Systeme hoher Sicherheit und Qualitat
Universitat Bremen, WS 2017/2018

Lecture 11:

Model Checking

Christoph Luth, Dieter Hutter, Jan Peleska

@ Universitat Bremen

Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards
03: The Software Development Process

04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with OCL

07: Testing

08: Static Program Analysis

09: Software Verification with Floyd-Hoare Logic
10: Correctness and Verification Condition Generation
11: Model Checking

12: Tools for Model Checking

13: Conclusions

vV v v vV Vv VvV vV Vv VvV Yy

Systeme hoher Sicherheit und Qualitat, WS 17/18 -2- ' - J w

Introduction

» In the last lectures, we were verifying program properties with the
Floyd-Hoare calculus (or verification condition generation). Program
verification translates the question of program correctness into a
proof in program logic (the Floyd-Hoare logic), turning it into a
deductive problem.

» Model-checking takes a different approach: instead of directly
working with the (source code) of the program, we work with an
abstraction of the system (the system model). Because we build an
abstraction, this approach is also applicable at higher verification
levels. (It is also complimentary to deductive verification.)

» The key questions are: how do these models look like? What
properties do we want to express, and how do we express and
prove them?

Systeme hoher Sicherheit und Qualitat, WS 17/18 -3- . - :I @

Model Checking in the Development Cycle

E/E/PES safety Software safety Validation Validation Validated
requirements | requirements i l software
specification speclflcatmn

E/EIPES Software e, :!ul:ls'ﬁiem
architecture - al'l:hl‘lﬂﬂtllrﬂ __________________________ d programmable
electronics)

Software system|------------------- Integration
design testing
|
Module
design B

CODING

2< [

Systeme hoher Sicherheit und Qualitat, WS 17/18 -4 -

Introduction

» Model checking operates on (abstract) state machines

» Does an abstract system satisfy some behavioral property
e.g. liveness (deadlock) or safety properties

consider traffic lights in Requirement Engineering
Example: “green must always follow red”

» Automatic analysis if state machine is finite
Push-button technology

User does not need to know logic (at least not for the
proof)

» Basis is satisfiability of boolean formula in a finite domain (SAT).
However, finiteness does not imply efficiency - all interesting
problems are at least NP-complete, and SAT is no exception (Cook’s
theorem).

Systeme hoher Sicherheit und Qualitat, WS 17/18 -5- ' - J w

The Model-Checking Problem

The Basic Question:
Given a model M and property ¢, we want to know if
M E ¢

» What is M? A finite-state machine or Kripke structure.
» What is ¢? Temporal logic
» How to prove it?

» By enumerating the states and thus construct a model

(hence model checking)

» The basic problem: state explosion

Systeme hoher Sicherheit und Qualitat, WS 17/18 -6 - ' - 'J @

Finite State Machine (FSM)

Definition: Finite State Machine (FSM)
A FSM is given by M = (X, I,—) where
« Y Is a finite set of states,
« | CXYIs asetofinitial states, and
e HC Y X XIsatransition relation, s.t. — Is left-total:
Vs€eX.ds' €X.s > s’

» Variations of this definition exists, e.g. no initial states.

» Note there is no final state, and no input or output (this is the
key difference to automata).

» If > is a function, the FSM is deterministic, otherwise it is non-
deterministic.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -7 - ' - 'J @J)

Example: A Simple Oven

» The oven has states and operations:
open and close door, turn oven on
and off, warm up, cook, ...

» Operation names are for
decoration purposes only.

» FSM:

Sy cook

warmup

Systeme hoher Sicherheit und Qualitat, WS 17/18 -8-

Questions to ask

We want to answer questions about the system behaviour like

» If the cooker heats, then is the door closed?

» When the start button is pushed, will the cooker eventually
heat up?

» When the cooker is correctly started, will the cooker
eventually heat up?

» When an error occurs, will it be still possible to cook?

We are interested in questions on the development of the
system over time, i.e. possible traces of the system given by a
succession of states.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -9- ' - :I @

Temporal Logic

Expresses properties of possible succession of states

Linear Time Branching Time
= Every momentin time has a = Every momentin time has several
unique successor SuUCCessors
= Infinite sequences of moments = Infinite tree
= Linear Temporal Logic LTL = Computational Tree Logic CTL
! ! ! / 51\
S3 S3 S, S5 S,
v v v / \ l
S S Sc
! ! J i X N

Systeme hoher Sicherheit und Qualitat, WS 17/18 -10 - ' - J w

Kripke Structures

» In order to talk about propositions, we label the states of a FSM with
propositions which hold there. This is called a Kripke structure.

Definition: Kripke structure

Given a set Prop of propositions, then a Kripke structure

is given by K = (Z,1,-,V) where

« Y is a finite set of states,

« | € ¥ is a set of initial states,

« -»C ¥ X X is a left-total transition relation, and

e V:Prop — 2% is a valuation function mapping
propositions to the set of states in which they hold

» Equivalent formulation: for each state, set of propositions which
hold in this state, i.e. V': T — 2FP7op

Systeme hoher Sicherheit und Qualitat, WS 17/18 -11 - D . J w

Kripke Structure: Example

» Example: Cooker

» Propositions:
» Cooker is starting: S
» Doorisclosed: C
» Cooker is heated: H
» Error occurred: E

» Kripke structure:
> Y= {Sll ...,56}
> I ={s}

> o= {(51; 52): (Sz, SS): (SS! SZ)» (Sl! 53)
(s3,51), (53, 56), (Se, S4), (S4, 54),

(54,53), (S4,51)}
> V(S) = {s3,S5,56}
V(C) = {53154-155!56}1
V(H) = {54}, V(E) = {s2}

Systeme hoher Sicherheit und Qualitat, WS 17/18

S, =C,
—H, E

close open
door door

Ss

S, C
~H, —E

-12 -

-

—

warmup

ady

Semantics of Kripke Structures (Prop)

» We now want to define a logic in which we can formalize
temporal statements, i.e. statements about the behaviour of
the system and its changes over time.

