HooverBots

» The hoover bots have a control computer, and a vacuum
cleaner (v/c).

» HooverBot 100 has one v/c, Hoover 1000 has two.
» Two ways to model this (i.e. two views):

bdd[packagg] [HooverBonSeries])
HooverBot100Series HooverBot1000Series
parts
ctrl: Controller ] 1
vac ; Vacuum Cleaner
Cleaner Ctrl
2 1
Vacuum Cleaner s ~vacCtrl Controller svacCtrl
poris < ports
vacCtrl ~vacCtrl SvacCtrl
values
cleanerOn : Boolean
cleanerPower : Real
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Internal Block Diagrams
» Internal block diagrams decribe instances of blocks
» Here, instances for HooverBots

» On this level, we can describe connections between ports
(flow specifications)

» Flow specifications have directions.
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Example: HooverBot 100 and 1000

ibdHooverBot10005eries [HooverBot1000] )

T ~yvacCtrl
Cleaner: Vacuum Ctrl :
= <

Cleaner|[2] &l Controller1]
- vacCtrl

ibd[block] HooverBot1005eries [HooverBot100] )

vac - Vacuum Cleaner & ﬂ (= ctrl : Controller
s ~yvAc Ctrl “vafpCtrl
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Package Diagrams

» Packages are used to group
diagrams, much like
directories in the file system.

» Not considered much in the
following
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HooverBots
=) (===
HoverBots1x HooverBots 2x
|
Common
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Parametric Diagrams

» Parametric diagrams describe constraints between
properties and their parameters.

» It can be seen as a restricted form of an internal block
diagram, or as equational modeling as in Simulink.

ice.fi.FuelDemand:Real

ice.fi.FuelFlowRate:Real ice.fi.fuel.FuelPressure::Real

injectorDemand:Rea

fuelflow : FuelFlow

W {flowrate = press / (4*injectorDemand) } ®
flowrate:Real press:Real

Relation of fuel flowrate to FuelDemand and FuelPressure value properties (Source: OMG SysML v1.2)
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SysML Diagrams Overview

Requirement Diagram *

Structural Diagrams

Package Diagram

Block Definition Diagram

Internal Block Diagram

Parametric Diagram

Behavioral Diagrams

Use Case Diagram *

Activity Diagram

State Machine Diagram

Sequence Diagram

\_

* Not considered further.
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Detailed Specification in the Development Cycle

e, 1 || {— | Vit g, Vit
testin
specification speclflcatmn - software
Integration testing
E/E/PES Software (components, subsystems
architecture - an:hﬂa-::tura -------------------------------- and programmable
electronics)

Software system|---------------oc--- Integration
design testing
(module)
|
Module
''''' testing
4{ CODING
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Why detailed Specification?

» Detailed specification is the specification of single modules
making up our system.

» This is the ,last” level both in abstraction and detail before we
get down to the code - in fact, some specifications at this
level can be automatically translated into code.

» Why not write code straight away?
» We want to stay platform-independent.

» We may not want to get distracted by details of our target
platform.

» At this level, we have a better chance of finding errors or
proving safety properties.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -23- . - :I @



Levels of Detailed Specification

We can specify the basic modules
» By their (external) behavior

» Operations defined by their pre/post-conditions and
effects (e.g. in OCL)

» Modeling the system’s internal states by a state machine
(i.e. states and guarded transitions)

» By their (internal) structure

» Modeling the control flow by flow charts
(aka. activity charts)

» By action languages (platform-independent programming
languages) for UML
(but these are not standard for SysML)
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State Diagrams: Basics

» State diagrams are a particular form of (hierarchical) FSMs:

Definition: Finite State Machine (FSM)
A FSM is given by M = (%, I,—) where
Y is a finite set of states,

e | C Yis asetofinitial states, and
e 5C Y X YIS atransition relation, s.t. — Is left-total:

Vs €eX.3ds' € X.s - s’

» Example: a simple coffee machine.
» We will explore FSMs in detail later.

» In hierarchical state machines, a state may contain another
FSM (with initial/final states).

» State Diagrams in SysML are taken unchanged from UML.
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Basic Elements of State Diagrams

» States

» Initial/Final
» Transitions
» Events (Triggers) Q
» Guards
» Actions (Effects)

stmBasic State Machine )

State & State B
Event [Guard] / Action
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What is an Event?

» . The specification of a noteworthy occurence which has a
location in time and space.” (UML Reference Manual)

» SysML knows:

» Signal events event name/

» Call events operation name/
» Time events after(t)/

» Change event when (e)/

» Entry events Entry/

» EXit events Exit/
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SMDs - Summary of Notation

Initial state‘i’r —————— 3] ( Composite State (Concurrent)
Composite state with exit Exit/op3
activi‘tjy Ié“ - —_ _ |- - - 4 State with do activityb]
o 2 o e
Simple State
— —-9(:)
Simple State Event1[ Attribute = VALUE]/op4 do : op1
| T
I — I
| - - " ""-"-"=-"="-"="-""="="="="="~"=~"=-"=”"°~
| |
Transition with event @ Simple State O
Simple state'j ( Event1), guard ([Attribute = _
VALUE]) and action (op4) Region '
\ J
Transition with event only'ﬁ 7 : . ~ ®)-- - - ~‘Final state ]
| Composite State (Sequential)
: /Event3
)
Event2/ ! Simple State 1 - (Simple State 2} == =73
Entry/op2 :
/ [
State with entry activity 'ﬁ~ aladed T y |

Completion transition with
action only

Quelle: Holt, Perry. SysML for Systems Engineering.
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State Diagram Elements (SysML Ref. §13.2)

» Choice pseudo state » Region

» Composite state » Simple state

> Entry point » State list

> Exit point » State machine

» Final state

» History pseudo states
» Initial pseudo state

» Junction pseudo state
» Receive signal action
» Send signal action

» Action

» Terminate node
» Submachine state
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Activity Charts: Foundations

» The activity charts of SysML (UML) are a variation of good old-
fashioned flow charts.

» Those were standardized as DIN 66001
(ISO 5807).

» Flow charts can describe
programs (right example)
or non-computational
activities (left example)

=61

» SysML activity charts
are extensions of
UML activity charts.

Quelle: Wikipedia

Quelle: Erik Streb, via Wikipedia
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Basics of Activity Diagrams

» Activities model the work flow of low-level behaviours:
“An activity is the specification of parameterized behaviour as
the coordinated sequencing of subordinate unites whose
individual elements are actions.” (UML Ref. §12.3.4)

» Diagram comprises of actions, decisions, joining and forking
activities, start/end of work flow.

» Control flow allows to disable and enable (sub-) activities.

» An activity execution results in the execution of a set of
actions in some specific order.
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What is an Action?

» A terminating basic behaviour, such as

>
>
>
>
>

>

Changing variable values [UML Ref. §11.3.6]
Calling operations [UML Ref. 811.3.10]
Calling activities [UML Ref. 812.3.4]

Creating and destroying objects, links, associations
Sending or receiving signals
Raising exceptions.

» Actions are part of a (potentially larger, more complex) behaviour.
» Inputs to actions are provided by ordered sets of pins:
» A pinis atyped element, associated with a multiplicity

>

Input pins transport typed elements to an action

» Actions deliver outputs consisting of typed elements on output

pins
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Elements of Activity Diagrams

» Nodes: » Paths (arrows):
Action nodes » Control flow
Activities » Object flow
Decision nodes » Probability and rates
Final nodes
Fork nodes » Activities in BDDs
Initial nodes » Partitions
Local pre/post-conditions » Interruptible Regions
Merge nodes » Structured activities

Object nodes
Probabilities and rates
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Activity Diagrams - Summary of Notation

Activity Partition Activity Partition
|

inl fods Ppeessnassmaiscy ® Activity partitiorﬁ

------------- :
----------- <<

_+

s S T

-
Discrete control B}

Chisgtliow == s ensanSe flow with rate
Objectnode™ __ _ _ __ Object Name:Object Node

«continuous»

i Eontinuous object ﬂow[:]

«discrete»
{rate = expression}

condition] {Probability = value % i
---------- ondon) Provsity = e (™t

condition] :

------------- @ Control flow with B}
Yy

guard and probabilit

Quelle: Holt, Perry. SysML for Systems Engineering.

&
E
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Behavioural Semantics

» Semantics is based on token flow - similar to Petri Nets, see
[UML Ref. pp. 326]

» A token can be an input signal, timing condition,
interrupt, object node (representing data), control
command (call, enable) communicated via input pin,

» An executable node (action or sub-activity) in the
activity diagram begins its execution, when the
required tokens are available on their input edges.

» On termination, each executable node places tokens
on certain output edges, and this may activate the
next executable nodes linked to these edges.
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Activity Diagrams - Links With BDDs

» Block definition diagrams may show
» Blocks representing activities

bdd

—
«activity» «activity=
activity name activity name
\ [ )]
action | L . "\ i
Fame I.-" action \"-. action ‘x_\ ﬁ;:_:?en
name / _name 4
«activity » «activity » «activity »
activity name activity name activity name

» One activity may be composed of other activities -
composition indicates parallel execution threads of the
activities at the “part end”.

» One activity may contain several blocks representing
object nodes (which represent data flowing through the
activity diagram).
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Sequence Diagrams

» Sequence Diagrams describe the flow of messages between
actors.

» Extremely useful, but also extremely limited.

analyst : Financialénalyst m : R tingSystem stem : ri m

l
|
getavailableReports ( ) l

getSecurityClearance (userld )

userClearance

ST SR i A S S e e
determinedvailableReports ()

!

|

|

!

|

|

|

| |
| |
| |
'F .......... nalsberepars .. : Quelle:

| IBM developerWorks

» We may consider concurrency further later on.
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Summary

» High-level modeling describes the structure of the system at
an abstract level

» SysML is a standardized modeling language for systems
engineering, based on the UML

» We disregard certain aspects of SysML in this lecture
» SysML structural diagrams describe this structure.

» Block definition diagrams

» Internal block definition diagrams

» Package diagrams

» We may also need to describe formal constraints, or
Invariants.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -38- ' - J w



Summary (cont.)

» Detailed specification means we specify the internal structure
of the modules in our systems.

» Detailed specification in SysML.:

» State diagrams are hierarchical finite state machines
which specify states and transitions.

» Activity charts model the control flow of the program.

» More behavioral diagrams in SysML.:

» Sequence charts model the exchange of messages
between actors.

» Use case diagrams describe particular uses of the system.
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Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards
03: The Software Development Process
04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with OCL

07: Testing

08: Static Program Analysis

09-10: Software Verification

11-12: Model Checking

13: Conclusions

vV v v v VvV vV VvV VvV YVvVYy
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Formal Modeling in the Development Cycle

ErLE;iﬁf ::Ey b Srﬂ;:ﬁgemsaa:t? Validation Validation | b Validated
testin
specification speclflcatmn g SOTINRS
Integration testing
E/E/PES Software (components, subsystems
architecture - Ell'l:hl‘lﬂﬂtllrﬂ __________________________ and programmable
electronics)

.............. Integration
testing
(module)
Module Module
design |7 testing
4{ CODING
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What is OCL?

» OCL is the Object Constraint Language.

» What is OCL?

» A formal language used to describe expressions on UML
models. These expressions typically specify invariant
conditions that must hold for the system being modeled or
queries over objects described in a model.” (OCL standard, §7)

» Why OCL?

» ,AUML diagram, such as a class diagram, is typically not
refined enough to provide all the relevant aspects of a
specification. There is, among other things, a need to
describe additional constraints about the objects in the
model. “ (OCL standard, §7.1)

Systeme hoher Sicherheit und Qualitat, WS 17/18 -4 - ' - J w



Characteristics of the OCL

» OCL is a pure specification language
» OCL expressions do not have side effects

» OCL is not a programming language.
» Expressions are not executable (though some may be)

» OCL is typed language

» Each expression has type; all expressions must be well-
typed

» Types are classes, defined by class diagrams
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Usage of the OCL

» as a query language
» to specify invariants on classes and types in the class
» to specify type invariant for Stereotypes

» to describe pre- and post conditions on Operations and
Methods

» to describe guards
» to specify target (sets) for messages and actions
» to specify constraints on operations

» to specify derivation rules for attributes for any expression
over a UML model.
(OCL standard, 87.1.1)
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OCL by Example




Why is SysML not enough?

Bdd VehicleOwners ’
Person <<enumeration>>
owner fleet Vehicle Color
nam?:strlng 1 0.* Color: Color #Dblack
age: Integer #white
#red
<<query>>
getName(): string
birthday()
setAge(newAge: Integer):Integer .
& & 8 & Car Bike

What about requirements like:

» The minimal age of car owners

» The maximal number of cars (of a specific color) owned
» The maximal number of owners of a car

< [0
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OCL Basics

» The language is typed: each expression has a type.
» Multiple-valued logic (true, false, undefined).

» Expressions always live in a context:
» Invariants on classes, interfaces, types.

context Class
inv Name: expr

» Pre/postconditions on operations or methods

context Type :: op(al: Type, .., an: Type)
pre Name: expr
post Name: expr

Systeme hoher Sicherheit und Qualitat, WS 17/18 -9-
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OCL Types

» Basic types:

» Boolean, Integer, Real, String
» OclAny, OclType, OclVoid, OclInvalid

» Collection types:
» Sequences, Bag, OrderedSet, Set

» Model types
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Invariants of Classes

Bdd VehicleOwners ’
Person . <<enumeration>>
owner fleet Vehicle Color
nam$:§trlng 1 0.* Color: Color #black
age: Integer #white
#red
<<query>>
getName(): string
birthday()
setAge(newAge: Integer):Integer .
8 8 8 8 Car Bike

“A vehicle owner must be at least 18 years old”

context Vehicle

inv: self.owner.age >= 18
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Basic types and operations

» Integer (Z) OCL-Std. 811.5.2

» Real (R) OCL-Std. 811.5.1
» Integer iS a subclass of Real
» round, floor from Real to Integer

» String (Zeichenketten) OCL-Std. 811.5.3

» substring, toReal, tolInteger, characters, etc

» Boolean (Wahrheitswerte) OCL-Std. 811.5.4
» or, xor, and, implies
» Relationen auf Real, Integer, String
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Collection Types
Sequence, Bag, OrderedSet, Set OCL-Std. 811.6, 811.7

» Operations on all collections:
» size, includes, count, isEmpty, flatten
» Collections are always ,flattened”
» Set
» union, intersection
» Bag
» union, intersection, count
» Sequence
» first, last, reverse, prepend, append
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Collections

Bdd VehicleOwners ’

Person

owner fleet Vehicle

name: string 1

: 0.* Color: Color
age: Integer

<<query>>

getName(): string
birthday()
setAge(newAge: Integer):Integer

Car

<<enumeration>>
Color

#black
#white
#red

Bike

“Nobody has more than 3 vehicles”

context Person
Inv: self.fleet->size <= 3
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Collection Types: Quantification
We can quantify over collections: OCL-Std. §11.9.1

» Universal quantification :

coll->forAll (elem: Type| exprlelem]) : Boolean
» Existential quantification:
coll->exists (elem: Type| exprlelem]) : Boolean
» Comprehension operator:
coll->select (elem: Type| exprlelem]) : Coll[Type]

where expr is an expression of type Boolean.
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Universal Quantification

Bdd VehicleOwners ’

Person . Z<(|enumeration>>
owner fleet Vehicle olor
name: string 1 0.* Color: Color #black
age: Integer #white
#red

<<query>>
getName(): string
birthday()
setAge(newAge: Integer):Integer .

& & 8 & Car Bike

“All vehicles of a person are black”
context Person
inv: self.fleet->forAll (v | v.color = #black)

“No person has more than three black vehicles”

context Person
inv: self.fleet->select (v | v.color = #black)->size <= 3

W
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Universal Quantification

Bdd VehicleOwners ’

Person _
owner fleet Vehicle

<<enumeration>>
Color

name: string 1 0. *

] Color: Color
age: Integer

<<query>>

getName(): string
birthday()
setAge(newAge: Integer):Integer

Car

#black
#white
#red

Bike

“A person younger than 18 owns no cars”

context Person
inv: self.age < 18 implies

self.fleet -> forAll(v | not v.ocllsKindOf (Car))
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Existential Quantification

Bdd VehicleOwners ’
Person <<enumeration>>
owner fleet Vehicle Color
nam?:ts,trlng 1 0.% Color: Color #black
age: Integer swhite
#red
<<query>>
getName(): string
birthday()
setAge(newAge: Integer):Integer .
° & & 8 Car Bike

“There is a red car”

context Car
inv: Car.allInstances ()->exists(c | c.color=#red)
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Pre/Post Conditions

Bdd VehicleOwners ’
Person <<enumeration>>
owner fleet Vehicle Color

gazcler:‘ts,trln:g 1 0.* Color: Color #black

g¢: Intege #white

#red

<<query>>

getName(): string

birthday()

setAge(newAge: Integer):Integer .

° & s 8 Car Bike

“If setAge (a) is called with a non-negative argument a, thena
becomes the new value of the attribute age.”

context Person::setAge(a:1int)
pre: a >= 0
post: self.age = a
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Pre/Post Conditions

Bdd VehicleOwners ’
Person <<enumeration>>
owner fleet Vehicle Color
nam?:ts,trlng 1 0.% Color: Color #black
age: Integer swhite
#red
<<query>>
getName(): string
birthday()
setAge(newAge: Integer):Integer .
° & & 8 Car Bike

“Calling birthday() increments the age of a person by 1.”

context Person::birthday ()
post: self.age = self.agel@pre + 1
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Modelling Dynamic Aspects

» Block diagrams model the static structure of the system:
classes, attributes and the type of the operations. The pos-
sible system states are all instances of these model types.

» Invariants and pre/post conditions can be used to model the
dynamic aspects of the system. In particular, they model all
possible state transitions between the system states.

» An operation can become active (there is a state transition
emanting from it) if the invariant holds, and the precondition

holds. If there are no active state transitions, the system is
deadlocked.

» Deadlocks must be avoided.
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Example: The Traffic Light

Button

counter: Integer

requesting()

button | 2
tl |1

TrafficLight

pedLight: Boolean
carLight: Boolean
request: Boolean

switchPedLight()
switchCarLight()
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Example: The Traffic Light

Button context requesting/()
counter: Integer |- — - — — pre: tl.pedLight = false
post: tl.request = true
requesting() post: counter = counter@pre + 1
button | 2 ) . AN
context switchPedLight ()
th]1 pre: request = true
. _-7] post: pedLight != pedLight@pre
Trafﬁd‘lght -7 post: request = false
pedLight: Boolean
carLight: Boolean | context switchCarLight () 5
request: Boolean post: carLight != carLight@pre
switchPedLight() “~<_| inv: not (pedLight = true and
switchCarLight() carLight = true)

pedLight: False

carLight: True
request: False
counter: (%)
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Example: The Traffic Light

Button context requesting/()
counter: Integer |- — - — — pre: tl.pedLight = false
post: tl.request = true
requesting() post: counter = counter@pre + 1
button | 2 ) . AN
context switchPedLight ()
th]1 pre: request = true
. _-7] post: pedLight != pedLight@pre
Trafﬁd‘lght -7 post: request = false
pedLight: Boolean
carLight: Boolean | context switchCarLight () 5
request: Boolean post: carLight != carLight@pre
switchPedLight() “~<_| inv: not (pedLight = true and
switchCarLight() carLight = true)

pedLight: False

carLight: True
request: True
counter: 1
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Example: The Traffic Light

Button context requesting/()
counter: Integer |- — - — — pre: tl.pedLight = false
post: tl.request = true
requesting() post: counter = counter@pre + 1
button | 2 ) . AN
context switchPedLight ()
th]1 pre: request = true
. _-7] post: pedLight != pedLight@pre
Trafﬁd‘lght -7 post: request = false
pedLight: Boolean
carLight: Boolean | context switchCarLight () 5
request: Boolean post: carLight != carLight@pre
switchPedLight() “~<_| inv: not (pedLight = true and
switchCarLight() carLight = true)

pedLight: False
carLight: False
request: True
counter: 1
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Example: The Traffic Light

Deadlock

Button

context requesting()

counter: Integer |- — - — — pre: tl.pedLight = false
post: tl.request = true
requesting() post: counter = counter@pre + 1
button | 2 ) . AN
context switchPedLight ()
tl pre: request = true
. _- post: pedLight != pedLight@pre
TrafﬁCnght -7 post: request = false
pedLight: Boolean
carLight: Boolean | context switchCarLight () h
request: Boolean post: carLight != carLight@pre
switchPedLight() “~<_| inv: not (pedLight = true and
switchCarLight() carLight = true)
pedLight: True
carLight: False
request: False
counter: 1
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Model types

» Model types are given by
» Attributes,
» Operations, and
» Associations of the model

» Navigation along the association
» If cardinality is 1, type is of target type T
» Otherwise, it is Set (T)

» User-defined operations in expressions have to be stateless
(stereotype <<query>>)
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Collection Types: Iterators

» Quantifiers are a special case of iterators.
» Think of al11/any in Haskell defined via foldr

» All iterators defined via iterate OCL-Std. §87.6.6
coll->iterate (elem: Type, acc: T = initial expr
| exprlelem, acc]) : Coll[T]

where expr of type T denotes a function onelem and acc

C.lterate(e: T, acc: T = v) = {
acc= v;
for (Enumeration e= c.elements(); e.hasMoreElements();) {
acc= exprle, acc];
e= e.nextElement () ;

return acc;

}
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Collection Types: Iterators

Person ) é<(|enrumerat|on>>
owner fleet Vehicle olo
name: string 1 0.* Color: Color #black
age: Integer #white
#red
<<query>>
getName(): string
birthday()
setAge(newAge: Integer):Integer .
8 8 8 8 Car Bike

“A person owns at most 3 black vehicles”

context Person
inv: self.fleet->iterate(v; acc:Integer = 0
| 1f (v.color = #black)
then acc + 1 else acc
endif ) <= 3
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Undefinedness in OCL

» Each domain of a basic type has two values denoting
“undefinedness”: OCL-Std 8A.2.1.1

» null or e stands for “undefined”, e.g. if an attribute value
has not been set or is not defined (Type OclVoid)

» invalid or 1 stands for “invalid” and signals an error in the
evaluation of an expression (e.g. division by 0O, or
application of a partial function) (Type OclInvalid)

» As subtypes: OclInvalid € OclVoid < all other types

» Undefinedness is propagated.

» In other words, all operations are strict: ,an invalid or null
operand causes an invalid result”.
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The OCL Logic

» Exceptions to strictness:
» Boolean operators (see below)
» Case distinction
» Test on definedness: oclIsUndefined with

true if e=1Ve=null

ocllIsUndefined(e) = {false otherwise

» The domain type for Boolean also contains null and invalid.
» The resulting logic is four-valued.
» Itis a Kleene-Logic. A—-B = -AVB

» Boolean operators (and, or, implies, xor) are non-
strict on both sides.

» But equality (like all other relations) is strict: L = L1Lis L
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OCL Boolean Operators: Truth Table

b, b, b, and b, b, or by b, xor b, b, implies b, | not b,

false false false false false true true

false true false true true true true

true false false true true false false

true true true true false true false

false £ false € g true true

true £ € true g € false

false 1 false 1 1 true true

true 1 1 true 1 1 false

€ false false € g € €

€ true £ true g true £

€ £ £ € g £ £

€ 1 1 1 1 1 £

1 false false 1 1 1 1

1 true 1 true 1 true 1

1 lore 1 1 1 1 1

» Legend: L isinvalid, € is null. OCL-Std 8A .2.1.3, Table A.2
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OCL Style Guide

» Avoid complex navigation (,Loose coupling”).
» Otherwise changes in models break OCL constraints.

» Always choose adequate context.
» ,Use of allInstances ()is discouraged”
» Split up invariants if possible.

» Consider defining auxiliary operations if expressions
become too complex.
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Summary

» OCL is a typed, state-free specification language which allows
us to denote constraints on models.

» We can define or models much more precise.
» Ideally: no more natural language needed.
» OCL is part of the more ,academic” side of UML/SysML.

» Tool support is not great, some tools ignore OCL, most
tools at least type-check OCL, hardly any do proofs.

» However, in critical system development, the kind of
specification that OCL allows is essential.

» Try yourself: USE - Tool http://useocl.sourceforge.net
Martin Gogolla, Fabian Buttner, and Mark Richters. USE: A UML-Based Specification

Environment for Validating UML and OCL. Science of Computer Programming, 69:27-
34, 2007.
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Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards
03: The Software Development Process
04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with OCL

07: Testing

08: Static Program Analysis

09-10: Software Verification

11-12: Model Checking

13: Conclusions

vV v v vV Vv VvV VvV VY
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Testing in the Development Cycle

e, 1 || {— | Vit g, Vit
testin
specification speclflcatmn - software
Integration testing
E/E/PES Software (components, subsystems
architecture - an:hﬂa-::tura -------------------------------- and programmable
electronics)

Software system|---------------oc--- Integration
design testing
(module)
Module
design +---1
'y
CODING '*

- p—

Module
testing
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What is Testing?

Testing is the process of executing a program or system with the
intent of finding errors.

G.J. Myers, 1979

» In our sense, testing is selected, controlled program execution
» The aim of testing is to detect bugs, such as

» derivation of occurring characteristics of quality properties
compared to the specified ones

» inconsistency between specification and implementation

» structural features of a program that cause a faulty behavior of
a program

Program testing can be used to show the presence of bugs, but
never to show their absence.

E.W. Dijkstra, 1972
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The Testing Process

» Test cases, test plan, etc.
» System-under-test (s.u.t.) (cf. TOE in CC)

» Warning -- test literature is quite expansive

Testing is any activity aimed at evaluating an attribute or
capability of a program or system and determining that it meets
its required results.

Hetzel, 1983
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Test Levels

» Component and unit tests

» test at the interface level of single components (modules,
classes)

» Integration test
» testing interfaces of components fit together

» System test

» functional and non-functional test of the complete
system from the user’s perspective

» Acceptance test
» testing if system implements contract details
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Test Methods

» Static vs. dynamic

» With static tests, the code is analyzed without being run.
We cover these methods as static program analysis later

» With dynamic tests, we run the code under controlled
conditions, and check the results against a given
specification

» Central question: where do the test cases come from?

» Black-box: the inner structure of the s.u.t. is opaque, test
cases are derived from specification only.

» Grey-box: some inner structure of the s.u.t. is known, e.g.
module architecture.

» White-box: the inner structure of the s.u.t. is known, and
tests cases are derived from the source code.
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Black-Box Tests

» Limit analysis:

» If the specification limits input parameters, then values
close to these limits should be chosen

» Idea is that programs behave continuously, and errors
occur at these limits

» Equivalence classes:

» If the input parameter values can be decomposed into
classes which are treated equivalently, test cases have to
cover all classes

» Smoke test:
» “Run it, and check it does not go up in smoke.”
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Example: Black-Box Testing

» Equivalence classes or limits?

Example: A Company Bonus System

The loyalty bonus shall be computed depending on the time of
employment. For employees of more than three years, it shall be
50% of the monthly salary, for employees of more than five
years, 75%, and for employees of more than eight years, it shall
be 100%.

» Equivalence classes or limits?

Example: Air Bag

The air bag shall be released if the vertical acceleration a,, equals
or exceeds 15 ™/ ,. The vertical acceleration will never be less

than zero, or more than 40 ™/, .

Systeme hoher Sicherheit und Qualitat, WS 17/18 -9. b . :I @J)



Black-Box Tests

» Quite typical for GUI tests, or functional testing

» Testing invalid input: depends on programming language —
the stronger the typing, the less testing for invalid input is
required

» Example: consider lists in C, Java, Haskell

» Example: consider object-relational mappings' (ORM) in
Python, Java

1) Translating e.g. SQL-entries to objects
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Property- based Testing

» In property-based testing (or random testing), we generate
random input values, and check the results against a given
executable specification.

» Attention needs to be paid to the distribution values.

» Works better with high-level languages, where the datatypes
represent more information on an abstract level and where
the language is powerful enough to write comprehensive
executable specifications (i.e. Boolean expressions).

» Implementations for e.g. Haskell, Scala, Java
» Example: consider list reversal in C, Java, Haskell

» Executable spec: reversal is idempotent and distributes
over concatenation.

» Question: how to generate random lists?
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White-Box Tests

» In white-box tests, we derive test cases based on the
structure of the program (structural testing)

» To abstract from the source code (which is a purely
syntactic artefact), we consider the control flow graph of
the program.

Def: Control Flow Graph (CFG)
* nodes as elementary statements (e.g. assignments, return,
break, . .. ), as well as control expressions (e.g. in conditionals

and loops), and
* vertices from n to m if the control flow can reach a node m

coming from a node n.

» Hence, paths in the CFG correspond to runs of the program.
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Example: Control-Flow Graph

I
v
2 . .
if (x <0) /*1%/ { l An execution path is
X:= = X [*2%/ ) a path though the
} l cfg.
z=1; /*3%/
while (x > 0) /*4%/ { ! Examples:
ok e . [1,3,4,7, E]
z=z7y, 757/ : ¢ [1.2,3.4,7, E]
X=x-1 /*6%/ v . [1,2,3,4,5,6,4,7, E]
} 5 - [1,3.4,5,6,4,56,4,7, E]

return z /*7%/
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Coverage

» Statement coverage.:
Each node in the CFG is visited at least once.

» Branch coverage:
Each vertex in the CFG is traversed at least once.

» Decision coverage:

Like branch coverage, but specifies how often conditions
(branching points) must be evaluated.

» Path coverage:
Each path in the CFG is executed at least once.
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Example: Statement Coverage

» Which (minimal) path
covers all statements?

if (x<0) /*1*/ {

X: ==X /*2*/ p = [,I 12131415161417:E]

}
7=1: [*3%/ » Which state generates p?
while (x > 0) /*4*/ { X = -
z=27%y, [*5%/ y any
X=X-1 /*6%*/ Z any
}

return z /*7%/

Systeme hoher Sicherheit und Qualitat, WS 17/18 -15 -




Example: Branch Coverage

» Which (minimal) path covers
all vertices?
p= [1,2,3,4,5,6,4,7,E]
p, =[1,3,4,7,E]

if (x<0) /*1*/ {
X:= =X /[*2%/

}
z7=1: [*3%/ » Which states generate p,,p,?
while (x > 0) /*4%/ { Pr P2
X -1 0
z=zty; 175 y any any
X=X-1 /*6%/

Z any any
Y

return z /*7%/
urn z » Note p; (x= 1) does not add

coverage.

=y
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Example: Path Coverage

» How many paths are there?

if (x <0) /*1%/ { >Llet ¢, =[123]

X:= = X /*2%/ 9z = [1.3]
) p = [4,5,6]
7=1: [*3%/ r = [4,7,E]
while (x> 0) /*4%/ { then all paths are *

S 2y 45 P =(qila) p"r

X=x-1 /*6*/

» Number of possible paths:
|P| =2 - MaxInt — 1

}

return z /*7%/
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Statement, Branch and Path Coverage

» Statement Coverage:
» Necessary but not sufficient, not suitable as only test approach.
» Detects dead code (code which is never executed).
» About 18% of all defects are identified.

» Branch coverage:
» Least possible single approach.

» Detects dead code, but also frequently executed program
parts.

» About 34% of all defects are identified.

» Path Coverage:
» Most powerful structural approach;
» Highest defect identification rate (100%);
» But no practical relevance.
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Decision Coverage

» Decision coverage is more then branch coverage, but less
then full path coverage.

» Decision coverage requires that for all decisions in the
program, each possible outcome is considered once.

» Problem: cannot sufficiently distinguish Boolean expressions.

» For A|| B, the following are sufficient:
A B Result

false  false  false

true false  true

» But this does not distinguish A || B from A;
B is effectively not tested.
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Decomposing Boolean Expressions

» The binary Boolean operators include conjunction x Ay,
disjunction x v y, or anything expressible by these (e.g.
exclusive disjunction, implication)

Elementary Boolean Terms
An elementary Boolean term does not contain binary
Boolean operators, and cannot be further decomposed.

» An elementary term is a variable, a Boolean-valued function, a
relation (equality =, orders <, <,>, >, etc.), or a negation of
these.

» This is a fairly syntactic view, e.g. x < y is elementary, but
x < yVx=yisnot, even though they are equivalent.

» In formal logic, these are called literals.
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Simple Condition Coverage

» For each condition in the program, each elementary Boolean

term evaluates to True and False at least once

» Note that this does not say much about the possible value of

the condition

» Examples and possible solutions:

C1 c2

True True
True False
False True

False False

if (temperature > 90 && pressure > 120){... }

Result
True
False
False
False
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Modified Condition Coverage

» It is not always possible to generate all possible combi-
nations of elementary terms, e.g. 3 <=x && x<5.

» In modified (or minimal) condition coverage, all possible
combinations of those elementary terms the value of which
determines the value of the whole condition need to be
considered.

» Example:
3<=x&&X<5

False False False < notneeded
False True False
True False False
True True True

» Another example: (x> 1 &&!p) || p
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Modified Condition/Decision Coverage

» Modified Condition/Decision Coverage (MC/DC) is required by
DO-178B for Level A software.

» |t is a combination of the previous coverage criteria defined
as follows:

» Every point of entry and exit in the program has been
invoked at least once;

» Every decision in the program has taken all possible
outcomes at least once;

» Every condition in a decision in the program has taken all
possible outcomes at least once;

» Every condition in a decision has been shown to
independently affect that decision’s outcome.
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How to achieve MC/DC

» Not: Here is the source code, what is the minimal set of test
cases?

» Rather: From requirements we get test cases, do they
achieve MC/DC?

» Example:
» Test cases: Source Code:
Z:=(A|lB)&&(C||D)

Testcase |1 (2 |3 |4 |5

Input A FIF|T|[F|T

nputs  |F T |F T |F Question: do test cases

InputC | T |F |F |T|T achieve MC/DC?

Input D FI|T|F |F|F

Resultz |F |T [F [T |T
Source: Hayhurst et al, A Practical Tutorial
on MC/DC. NASA/TM2001-210876
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Summary

» (Dynamic) Testing is the controlled execution of code, and
comparing the result against an expected outcome

» Testing is (traditionally) the main way for verification.

» Depending on how the test cases are derived, we distinguish
white-box and black-box tests

» In black-box tests, we can consider limits and equivalence
classes for input values to obtain test cases

» In white-box tests, we have different notions of coverage:
statement coverage, path coverage, condition coverage, etc.

» Next week: Static testing aka. static program analysis
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Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards
03: The Software Development Process
04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with OCL

07: Testing

08: Static Program Analysis

09-10: Software Verification

11-12: Model Checking

13: Conclusions

vV v v vV vV vV Vv vV VvV YVY
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Program Analysis in the Development Cycle

prned Yyt IR () SO
testin
specification speclflcatmn - software
Integration testing
E/E/PES Software (components, subsystems
architecture - an:hﬂa-::tura -------------------------------- and programmable
electronics)
Software system|-<----=-==========-=- Integration
design testing
(module)

Module
testing

CODING

2< [
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Static Program Analysis

» Analysis of run-time behaviour of programs without
executing them (sometimes called static testing).

» Analysis is done for all possible runs of a program
(i.e. considering all possible inputs).

» Typical questions answered:
» Does the variable x have a constant value ?
» Is the value of the variable x always positive ?
» Are all pointer dereferences valid (or NULL)?
» Are all arithmetic operations well-defined?

» These tasks can be used for verification or for optimization
when compiling.
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Usage of Program Analysis

Optimizing compilers

» Detection of sub-expressions that are evaluated multiple times
» Detection of unused local variables

» Pipeline optimizations

Program verification

Search for runtime errors in programs (program safety):

» Null pointer or other illegal pointer dereferences

» Array access out of bounds

» Exceptions which are thrown and not caught

» Division by zero

» Over/underflow of integers, rounding errors with floating point
numbers

» Runtime estimation (worst-caste executing time, wcet)
In other words, specific verification aspects.
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Program Analysis: The Basic Problem

Given a property P and a program p: p & P iff P holds for p

» Wanted: a terminating algorithm ¢(p, P) which computes p & P
» ¢ is sound if ¢(p, P)implies p = P
» ¢ is complete if =¢(p,P) implies =p =P
» If ¢ is sound and complete then ¢ is a decision procedure

The basic problem of static program analysis: virtually all interesting
program properties are undecidable! (cf. Gddel, Turing)

» From the basic problem it follows that there are no sound and
complete tools for interesting properties.

» Tools for interesting properties are either
» sound (under-approximating) or
» complete (over-approximating).
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Program Analysis: Approximation

» Under-approximation is sound but not
complete. It only finds correct programs
but may miss out some.

» Useful in optimizing compilers;

» Optimization must preserve
semantics of program, but is
optional.

» Over-approximation is complete but
not sound. It finds all errors but may find
non-errors (false positives).

» Useful in verification;

» Safety analysis must find all errors,
but may report some more.

» Too high rate of false positives may
hinder acceptance of tool.
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Program Analysis Approach

» Provides approximate answers
» yes/no/don't know or
» superset or subset of values
» Uses an abstraction of program’s behavior
» Abstract data values (e.g. sign abstraction)

» Summarization of information from
execution paths e.g. branches of the if-else statement

» Worst-case assumptions about environment’s behavior
» e.g. any value of a method parameter is possible.
» Sufficient precision with good performance.
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Analysis Properties: Flow Sensitivity

Flow-insensitive analysis
» Program is seen as an unordered collection of statements
» Results are valid for any order of statements
e.g. 5;;5,vs. S, S,
» Example: type analysis (inference)

Flow-sensitive analysis

» Considers program's flow of control

» Uses control-flow graph as a representation of the source
» Example: available expressions analysis
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Analysis Properties: Context Sensitivity

Context-sensitive analysis

» Stack of procedure invocations and return values of method
parameters

» Results of analysis of the method M depend on the caller of M

Context-insensitive analysis

» Produces the same results for all possible invocations of M
independent of possible callers and parameter values.
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Intra- vs. Inter-procedural Analysis

Intra-procedural analysis
» Single function is analyzed in isolation.

» Maximally pessimistic assumptions about parameter values
and results of procedure calls.

Inter-procedural analysis

» Procedure calls are considered.
» Whole program is analyzed at once.
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Data-Flow Analysis

Focus on questions related to values of variables and their lifetime

Selected analyses:
» Available expressions (forward analysis)

» Which expressions have been computed already without
change of the occurring variables (optimization) ?

» Reaching definitions (forward analysis)

» Which assignments contribute to a state in a program point?
(verification)

» Very busy expressions (backward analysis)

» Which expressions are executed in a block regardless which
path the program takes (verification) ?

» Live variables (backward analysis)

» Is the value of a variable in a program point used in a later part
of the program (optimization) ?

o< 10
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A Simple Programming Language

» Arithmetic expressions:

a ==x|n|a;opg a
» Arithmetic operators: op, € {+, —,*,/}

» Boolean expressions:
b := true | false |not b | byopy b,| a,0p, a,
» Boolean operators: op,, € {and, or}
» Relational operators: op, € {=,<, <, >, =, #}
» Statements:
S::=[x:=a]'| [skip]'| S1; S2 | if [b]' S1 else S2 | while [b]'S

» Note this abstract syntax, operator precedence and grouping
statements is not covered. We can use { and } to group
statements, and ( and ) to group expressions.
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Computing the Control Flow Graph

» To calculate the CFG, we define some functions on the abstract
syntax S :
Y N , init([x ==a]') =1
> The initial label (entry point)  ;; ([skip)t) = |
init: S — Lab init (Sy;S,) = init (S;)

init (if [b]' {S;} else {S,} =1
init (while [b]' {S} =1

» The final labels (exit points)  final([x = al’) = {1}

. final ([skip]') = {1}
final: S — P(Lab) final (S1;S,) = final (S,)

final(if [b]' { Si}else {S,})
= final (5;) U final (S,)
final(while [b]' {S} ) = {1}

» The elementary blocks blocks([x = a]') = {[x = a]"}
blocks: S — P(Blocks) where blocks([skip]') = { [skip]}
an elementary block is an blocks(Sy; Sz) = blocks(Sy) U blocks(S,)
) blocks(if [b]' {S;} else {S,})
ass_lgnment [x:= a], or = {[b]' } U blocks(S;) U blocks(S,)
[skip], or a test [b] blocks(while [b]! {S}) = {[b]'} U blocks(S)
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Computing the Control Flow Graph

» The control flow flow: S - P(Lab X Lab)
and reverse control flowR:S - P(Lab X Lab)

flow ([x =a]') =0

flow ([skip]l) =0

flow (S1;S,) = flow (51) U flow (S,) U {(l,init(S,)) |l € final(S;)}

flow (if [b]' {S,} else {S;} ) = flow (S1) U flow(S,) U {(l, init(Sy)), (L, init(S;))}
flow (while ([b]* {S} ) = flow(S) U {(L, init ($))} U {(l',D|I' € final(S)}

flow®($) ={(",DI (L,1") € flow(S)}

» The control flow graph of a program S is given by
» elementary blocks block(S) as nodes, and
> flow(S) as vertices.

» Additional useful definitions

labels(S) = {l | [B]* € blocks(S)}
FV(a) =freevariablesina
Aexp(S) = non-trival subexpressions in S (variables and constants are trivial)
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An Example Program

P = [x:=a+b]!; [y := a*b]%; while [y > a+b]? { [a:=a+1]4; [x:= a+b]® }

1
init(P) =1 X:=a+b
final(P) = {3} l
blocks(P) = yi=a b2

{ [x:=a+b]!, [y := a*bl? [y > a+b]3, [a:=a+1]4, [x:= a+b]°} ' |
flow(P) ={(1, 2), (2, 3), (3, 4), (4, 5), (5, 3)} i)

flowR(P) ={(2, 1), (3, 2), (4, 3), (5, 4), (3, 5)} y>a+b —
labels(P)={1, 2, 3, 4, 5)

FV(a+b) ={a, b} a=a+1 )

FV(P) ={a, b, x vy}

Aexp(P) = {a+b, a*b, a+1} l
X:=a+b >

S g o
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Program Analysis CFG : General Idea

1 5 Locally for each statement:
in

Relationship between P,, and P, :

kill
Statement @

gen + Kill : part of P, that is invalidated by ®
- gen: additional part that is generated by ®

P.,.=(P.\ kill)Ugen

I:)’in
\ v / Globally for each link:

Statement @'

|

We obtain constrains for the P, and P, for all statements and links!
Solve CSP by a constraint solver.

P 'in = U Pout (Or M Pout)
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Available Expression Analysis

» The available expression analysis will
determine for each program point:

which non-trivial expressions have been
already computed in prior statements
(and are still valid)

,Caching of expressions”
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Available Expression Analysis

gen( [x :=a]') { exp € Aexp(a) | x « FV(exp) }

gen( [skip]') = 0
gen([b]') = Aexp(b)
kill( [x :=a]') = {exp cAexp(S) | x € FV(exp) }
kill( [skip]') =@
kill( [b]') = ¢
@, if I € init(S)

AE, (1) =

N {AE,, (") | (I',]) € flow(S)}, otherwise

Aoy (1) = (AE;(D) \ kill(B')) U gen(B'), where B! € blocks(S)

l kill(B) gen(B) l AE,, AE,,

1 0 {a+b) 1 ¢ {a+h}

2 1) {a*b} 2 {a+b} {a+b, a*b}

3 ¢ {a+b} 3 {a+b} {a+b}

4 {atb, a*b, a+1} 1) 4 {a+b} 1)

5 0 {a+b} 5 0 {a+b}
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Reaching Definitions Analysis

» Reaching definitions (assignment)
analysis determines if:

» An assignment of the form [x ;= a]
reaches a program point k

if there is an execution path where
x was last assigned at / when the
program reaches k
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Reaching Definitions Analysis

gen([x:=a]')={(x,D} kill( [skip]') =@

kill([b]') = @

kill( [x :=a]') =
{(x,D}U{(x, k)| B* is an assigment in S}

gen( [skip]') = @
gen([b]') =9

{(x,?2) | x € FV(S)} ifl € init(S)

RD,(1)=
U {RD,,.(1NI',D} € flow(S) otherwise

RD,yc (1) = (RDyw (D) \ kill(BY)) U gen(B') where B' € blocks(S)
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Live Variables Analysis

» A variable x is live at some program point
(label /) if there exists if there exists a path

from / to an exit point that does not
change the variable

» Live Variables Analysis determines:

» for each program point, which

variables may be still live at the
exit from that point.

» Application: dead code elemination.
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Live Variables Analysis

gen([x:=a]') = FV(a) kill( [x :=a] ") = {x} S:
gen( [skip] ) = @ Kill( [skip] ) = @
gen( [b]) = FV(b) kill([b]) = @ =
@ ifl € final(S) ‘L

I—Vout( [ ) - =

U {LV,, (DI, D € flowR(S)} otherwise l
LV, (1) = (LVoue (D \ kill(BY) ) U gen(BY) where B' € blocks(S) I
I Kill(BY) gen8) | |z LV, LV y>X
1 {x} ® 1 0 ? /\
2 {v} 0] 2 @ {v}
3 {x} ® 3 v} {x, y} 2:=yy
4 0] {x, v} 4 {x, y} {y} \/
5 {z} {v} 5 {y} {z} .
6 {z} {v} 6 {y} {z}
7 {x} {z} 7 {z} 0)
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First Generalized Schema

EV ifl€E

» Analysis. (/) =
o{Analysis, (/') |(I’,1) € Flow(S)} otherwise

Analysis. (1)
» Analysis, (/)= fi (Analysis.(/)) l
fi
With: Analysis, (1)

» EV is the initial / final analysis information
» E iseither {init(S)} or final(S)

Analysis. ( I*)

» O iseitherUor()

o fi
» Flow is either flow or flowR
» f, is the transfer function associated with B' € blocks(S)

Forward analysis: Flow = flow, e=0UT, .=IN
Backward analysis: Flow = flow?, e=IN, .=0UT
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Partial Order

» [ = (M,E) is a partial order iff /r

> Reflexivity: Vx E M.x C x
» Transitivity: VX, y,ZEM.xEyAyCEz=>xCEz \/

» Anti-symmetry: Vx,yEM.xXEyAyEx>x=Yy
» Let L = (M,E) be a partial order, Sc M

» y e MisupperboundforS(SEy)iff VxeS.xEy T
» ye Mislower bound forS(yES) iff vxeS.yEx

» Least upper bound LIX € Mof X € M: / \
XCUX AVYEM.XCy = UXCy /
» Greatest lower bound N X of X © M: \

NMXEXAVyEM.yEX >yE NX

- U
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Lattice
A lattice (“Verband”) is a partial order L = (M, E) such that
(1) uXand nXexistforallX cL

(2) Unique greatest element T =L
(3) Unique least element 1l=nL

(1) Alternatively (for finite M), binary operators U and n (“meet”
and “join”) such that

x,yExUyandxnNyEx,y
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Transfer Functions

» Transfer functions to propagate information along the execution
path (i.e. from input to output, or vice versa)

» Let L = (M, E) be a lattice. Let F be the set of transfer functions of
the form

f;: M — Mwith [ being a label

» Knowledge transfer is monotone
» Vx,y. xEy= fi(x) E fi(y)

» Space F of transfer functions
» F contains all transfer functions  f;
» F contains the identity function id Vvx € M. id(x) = x
» F is closed under composition Vf,geF. (gof)EF
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The Generalized Analysis

» Analysis.( /)= U {Analysis, (1) | (I']) € F}u {i}

. ifle E
with ¢ = ¢ !
'E {J_ otherwise

» Analysis, (1) = fi( Analysis.( 1))

With:

» M property space representing data flow information
with (M,E) being a lattice

» A space F of transfer functions f;
and a mapping f from labels to transfer functions in F
» Fis a finite flow (i.e. flow or flow®)

» ¢ is an extremal value
for the extremal labels E (i.e. {init(S)} or final(S))
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Instances of Framework

M P(AEXxpr) P(Var x L) P(Var)

c 2 C -

L M U U

L AExpr 0 0

0 {(x, ?) | x € FV(S)} 0

E {init(S)} {init(S) } final(S)

F  flow(S) flow(S) flowR(S)
F {f:M >M[| 3 m, my f(m)=(mM\my)Umg}

f, f,(m) = (m\kill(BY) ) U gen(B?) where B’ e blocks(S)
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Limitations of Data Flow Analysis

» The general framework of data flow analysis treats all
outgoing edges uniformly. This can be a problem if
conditions influence the property we want to analyse.

» Example: show no division by 0 can occur.
» Property space:
> My = {1,{0},{1},{0,1}} (ordered by inclusion)
» M = Loc —» M, (ordered pointwise)
» app,(t) € M, ,approximate evaluation” of tunderoc e M
» condys(b) € M strengthening of o € M under condition b
> gen[x = a] = alx » apps(a)]
» Kill needs to distinguish wether cond’n holds:
kill[b]iaf = cond,(b) kill[b]t"e™ = cond (! b)
» This leads us to abstract interpretation.
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Program Analysis for Information Flow
Control

Confidentiality as a

property of dependencies: -+ 53:06:23...

>

s AR g

» The GPS data 53:06:23 N 8:51:08 O is confidential.

» The information on the GPS data must not leave Bob's mobile phone
> Firstidea: 53:06:23 N 8:51:08 O does not appear (explicitly) on the output
line.

» too strong, too weak
» Instead: The output of Bob's smart phone does not depend on the GPS

setting
» Changing the location (e.g. to 53:06:29 N 8:51:04 O ) will not change the

observed output of Bob’s smart phone

Note: Confidentiality is formalized as a notion of dependability.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -31-



Confidentiality as Dependability

Confidential action:

change location (from 53:06:23 N 8:51:08 O) to 53:06:29 N 8:51:04 O

\ 3 A

... 53:06:29... (/?@! i Insecure system:
» S ¢ | 2 output 53:06:29 depends
J on GPS data

Secure System:

.. 53:06:23...
output 53:06:23 does not depend kf? 2 -
on GPS data SQ
Systeme hoher Sicherheit und Qualitat, WS 17/18 -32- F:I @




Program Slicing

» Which parts of the program compute the message ?
» Do these parts contain GPS data ?
» If yes: GPS data influence message (data leak)
» If no: message is independent of GPS data

» Program Dependence Graph
» Nodes are statements and conditions of a program
» Links are either
Control dependences (similar to CFQG)

Data flow dependences
(connecting assignment with usage of variables)
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Example

—> Control dependences sum := 0;
---------------- > Data flow dependences i=1;
while i <10 {
sum :=sum + i;
entry | ‘= | + 1

sum:=0 i:=1 s> While i < 10w,

exit(sum)
A

=y
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Backward Slice

» Let G be a program dependency graph and

» S be subset of nodes in G

»let n=m:==n _M VvV n m,

» Then, the backward slice BS(G, S) is a graph G’ with
» NG)={n|neNGAIdmeS.n="m}

» E(G)={n m|n mec E(G)A n, meNG)}U
inTm|n “MeEG) AN mMeNG)}

......... > >

» Backward slice BS(G, S) computes same values for variables
occurring in S as G itself
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Example

——> Control dependences sum :=0;
---------------- > Data flow dependences i:=1;
while i <10
sum :=sum + i

entry - =0+ 1

sum =0 ‘ i _1 ) Wh||e i <10, -

BS:

=1

while i <10{
=1+ 1

}
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Summary

» Static Program Analysis is the analysis of run-time behavior of
programs without executing them (sometimes called static testing)

» Approximations of program behaviors by analyzing the program'’s
CFG

» Analysis include

» available expressions analysis

» reaching definitions

» live variables analysis

» program slicing
» These are instances of a more general framework
» These techniques are used commercially, e.g.

» Absint aiT (WCET)

» Astrée Static Analyzer (C program safety)
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Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards
03: The Software Development Process

04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with OCL

07: Testing

08: Static Program Analysis

09: Software Verification with Floyd-Hoare Logic
10: Correctness and Verification Condition Generation
11-12: Model Checking

13: Conclusions
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Software Verification in the Development Cycle
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specification speclflcatmn - software
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E/E/PES Software (components, subsystems
architecture - an:hﬂa-::tura -------------------------------- and programmable
electronics)
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Module
testing
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Software Verification

» Software Verification proves properties of programs. That is,
given the basic problem of program P satisyfing a property p
we want to show that for all possible inputs and runs of P,
the property p holds.

» Software verification is far more powerful than static
analysis. For the same reasons, it cannot be fully automatic

and thus requires user interaction. Hence, it is complex to
use.

» Software verification does not have false negatives, only
failed proof attempts. If we can prove a property, it holds.

» Software verification is used in highly critical systems.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -4 -




The Basic ldea

» What does this program compute? == %
» The index of the maximal element while (i < n){
of the array a if it is non-empty. if (a[i] = a[x]) {
X =1
. }
?
» How to prove it: =1+ 1:
(1) We need a language in which to )
formalise such assertions.
(2) We need a notion of meaning Formalizing correctness:
(semantics) for the program. | array(am) An> 0 =
(3) We need to way to deduce valid a[x] = max(a,n)
assertions.
Vio<i<n=
ali] < max(a, n)
» Floyd-Hoare logic provides us with (1) 3j.0<j<n=
and (3). afj] = max(a, n)
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Recall our simple programming language

» Arithmetic expressions:
a =x|nlailaz]|as opg a;
» Arithmetic operators: op, € {+, —,*,/}

» Boolean expressions:
b := true | false |[not b | byopy by| a,0p, a,
» Boolean operators: op, € {and, or}
» Relational operators: op, € {=,<, <, >, =, #}
» Statements:
S:=x:=a|skip|S1;S2|if (b) S1 else S2 | while (b) S

» Labels from basic blocks omitted, only used in static
analysis to derive cfg.

» Note this abstract syntax, operator precedence and
grouping statements is not covered.
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Semantics of our simple language

» The semantics of an imperative language is state transition:
the program has an ambient state, which is changed by
assigning values to certain locations.

» Example:
X | ? X | 5 X | 5 X | 6
X:=5 Z:=X+y X:=x+1
y | 12 >y | 12 >y | 12 >y | 12
z | ? z | ? z |17 z |17
o o, = 0o[x/5] o, =04[2/17] 03 = 0,[X/6]
= o[Xx/5, z/17] = o[x/6, z/17]

» Semantics in a nutshell:
Expressions evaluate to values Val (for our language integers).

Locations Loc are variable names.
A program state maps locations to values: £ = Loc — Val
A program maps an initial state to a final state, if it terminates.

Assertions are predicates over program states.
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Semantics in a nutshell
» There are three major ways to denote semantics.

(1) As a relation between program states, described by an
abstract machine (operational semantics).

(2) As a function between program states, defined for each
statement of the programming langauge (denotational
semantics).

(3) As the set of all assertions which hold for a program
(axiomatic semantics).

» Floyd-Hoare logic covers the third aspect, but it is important
that all three semantics agree.
» We will not cover semantics in detail here, but will
concentrate on how to use Floyd-Hoare logic to prove

correctness.
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Extending our simple language

» We introduce a set Var of logical variables.

» Assertions are boolean expressions, which may not be
executable, and arithmetic expressions containing logical
variables.

» Arithmetic assertions
ae :=x|X|n|aeilaey]|ae; op, ae, | f(aeq,...,ae,)
» where x € Loc,X € Var,op, € {+,—,%,/}

» Boolean assertions:
be := true | false |not be | be,op, be,| ae,op, ae,
| p(aeq, ..., ae,)| VX.be | 3X.be
» Boolean operators: op, € {AV, =}
» Relational operators: op, € {=,<, <, >, =, #}
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Floyd-Hoare Triples E

Program c

The basic build blocks of Floyd-Hoare logic are
Hoare triples of the form {P}c {Q}. ‘ Q

» P, Q are assertions using variables in Loc and Var
» e.g. x<5+y, Odd(x), ...

> A state o satisfies P (written o E P) iff P[°?™®/,] is true for all
x € Loc and all possible values for X € Var:

> e.g. let X |5
g=|Yy|12| thenosatisfiesx <5+y, Odd(x)
z | 17

» A formula P describes a set of states, i.e. all states that satisfy
the formula P.
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Partial and Total Correctness

» Partial correctness: = {P}c{Q}

» cis partial correct with precondition P and postcondition
Q iff, for all states o which satisfy P and for which the
execution of ¢ terminates in some state ¢’ then it holds
that ¢’ satisfies Q.

Vo.c EPA3o'.{o,c) >0 = EQ

» Total correctness: = [P]c[Q]

» c is total correct with precondition P and postcondition Q
iff, for all states o which satisfy P the execution of c
terminates in some state ¢’ which satisfies Q.

l.e Vo.o EP = 30'.{(0, c)>d" Ad" EQ

» Examples: & {true}while(true) skip {true},
¥ [true] while(true)skip [true]
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Reasoning with Floyd-Hoare Triples

» How do we know that = {P}c{Q} in practice ?

» Calculus to derive triples, written as + {P}c{Q}

» Rules operate along the constructs of the programming
language (cf. operational semantics)

» Only one rule is applicable for each construct (!)
» Rules are of the form

F {P1}ci{Q1}, oo, F {P)cn{Qn}
- {P}c {Q}

meaning we can derive + {P}c{Q} if all - {P;}c;{Q;} are
derivable.
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Floyd-Hoare Rules: Assignment

» Assignment rule:

= {P[/x]} x = e {P}

» P[¢/x] replaces all occurrences of the program variable x by
the arithmetic expression e.

» Examples:
» {0 < 10} x:= 0{x < 10}
> |—{\x— 1 < 19}x:= x —1{x < 10}

X <11

»F{x+1+x+1<10}x:=x+ 1{x + x < 10}
\ ;

|
X+X<8
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Rules: Sequencing and Conditional

» Sequence:
- P} {Q) F1Q} ¢z {R}
- {P} c1;¢2 {R}

» Needs an intermediate state predicate Q.

» Conditional:

F{PAb}c, {Q} +{PA=b}c,{Q}
- {P} if(b) c,else c, {Q}

» Two preconditions capture both cases of b and — b.

» Both branches end in the same postcondition Q.
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Rules: Iteration and Skip

- {P A b} c{P}
- {P} while (b) c {P A = b}
» P is called the loop invariant. It has to hold both before and
after the loop (but not necessarily in the whole body).

» Before the loop, we can assume the loop condition b holds.
» After the loop, we know the loop condition b does not hold.

» In practice, the loop invariant has to be given- this is the
creative and difficult part of working with the Floyd-Hoare
calculus.

- {P} sKkip {P}
» skip has no effect: pre- and postcondition are the same.
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Final Rule: Weakening

» Weakening is crucial, because it allows us to change pre- or
postconditions by applying rules of logic.

P,=P  +F{P}c{Q} @1=0;
- {P;} c{Q2}
» We can weaken the precondition and strengthen the
postcondition:

» E {P}c{Q} means whenever c starts in a state in which P
holds, it ends in a state in which Q holds. So, we can
reduce the starting set, and enlarge the target set.

C+)
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How to derive and denote proofs

/1 {P}
/1 {P;}
X.= e,
I/ {P,}
/1 {P5}
while (x< n) {
/[l {P3 ANx <n}
I/ {Ps}
Z.=4d
/1 {P5}
}
/1 {P3 A =(x <n)}
/1{Q}

Systeme hoher Sicherheit und Qualitat, WS 17/18

» The example shows  {P}c{Q}

» We annotate the program with valid
assertions: the precondition in the
preceding line, the postcondition in
the following line.

» The sequencing rule is applied
implicitly.
» Consecutive assertions imply

weaking, which has to be proven
separately.

» In the example:
P=r,
P, = Ps,
P;Ax <n= P,
P3 N —|(X < Tl) = Q

=l Y



More Examples

p=1 —
¢ =1 : hile (0 <
while (c < n) { while (0 < n) {
— : p=p*n;
p:=p*cC —n—1
c:=c+1 n=n
) }
Specification: Specification:
F{1<n} F{l1<nAn=N}
P Q
{p=nl!} {p=NIj
Invariant: Invariant:
p=(c—1)! N
p=| [
i=n+1
Systeme hoher Sicherheit und Qualitat, WS 17/18 -18 -

while (b <r){
r:=r—b;
qQq=q+1
}

Specification:
F{a=0Ab=>0}
R
{fa=bx*xq+rA
0<rAr<b}

Invariant;
a=bxq+rAO0<r

U



How to find invariants

» Going backwards: try to split/weaken postcondition Q into
negated loop-condition and ,something else” which becomes
the invariant.

» Many while-loops are in fact for-loops, i.e. they count
uniformly:
i:=0;
while (i < n) {
=10+ 1
}

» |n this case:
» If post-condition is P(n), invariantis P(i) Ai < n.

» If post-condition is Vj.0 < j < n.P(j) (uses indexing,
typically with arrays), invariantis Vj.j < 0 <i.i < n A P(j).
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Summary

» Floyd-Hoare-Logic allows us to prove properties of programs.
» The proofs cover all possible inputs, all possible runs.
» There is partial and total correctness:

» Total correctness = partial correctness + termination.

» There is one rule for each construct of the programming
language.

» Proofs can in part be constructed automatically, but iteration
needs an invariant (which cannot be derived mechanically).

» Next lecture: correctness and completeness of the rules.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -20 - ' - :I @



Systeme hoher Sicherheit und Qualitat
Universitat Bremen, WS 2017/2018

Lecture 10:

Verification Condition Generation

Christoph Luth, Dieter Hutter, Jan Peleska

@ Universitat Bremen



Frohes Neues Jahr!

Systeme hoher Sicherheit und Qualitat, WS 17/18 -2-



Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards
03: The Software Development Process

04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with OCL

07: Testing

08: Static Program Analysis

09: Software Verification with Floyd-Hoare Logic
10: Correctness and Verification Condition Generation
11-12: Model Checking

13: Conclusions
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VCG in the Development Cycle
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Introduction

» In the last lecture, we introduced Hoare triples. They allow us
to state and prove correctness assertions about programs,
written as {P} p {Q}

» We introduced two notions, namely:

» Syntactic derivability, - {P} p {Q} (the actual Floyd-Hoare
calculus)

» Semantic satisfaction, & {P} p {Q}
» Question: how are the two related?

» The answer to that question also offers help with a practical
problem: proofs with the Floyd-Hoare calculus are
exceedingly long and tedious. Can we automate them, and
how?
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Correctness and Completeness

» In general, given a syntactic calculus with a semantic
meaning, correctness means the syntactic calculus implies
the semantic meaning, and completeness means all
semantic statements can be derived syntactically.

» Cf. also Static Program Analysis

» Correctness should be a basic property of verification calculi.

» Completeness is elusive due to Godel's first incompleteness
theorem:

» Any logics which is strong enough to encode the natural
numbers and primitive recursion® is incomplete.**
* Or any other notion of computation.
** Or inconsistent, which is even worse.
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Correctness of the Floyd-Hoare calculus

Theorem (Correctness of the Floyd-Hoare calculus)
If = {P}p {Q}, then = {P} p {Q}.

» Proof: by induction on the derivation of + {P} p {Q}.
» More precisely, for each rule we show that:

» |f the conclusion is + {P} p {Q}, we can show & {P} p {0}
» For the premisses, this can be assumed.
» Example: for the assignment rule, we show that
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Completeness of the Floyd-Hoare calculus

» Predicate calculus is incomplete, so we cannot hope F/H is
complete. But we get the following:

Theorem (Relative completeness)

If = {P}p{0Q}, then - {P} p {Q} except for the proofs
occuring in the weakenings.

» To show this, we construct the weakest precondition.

Weakest precondition

Given a program c and an assertion P, the weakest

precondition wp(c, P) is an assertion W such that

1. W is avalid precondition = {W} c {P}

2. And it is the weakest such: for any other Q such
that = {Q}c{P},IW - Q

Systeme hoher Sicherheit und Qualitat, WS 17/18
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Constructing the weakest precondition

» Consider a simple program and its verification:

{x=XANy=Y}
<
{y=YAx=X}
z 1= y;
{Z=Y/\x=X}
X;
YAy =X}
z,

{
X
{x=Y Ay =X}

» Note how proof is constructed backwards systematically.

» The idea is to construct the weakest precondition inductively.

» This also gives us a methodology to automate proofs in the
calculus.
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Constructing the weakest precondition

» There are four straightforward cases:

(1)wp(skip,P) = P

(2)wp(X :=e,P) =P [e/X]

(3) wp(co; €1, P) = wp(co, wp(cy, P))

(4)wp(if b {co} else ¢}, P) = (b Awp(co,p)) V (= b Awp(cy, P))
» The complicated one is iteration (unsurprisingly, since it is the

source of the computational power and Turing-completeness
of the language). It can be given recursively:

(5)wp(while b {c},P) = (=bAP)V Wp(c, wp (while b {c}, P))

» A closed formula can be given, but it can be infinite and is not
practical. It shows the relative completeness, but does not give
us an effective way to automate proofs.

» Hence, wp(c, P) is not effective for proof automation, but it
shows the right way: we just need something for iterations.
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Verification Conditions: Annotations

» The idea is that we have to give the invariants manually by
annotating them.

» We need a language for this:

» Arithmetic expressions and boolean expressions stays as
they are.

» Statements are augmented to annotated statements:
Su=x:=a|skip|S1;S2|if (b) S1 elseS2
| assert P | while (b) invP S
» Each while loop needs to its invariant annotated.

This is for partial correctness, total correctness also
needs a variant: an expression which is strictly
decreasing in a well-founded order such as (<, N)
after the loop body.

» The assert statement allows us to force a weakening.
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Preconditions and Verification Conditions

» We are given an annotated statement ¢, a precondition P and
a postcondition Q.

» We want to know: when does & {P} c {Q} hold?

» For this, we calculate a precondition pre(c, Q) and a set of
verification conditions vc(c, Q).

» The idea is that if all the verification conditions hold, then
the precondition holds:

N\ R=Fprecic(@

Revc(c, Q)
» For the precondition P, we get the additional weaking
P = pre(c, Q).
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Calculation Verification Conditions

» Intuitively, we calculate the verification conditions by stepping
through the program backwards, starting with the
postcondition Q.

» For each of the four simple cases (assignment, sequencing,
case distinction and skip), we calculate new current
postcondition Q

» At each iteration, we calculate the precondition R of the loop
body working backwards from the invariant I, and get two
verification conditions:

» The invariant I and negated loop condition implies Q.
» The invariant I and loop condition implies R.
» Asserting R generates the verification condition R = Q.

» Let's try this.
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Example: deriving VCs for the factorial.

{0<=n}

{1=01-1N&& (1-1)<=n}
p:=1,
{p==>1-1)&&(1-1)<=n}

c.=1;
{p=(c-1)&&(c-1)<=n}
while (c <=n)
inv (p == (c-1)! && ¢-1 <=n) {
{p*c==((c+1)-1)! && ((c+1)- 1) <=n}
p:=p*c
{p==(c+1)-1)! && ((c+1)- 1) <=n}
Cc:.=c+1;
{p==(c-1N&&(c-1)<=n}
}
{p==(c-1)&&(c-1)<=n &&!(c<=n)}
{p=n!}

Systeme hoher Sicherheit und Qualitat, WS 17/18

VCs (unedited):
1. p==(c-1)! && (c- 1) <=n && ! (c <=n)
==> p: n!

2. p==(c-1)N && c-1<=n&&c<=n
==>p* c= ((c+1)-1)! && ((c+1)-1) <=n

3. 0<=n==>1=(1-1)!&& 1-1 <=n

VCs (simplified):
1. p==(c-1)! && (c- 1) <=n && > n
==> p: n!

2. p==(c-1) && c-1<=n&& c<=n
==>p* c= (!

2. p==(c-1)&& c-1<=n&&c<=n
==>C<=n

3. 0<=n==>1=01&& 0 <=n

-14 -
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Formal Definition

» Calculating the precondition:
pre(skip, Q) = Q
pre(X =e,Q) =0Q e/ X]
pre(co; c1,Q = pre(co, pre(cy, Q))
pre(if (b) cy else c,Q) = (b A pre(cy, Q)) v (—| b A pre(cq, Q))
pre(assertR,Q) =R
pre (while (b)inv/ic,Q) =1
» Calculating the verification conditions:
vc(skip,Q) = 0@
ve(X =e,0Q0)=0
ve(co; €1, Q) = ve(cy, pre(cy, Q) Uve(cy, Q)
vc(if (b) cy else c1,Q) = vc(cy, Q) U ve(cq, Q)
vc(while (b) invIc,Q) =vc(c,]) U{IAb = pre(c,1),I A=b = Q}
vc(assertR,Q) = {R = Q}

» The main definition:

veg (P} c{Q}) = (P = pre(c,Q)} U ve(c, Q)
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Correctness of VC

» The correctness calculus is correct: if we can prove all the
verifcation conditons, the program is correct w.r.t to given
pre- and postconditions.

» Formally:

Theorem (Correctness of the VCG calculus)
Given assertions P and Q (with P the precondition and
Q the postcondition), and an annotated program, then

/\ R = E {P} ¢ {0}

Revcg(c, Q)

» Proof: by induction on c.
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Using VCG in Real Life

» We have just a toy language, but VCG can be used in real life.
What features are missing?

» Modularity: the language must have modularity concepts,
e.g. functions (as in C), or classes (as in Java), and we must be
able to verify them separately.

» Framing: in our simple calculus, we need to specify which
variables stay the same (e.g. when entering a loop). This
becomes tedious when there are a lot of variables involved; it
IS more practical to specify which variables may change.

» References: languages such as C and Java use references,
which allow aliasing. This has to be modelled semantically;
specifically, the assignment rule has to be adapted.

» Machine arithmetic: programs work with machine words
and floating point representations, not integers and real
numbers. This can be the cause of insidious errors.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -17 - ' - :I @



VCG Tools

» Often use an intermediate language for VCG and front-ends
for concrete programming languages.

» The Why3 toolset (http://why3.1ri.fr)
» A verification condition generator

» Front-ends for different languages:
C (Frama-Q), Java (defunct?)

» Boogie (Microsoft Research)
» Frontends for programming languages such C, C#, Java.
» VCC - a verifying C compiler built on top of Boogie

» Interactive demo:
https://www.risedfun.com/Vecc/
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https://www.rise4fun.com/Vcc/

VCC Example: Binary Search

» A correct (?) binary search implementation:

#include <limits.h>

unsigned int bin search(unsigned int a [], unsigned int a len, unsigned int key)

{
unsigned int lo= 0;
unsigned int hi= a len;
unsigned int mid;

while (lo <= hi)
{
mid= (lo+ hi)/2;
if (a[mid] < key) lo= mid+1;
else hi= mid;

if (!(lo < a len && a[lo] == key)) lo= UINT MAX;

return lo;

< 1)
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VCC: Correctness Conditions?

» We need to annotate the program.
» Precondition:
» aisanarray of length a len;
» The array a is sorted.
» Postcondition:
» Let r be the result, then:
» if riSUINT MAX, all elements of a are unequal to key;
» if riSNOtUINT MAX, thena[r] == key.
» Loop invariants:
» hiisless-equaltoa len;
» everything ,left” of 1o is less then key;
» everything ,right” of hi is larger-equal to key.
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VCC Example: Binary Search

» Source code as annotated for VCC;

#include <limits.h>
#include <vcc.h>

unsigned int bin search(unsigned int a [], unsigned int a len, unsigned int key)
_(requires \thread local array(a, a len))
_(requires \forall unsigned int i, j; i < j && j < a_len ==> ali] <= a[]j])
__(ensures \result != UINT MAX ==> a[\result] == key)
_(ensures \result == UINT MAX ==> \forall unsigned int i; i < a len ==> a[i] != key)

{
unsigned int lo= O0;
unsigned int hi= a len;
unsigned int mid;

while (lo <= hi)
(invariant hi <= a len)
(invariant \forall unsigned int 1i; i < lo ==> al[i] < key)
(invariant \forall unsigned int 1i; hi <= 1 && 1 < a_len ==>af[i] >= key)

{
mid= (lo+ hi)/2;
if (a[mid] < key) lo= mid+1;
else hi= mid;
}
if (!(lo < a len && a[lo] == key)) lo= UINT MAX;
return 1lo;

< 1)
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Binary Search: the Corrected Program

» Corrected source code:

#include <limits.h>
#include <vcc.h>

unsigned int bin search(unsigned int a [], unsigned int a len, unsigned int key)
_(requires \thread local array(a, a len))
_(requires \forall unsigned int i, j; i < j && j < a_len ==> ali] <= a[]j])
__(ensures \result != UINT MAX ==> a[\result] == key)
_(ensures \result == UINT MAX ==> \forall unsigned int i; i < a len ==> a[i] != key)

{
unsigned int lo= O0;
unsigned int hi= a len;
unsigned int mid;

while (lo < hi)
_(invariant hi <= a len)
_(invariant \forall unsigned int i; i < lo ==> a[i] < key)
_(invariant \forall unsigned int i; hi <= 1 §&& 1 < a_len ==>af[i] >= key)
{
mid= (hi-1lo)/2+ lo;
if (a[mid] < key) lo= mid+1;
else hi= mid;
}
if (!(lo < a len && a[lo] == key)) lo= UINT MAX;
return 1lo;
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Summary

» Starting from the relative completeness of the Floyd-Hoare
calculus, we devised a verification condition generation (vcg)
calculus which makes program verification viable.

» Verification condition generation reduces the question

whether the given pre/postconditions hold for a program to
the validity of a set of logical properties.

» We do need to annotate the while loops with invariants.

» Most of these logical properties can be discharged with
automated theorem provers.

» To scale to real-world programs, we need to deal with
framing, modularity (each function/method needs to be

verified independently), and machine arithmetic (integer
word arithmetic and floating-points).
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Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards
03: The Software Development Process

04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with OCL

07: Testing

08: Static Program Analysis

09: Software Verification with Floyd-Hoare Logic
10: Correctness and Verification Condition Generation
11: Model Checking

12: Tools for Model Checking

13: Conclusions
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Introduction

» In the last lectures, we were verifying program properties with the
Floyd-Hoare calculus (or verification condition generation). Program
verification translates the question of program correctness into a
proof in program logic (the Floyd-Hoare logic), turning it into a
deductive problem.

» Model-checking takes a different approach: instead of directly
working with the (source code) of the program, we work with an
abstraction of the system (the system model). Because we build an
abstraction, this approach is also applicable at higher verification
levels. (It is also complimentary to deductive verification.)

» The key questions are: how do these models look like? What
properties do we want to express, and how do we express and
prove them?
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Model Checking in the Development Cycle

E/E/PES safety Software safety Validation Validation Validated
requirements | requirements i l software
specification speclflcatmn

E/EIPES Software e, :!ul:ls'ﬁiem
architecture - al'l:hl‘lﬂﬂtllrﬂ __________________________ d programmable
electronics)

Software system|------------------- Integration
design testing
|
Module
design B

CODING
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Introduction

» Model checking operates on (abstract) state machines

» Does an abstract system satisfy some behavioral property
e.g. liveness (deadlock) or safety properties

consider traffic lights in Requirement Engineering
Example: “green must always follow red”

» Automatic analysis if state machine is finite
Push-button technology

User does not need to know logic (at least not for the
proof)

» Basis is satisfiability of boolean formula in a finite domain (SAT).
However, finiteness does not imply efficiency - all interesting
problems are at least NP-complete, and SAT is no exception (Cook’s
theorem).
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The Model-Checking Problem

The Basic Question:
Given a model M and property ¢, we want to know if
M E ¢

» What is M? A finite-state machine or Kripke structure.
» What is ¢? Temporal logic
» How to prove it?

» By enumerating the states and thus construct a model

(hence model checking)

» The basic problem: state explosion

Systeme hoher Sicherheit und Qualitat, WS 17/18 -6 - ' - 'J @



Finite State Machine (FSM)

Definition: Finite State Machine (FSM)
A FSM is given by M = (X, I,—) where
« Y Is a finite set of states,
« | CXYIs asetofinitial states, and
e HC Y X XIsatransition relation, s.t. — Is left-total:
Vs€eX.ds' €X.s > s’

» Variations of this definition exists, e.g. no initial states.

» Note there is no final state, and no input or output (this is the
key difference to automata).

» If > is a function, the FSM is deterministic, otherwise it is non-
deterministic.
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Example: A Simple Oven

» The oven has states and operations:
open and close door, turn oven on
and off, warm up, cook, ...

» Operation names are for
decoration purposes only.

» FSM:

Sy cook

warmup
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Questions to ask

We want to answer questions about the system behaviour like

» If the cooker heats, then is the door closed?

» When the start button is pushed, will the cooker eventually
heat up?

» When the cooker is correctly started, will the cooker
eventually heat up?

» When an error occurs, will it be still possible to cook?

We are interested in questions on the development of the
system over time, i.e. possible traces of the system given by a
succession of states.
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Temporal Logic

Expresses properties of possible succession of states

Linear Time Branching Time
= Every momentin time has a = Every momentin time has several
unique successor SuUCCessors
= Infinite sequences of moments = Infinite tree
= Linear Temporal Logic LTL = Computational Tree Logic CTL
! ! ! / 51\
S3 S3 S, S5 S,
v v v / \ l
S S Sc
! ! J i X N
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Kripke Structures

» In order to talk about propositions, we label the states of a FSM with
propositions which hold there. This is called a Kripke structure.

Definition: Kripke structure

Given a set Prop of propositions, then a Kripke structure

is given by K = (Z,1,-,V) where

« Y is a finite set of states,

« | € ¥ is a set of initial states,

« -»C ¥ X X is a left-total transition relation, and

e V:Prop — 2% is a valuation function mapping
propositions to the set of states in which they hold

» Equivalent formulation: for each state, set of propositions which
hold in this state, i.e. V': T — 2FP7op
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Kripke Structure: Example

» Example: Cooker

» Propositions:
» Cooker is starting: S
» Doorisclosed: C
» Cooker is heated: H
» Error occurred: E

» Kripke structure:
> Y= {Sll ...,56}
> I ={s}

> o= {(51; 52): (Sz, SS): (SS! SZ)» (Sl! 53)
(s3,51), (53, 56), (Se, S4), (S4, 54),

(54,53), (S4,51)}
> V(S) = {s3,S5,56}
V(C) = {53154-155!56}1
V(H) = {54}, V(E) = {s2}
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Semantics of Kripke Structures (Prop)

» We now want to define a logic in which we can formalize
temporal statements, i.e. statements about the behaviour of
the system and its changes over time.

» The basis is open propositional logic (PL): negation,
conjunction, disjunction, implication®.

» With that, we define how a PL-formula ¢ holds in a Kripke
structure K at state s, written as K, s E p.

»Let K = (X,1,-,V) be a Kripke structure, s € %, and
¢ a formula of propositional logic, then

» K,sEp if p € Prop and s € V(p)
» K,s E ¢ ifnotK,s E ¢
» K,.seEp, NP, ifK,s=¢;andK,s = ¢,
» K,seE¢p,Vp, IfK,sE¢p,0rK,s = ¢,
* Note implication is derived: ¢; = ¢p,= =, V ¢,
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Linear Temporal Logic

» The formulae of LTL are given as

$ 2=plad|ld APy | PV P,
| Xl G |F ¢l Uy

» X p: in the next moment p holds

~ ~
7 7

» G p: p holds in all moments

>

Propositional formulae
Temporal operators

v

\ 4

\ 4

P P P

» F p: thereis a moment in the future when p will hold

N
7

P

N
7

P

~
7

N N
7 7

N
7

P

N
7

N
7

» p Uq: pholdsin all moments until g holds

~
7

P > P > P
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Examples of LTL formulae

» If the cooker heats, then is the door closed?

G(H - C)
» |s it possible to cook (first starting up, then
heating)?
F(SAXH) :
» Whenever an error occurs, will it still o ¢
be possible to cook? H, ~E
G(E->FSAXH) S door
S close Oopen
door door
S, -C, =S, C, =S, C,
> NO, nee@ to add “H.E “H —E m H —E cook
a transition.

warmup
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Paths in an FSM/Kripke Structure

» A path in an FSM (or Kripke structure) is a sequence of states
starting in one of the initial states and connected by the
transition relation (essentially, a run of the system).

» Formally: for an FSM M = (%,1, —) or a Kripke structure
K =(%1,-,V), a path is given by a sequence s;s,s3 ... € L*
suchthats; €I and s; - s;44.

» For a path p = s;5,5;5 ..., we write

» p; for selecting the i-th element s; and
» p' for the suffix starting at position i, s;5;+15;4+7 ..
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Semantics of LTL in Kripke Structures

Let K = (Z,1,—,V) be a Kripke Structure and ¢ an LTL formula,
then we say K E ¢ (¢ holds in K), if K,s & ¢ for all paths
S = 515,53 ... in K, where:

» K,sEp if p € Prop, s;€ V(p)

» K,s E ¢ ifnotK,s E ¢

» K,.seEp, NP, IfK,s=¢;andK,s = ¢,

» K,seE¢p, Vo, IfK,sE¢p,0rK,s = ¢,

» K,seEX¢ if K,s?> E ¢

» K,s EG ¢ ifK,s"=¢foralln>0

» K,seFd¢ if K,s™ = ¢ forsomen >0
» K,segpUy ifK,s" =y forsomen >0,

and for all i,0 <i <n, we have K, s E ¢
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More examples in the cooker

» Question: does the cooker work?

» Specifically, cooking means that first the door is open, then the
oven heats up, cooks, then the door is open again, and all
without an error.

» c==CAXSAX(HAFAC))AGSE -not quite.

» c=(=CAN-E)NXSAN-EANX(HAN-EANF(=CA =E))) -
better

» So, does the cooker work?
» There is at least one path s.t. ¢ holds eventually.

» This is not F c, which says that all paths must eventually
cook (which might be too strong).

» We cannot express this in LTL; this is a principal limitation.
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Computational Tree Logic (CTL)

» LTL does not allow us the quantify over paths, e.g. assert the
existence of a path satisfying a particular property.

» To a limited degree, we can solve this problem by negation:
instead of asserting a property ¢, we check whether —¢ is
satisfied; if that is not the case, ¢ holds. But this does not
work for mixtures of universal and existential quantifiers.

» Computational Tree Logic (CTL) is an extension of LTL which
allows this by adding universal and existential quantifiers to
the modal operators.

» The name comes from considering paths in the computa-
tional tree obtained by unwinding the transition relation of
the FSM/Kripke structure.
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Computational Tree Logic (CTL)

» The formulae of CTL are given as

b =p|p| P APy | D1V P, Propositional formulae
| AX P |EX ¢ | AG ¢ | EG ¢
| AF ¢ | EF ¢ | ¢4 AU ¢,| ¢p1EU ¢, Temporal operators

» Note that CTL formulae can be considered to be a LTL
formulae with a modality (A or E) added to each temporal
operator.

» Generally speaking, the A modality says the temporal
operator holds for all paths, and the £ modality says it
only holds for all least one path.

» Hence, we do not define a satisfaction for a single path p,
but with respect to a specific state in an FSM.
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Computational Tree Logic CTL

» Specifying possible paths by combination

» Branching behavior / \
All paths: A, exists path: E

» Succession of states in a path / \ l
Temporal operators X, G, F, U ¢ /\ /\

» For example:
» AXp: inall paths the next state satisfies p
» EXp: thereis an path in which the next state satisfies p
» pAUq: inall paths p holds as long as g does not hold
» EFp: thereis an pathin which eventually p holds
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Semantics of CTL in Kripke Structures

For a Kripke structure K = (Z,1,—,V) and a CTL-formula ¢, we
say K = ¢ (¢p holds in K) if K,s = ¢ for all s € I, where K,s = ¢ is
defined inductively as follows (omitting the clauses for
propositional operators p,—, A, V):

» K,s = AX ¢ iff forall s’"withs - s’, we have K,s' & ¢
» K,s EEX ¢ iff forsome s’ withs - s’, we have K,s' E ¢

» K,s E AG ¢ iff for all paths p with p; = s,
we have K,p; E ¢ forall i = 2.

» K,s EEG ¢ iff for some path p with p; =5,
we have K, p; & ¢ for all i = 2.

(continued on next slide)
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Semantics of Kripke Structures (CTL)

Given a Kripke structure K = (£,1,-,V), s € £, ¢ a CTL-formula,
then:

» K,s EAF ¢ iff for all paths p with p; = s,
we have K, p; E ¢ for some i

» K,s=EF¢ iff for some path p with p; =5,
we have K, p; = ¢ for some i

» K,s = ¢ AU ¢ iff for all paths p with p; = s,
thereisiwith K,p; ey andforall j <i,K,p; E ¢

» K,s = ¢ EUY iff for some path p with p; =5,
thereisiwith K,p; vy andforall j <i,K,p; = ¢
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Examples CTL
» If the cooker heats, then is the door closed
AG (=HV 0)

» |t is always possible that the
cooker will eventually warmup. =S, =,

AG (EF (-~H AEX H))

SI _'Cr _'Sr CI _‘S, C, k
-H, E -H, -E < done \ H, —E coo
close open
door doo start
Se reset Sg |, OVEN
S C warmup
TS S, C,
-H, —E -H, —E
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LTL, CTL and CTL*

» CTL is more expressive than LTL, but (surprisingly) there are
also properties we can express in LTL but not in CTL:

» The formula (F¢) — Fy cannot be expressed in CTL

“When ¢ occurs somewhere, then y also occurs
somewhere.”

Not: AF¢p —» AFyY, nor AG(¢p = AF ¢)
» The formula AG (EF¢) cannot be expressed in LTL

“For all paths, it is always the case that there is some
path on which ¢ is eventually true.”

» CTL* - Allow for the use of temporal operators (X, G, F, U)
without a directly preceded path quantifiers (A, E)

» e.g. AGF @ is allowed
» CTL* subsumes both LTL and CTL.
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Complexity and State Explosion

» Even our small oven example has 6 states with 4 labels each.
If we add one integer variable with 32 bits (e.g. for the heat),
we get 232 additional states.

» Theoretically, there is not much hope. The basic problem of
deciding whether a formula holds (satisfiability problem) for
the temporal logics we have seen has the following
complexity:

» LTL without U is NP-complete;
» LTL is PSPACE-complete;
» CTL (and CTL*) are EXPTIME-complete.

» This is known as state explosion.

» But at least it is decidable. Practically, state abstraction is the
key technique, so e.g. for an integer variable i we identify all
states with i < 0, and those with 0 < i.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -26 - . - :I @



Safety and Liveness Properties

» Safety: nothing bad ever happens
» E.g."“xis always not equal 0"
» Safety properties are falsified by a bad (reachable) state

» Safety properties can falsified by a finite prefix of an execution
trace

» Liveness: something good will eventually happen
» E.g."system is always terminating”
» Need to keep looking for the good thing forever

» Liveness properties can be falsified by an infinite-suffix of an
execution trace: e.g. finite list of states beginning with the
initial state followed by a cycle showing you a loop that can
cause you to get stuck and never reach the “good thing”
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Summary

» Model-checking allows us to show to show properties of
systems by enumerating the system’s states, by modelling

systems as finite state machines, and expressing properties
in temporal logic.

» We considered Linear Temporal Logic (LTL) and Computational
Tree Logic (CTL). LTL allows us to express properties of single

paths, CTL allows quantifications over all possible paths of an
FSM.

» The basic problem: the system state can quickly get huge, and
the basic complexity of the problem is horrendous, leading to
so-called state explosion. But the use of abstraction and state
compression techniques make model-checking bearable.

» Next week:
» Practical model-checking (with NuSMV and/or Spin).
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Organisatorisches

Wir bieten an folgenden Terminen mundliche Prufungen an:
» Mi, 07.02.2018
» Do, 15.02.2018
» Mi, 28.02.2018

Anmeldung per Mail beim Veranstalter.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -2- . . :I @



Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards
03: The Software Development Process

04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with OCL

07: Testing

08: Static Program Analysis

09: Software Verification with Floyd-Hoare Logic
10: Correctness and Verification Condition Generation
11: Model Checking

12: Tools for Model Checking

13: Conclusions
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Introduction

» In the last lecture, we saw the basics of model-checking: how to
model systems on an abstract level with FSM or Kripke structures,
and how to specify their properties with temporal logic (LTL and
CTL).

» This was motivated by the promise of “efficient tool support”.

» So how does this tool support look like, and how does it work? We
will hopefully answer these two questions in the following...

» Brief overview:
» An Example: The Railway Crossing.
» Modelchecking with NuSMV and Spin.
» Algorithms for Model Checking.
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The Railway Crossing

Quelle: Wikipedia
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First Abstraction

Train

Gate'fc,'D'l"

S g o
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The Model

States of the car; States of the train:

gate= open gate # clsd gate= clsd

@
5

States of the gate:

train = appr

(oo (¢

train# appr train # lvng
train = lvng
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The Finite State Machine

» The states of the FSM is given by mapping variables

car, train, gate to the domains
Y.q0r = {appr,xing,lvng, away}
Ytrain = {appr, xing, lvng, away}
Ygate = Lopen,clsd}
» Or alternatively, states are a 3-tuples
S € X = Xegr X Ltrain X 2:gate

» The transition relation is given by
(away, away, open) — {(appr, away, open)
(appr, away, open) — (xing, away, open)
(appr, appr, clsd) — (appr, xing, clsd)
(appr, xing, clsd) — {(appr,lvng, clsd)
(appr, lvng, clsd) — (appr, away, open)
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Properties of the Railway Crossing

» We want to express properties such as
» Cars and trains may never cross at the same time.
» The car can always leave the crossing.
» Approaching trains may eventually cross.
» There are cars crossing the tracks.

» The first two are safety properties, the last two are liveness
properties.

» To formulate these in temporal logic, we first need the basic
propositions which talk about the variables of the state.
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Basic Propositions

» The basic propositions Prop are given as equalities over the
state variables:

(car =v) € Prop mitv € X.,,,
(train = v) € Prop Mit v € X qin

(gate = v) € Prop mitv € X4

» The Kripke structure valuation V maps each basic proposition
to all states where this equality holds.
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The Properties

» Cars and trains never cross at the same time:
G—( car = xing A train = xing)

» A car can always leave the crossing:
G (car = xing - F (car = lvng))

» Approaching trains may eventually cross:
G (train = appr — F (train = xing))

» There are cars which are crossing the tracks:
EF (car = xing)

» Not expressible in LTL, F (car = xing) means something stronger.
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Model-Checking Tools: NuSMV2

» NuSMV is a reimplementation of SMV, the first model-checker
to use BDDs. NuSMV2 also adds SAT-based model checking.

» Systems are modelled as synchronous FSMs (Mealy
automata) or asynchronous processes®.

» Properties can be formulated in LTL and CTL.
» Written in C, open source. Latest version 2.6.0 from Oct. 2015.

» Developed by Fondazione Bruno Kessler, Carnegie Mellon
University, the University of Genoa and the University of
Trento.

* This is apparently depreciated now.
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Model-Checking Tools: Spin

» Spin was originally developed by Gerard Holzmann at Bell
Labs in the 80s.

» Systems modelled in Promela (Process Meta Language):
asynchronous communication, non-deterministic automata.

» Spin translates the automata into a C program, which
performs the actual model-checking.

» Supports LTL and CTL.
» Latest version 6.4.7 from August 2017.
» Spin won the ACM System Software Award in 2001,
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Conclusions

» Tools such as NuSMV2 and Spin make model-checking
feasible for moderately sized systems.

» This allows us to find errors in systems which are hard to find
by testing alone.

» The key ingredient is efficient state abstraction.
» But careful: abstraction must preserve properties.
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Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards
03: The Software Development Process

04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with OCL

07: Testing

08: Static Program Analysis

09: Software Verification with Floyd-Hoare Logic
10: Correctness and Verification Condition Generation
11: Model Checking

12: Tools for Model Checking

13: Conclusions
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The Global Picture

Software Development Process —

Software safety Notions of Quality

I. requirements Legal Requirements
specification

E/E/PES safety

. Validation
requirements

testing

Integration testing

snft""'am (components, subsystems
architecture [W--N\Q----"---"-----------s-s---- and programmable

E/E/PES

(5 -

electronics)
' , Testing
Hazard Ana |ySiS Software system|-f---\----------- Integration
design testing
(module)

Program Analysis

/
Model Checking

UML / SysML

- —

Formal Modeling OCL

Verification / VCG

CODING
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Examples of Formal Methods in Practice

» Hardware verification:
» Intel: formal verification of microprocessors (Pentium/i-Core)
» Infineon: equivalence checks (Aurix Tricore)
» Software verification:
» Microsoft: Windows device drivers
» Microsoft: Hyper-V hypervisor (VCC, VeriSoft project)
» NICTA (Aus): L4.verified (Isabelle)
» Tools used in Industry (excerpt):
» Absint tools: aiT, Astree, CompCert (C)
» SPARK tools (ADA)
» SCADE (MatLab/Simulink)
» UPAAL, Spin, FDR2, other model checkers
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Safe and Secure Systems - Uni Bremen

» AG Betriebssysteme - Verteilte Systeme / Verified Systems (Peleska)
» Testing, abstract interpretation
» AG Datenbanksysteme (Gogolla)
» UML, OCL
» AG Modelling of Technical Systems (Ehlers)
» Modeling, decision procedures, synthesis
» AG Rechnerarchitektur / DFKI (Drechsler, Hutter, Luth)
» System verification, model checking, security
» AG Softwaretechnik (Koschke)
» Software engineering, reuse
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Organisatorisches
» Bitte nehmt an der Evaluation auf stud.ip teil!

> Was war euer Eindruck vom Ubungsbetrieb im Vergleich zum
herkdmmlichen Ubungsbetrieb?

» Man lernt mehr - weniger?
» Esist mehr - weniger Arbeit?
» Kommentare in Freitextfeldern bei der stud.ip Evaluation.

» Wir bieten an folgenden Terminen mundliche Prufungen an:
» Mi, 07.02.2018
» Do, 15.02.2018
» Mi, 28.02.2018
Anmeldung per Mail etc.
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Questions*

* Which might be asked in an exam, hypothetically speaking.

@ Universitat Bremen



General Remarks

» The exam lasts 20-30 minutes, and is taken solitary.

» We are not so much interested in well-rehearsed details, but
rather in principles.

» We have covered a lot of material - an exam may well not
cover all of it.

» We will rather go into detail then spend the exam with
well-rehearsed phrases from the slides.

» Emphasis will be on the later parts of the course
(SysML/OCL, testing, static analysis, Floyd-Hoare logic,
model-checking) rather than the first.

» If you do not know an answer, just say so - we can move
on to a different question.
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Lecture 01: Concepts of Quality

» What is quality? What are quality criteria?
» What could be useful quality criteria?

» What is the conceptual difference between ISO 9001 and the
CMM (or Spice)?
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Lecture 02: Legal Requirements

» What is safety?
» Norms and Standards:
» Legal situation
» What is the machinery directive?
» Norm landscape: first, second, third-tier norms

» Important norms: [EC 61508, 1SO 26262, DIN EN 50128,
Do-178B/C, ISO 15408,...

» Risk Analysis:
» What is SIL, and what is for? What is a target SIL?
» How do we obtain a SIL?
» What does it mean for the development?
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Lecture 03: SW Development Process

» Which software development models did we encounter?

» How do the following work, and what are their respective
advantages/disadvantages:

» Waterfall model, spiral model, agile development, MDD,
V-model

» Which models are appropriate for safety-critical systems?
» Formal software development:
» What is it, and how does it work?
» What kind of properties are there, how are they defined?

» Development structure: horizontal vs. vertical, layers and
views
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Lecture 04: Hazard Analysis
» What is hazard analysis for, and what are its main results?
» Where in development process is it used?

» Basic approaches:
» bottom-up vs. top-down (what does that mean?)

» Which methods did we encounter?
» How do they work, advantages/disadvantages?
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Lecture 05: High-level design with SysML
» What is a model (in general, in UML/SysML)?
» What is UML, what is SysML, what are the differences?

» Basic elements of SysML for high-level design:
» Structural diagrams

Package diagram, block definition diagram, internal
block diagram

» Behavioural Diagrams:

Activity diagram, state machine diagram, sequence
diagram
» How do we use this diagrams to model a particular
system, e.g. a coffee machine?
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Lecture 06: Formal Modeling with OCL
» What is OCL? What is used for, and why?
» Characteristics of OCL (pure, not executable, typed)
» What can it be used for?
» OCL types:
» Basic types
» Collection types

» Model types

» OCL logic: four-valued Kleene logic
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Lecture 07: Testing

» What is testing, what are the aims? What can testing achieve,
what not?

» What are test levels (and which do we know)?

» What are test methods?

» What is a black-box test? How are the test cases chosen?
» What is a white-box test?

» What is the control-flow graph of a program?

» What kind of coverages are there, and how are they defined?
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Lecture 08: Static Program Analysis

» What is that? What is the difference to testing?
» What is the basic problem, and how is it handled?

» What does we mean when an analysis is sound/complete?

What is over/under approximation?

» What analysis did we consider? How did they work?

» What are the gen/kill sets?
» What is forward/backward analysis?
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Lecture 09: Floyd-Hoare-Logic

» What is the basic idea, and what are the basic ingredients?
» Why do we need assertions, and logical variables?

» What do the following notations mean:

> E{P}ci0}
> & [P]c 0]
> F P} cil}

» How does Floyd-Hoare logic work?

» What rules does it have?

» How is Tony Hoare's last name pronounced?
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Lecture 10: Verification Cond. Generation

» What do completeness and soundness of the Floyd-Hoare
logic mean? Which of these properties does it have?

» What is the weakest precondition, and how do we calculate it?

» What are program annotations, why do we need them, and
how are they used?

» What are verification conditions, and how are they calculated?
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Lecture 11/12: Model Checking

» What is model-checking, and how is it used? What is the
difference to Floyd-Hoare logic?

» What is a FSM/Kripke structure?
» Which models of time did we consider?
» For LTL, CTL;

» What are the basic operators, when does a formula hold,
and what kind of properties can we formulate?

» Which one is more powerful?
» Are they decidable (with which complexity)?

» Which tools did we see? What are their
differences/communalities?
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Thank you, and good bye.
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