» The basis is open propositional logic (PL): negation,
conjunction, disjunction, implication®.

» With that, we define how a PL-formula ¢ holds in a Kripke
structure K at state s, written as K, s E p.

»Let K = (X,1,-,V) be a Kripke structure, s € %, and
¢ a formula of propositional logic, then

» K,sEp if p € Prop and s € V(p)
» K,s E ¢ ifnotK,s E ¢
» K,.seEp, NP, ifK,s=¢;andK,s = ¢,
» K,seE¢p,Vp, IfK,sE¢p,0rK,s = ¢,
* Note implication is derived: ¢; = ¢p,= =, V ¢,

Systeme hoher Sicherheit und Qualitat, WS 17/18 -13- ' - :I @

Linear Temporal Logic

» The formulae of LTL are given as

$ 2=plad|ld APy | PV P,
| Xl G |F ¢l Uy

» X p: in the next moment p holds

~ ~
7 7

» G p: p holds in all moments

>

Propositional formulae
Temporal operators

v

\ 4

\ 4

P P P

» F p: thereis a moment in the future when p will hold

N
7

P

N
7

P

~
7

N N
7 7

N
7

P

N
7

N
7

» p Uq: pholdsin all moments until g holds

~
7

P > P > P

Systeme hoher Sicherheit und Qualitat, WS 17/18

~
7

9

~
7

-14 -

~
7

A

U

Examples of LTL formulae

» If the cooker heats, then is the door closed?

G(H - C)
» |s it possible to cook (first starting up, then
heating)?
F(SAXH) :
» Whenever an error occurs, will it still o ¢
be possible to cook? H, ~E
G(E->FSAXH) S door
S close Oopen
door door
S, -C, =S, C, =S, C,
> NO, nee@ to add “H.E “H —E m H —E cook
a transition.

warmup

Systeme hoher Sicherheit und Qualitat, WS 17/18 -15- ' - ;I w

Paths in an FSM/Kripke Structure

» A path in an FSM (or Kripke structure) is a sequence of states
starting in one of the initial states and connected by the
transition relation (essentially, a run of the system).

» Formally: for an FSM M = (%,1, —) or a Kripke structure
K =(%1,-,V), a path is given by a sequence s;s,s3 ... € L*
suchthats; €I and s; - s;44.

» For a path p = s;5,5;5 ..., we write

» p; for selecting the i-th element s; and
» p' for the suffix starting at position i, s;5;+15;4+7 ..

Systeme hoher Sicherheit und Qualitat, WS 17/18 -16 - . - :I @

Semantics of LTL in Kripke Structures

Let K = (Z,1,—,V) be a Kripke Structure and ¢ an LTL formula,
then we say K E ¢ (¢ holds in K), if K,s & ¢ for all paths
S = 515,53 ... in K, where:

» K,sEp if p € Prop, s;€ V(p)

» K,s E ¢ ifnotK,s E ¢

» K,.seEp, NP, IfK,s=¢;andK,s = ¢,

» K,seE¢p, Vo, IfK,sE¢p,0rK,s = ¢,

» K,seEX¢ if K,s?> E ¢

» K,s EG ¢ ifK,s"=¢foralln>0

» K,seFd¢ if K,s™ = ¢ forsomen >0
» K,segpUy ifK,s" =y forsomen >0,

and for all i,0 <i <n, we have K, s E ¢

Systeme hoher Sicherheit und Qualitat, WS 17/18 -17 - ' - :I @

More examples in the cooker

» Question: does the cooker work?

» Specifically, cooking means that first the door is open, then the
oven heats up, cooks, then the door is open again, and all
without an error.

» c==CAXSAX(HAFAC))AGSE -not quite.

» c=(=CAN-E)NXSAN-EANX(HAN-EANF(=CA =E))) -
better

» So, does the cooker work?
» There is at least one path s.t. ¢ holds eventually.

» This is not F c, which says that all paths must eventually
cook (which might be too strong).

» We cannot express this in LTL; this is a principal limitation.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -18 - . - :I @

Computational Tree Logic (CTL)

» LTL does not allow us the quantify over paths, e.g. assert the
existence of a path satisfying a particular property.

» To a limited degree, we can solve this problem by negation:
instead of asserting a property ¢, we check whether —¢ is
satisfied; if that is not the case, ¢ holds. But this does not
work for mixtures of universal and existential quantifiers.

» Computational Tree Logic (CTL) is an extension of LTL which
allows this by adding universal and existential quantifiers to
the modal operators.

» The name comes from considering paths in the computa-
tional tree obtained by unwinding the transition relation of
the FSM/Kripke structure.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -19 - ' - J w

Computational Tree Logic (CTL)

» The formulae of CTL are given as

b =p|p| P APy | D1V P, Propositional formulae
| AX P |EX ¢ | AG ¢ | EG ¢
| AF ¢ | EF ¢ | ¢4 AU ¢,| ¢p1EU ¢, Temporal operators

» Note that CTL formulae can be considered to be a LTL
formulae with a modality (A or E) added to each temporal
operator.

» Generally speaking, the A modality says the temporal
operator holds for all paths, and the £ modality says it
only holds for all least one path.

» Hence, we do not define a satisfaction for a single path p,
but with respect to a specific state in an FSM.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -20 - ' - :I w

Computational Tree Logic CTL

» Specifying possible paths by combination

» Branching behavior / \
All paths: A, exists path: E

» Succession of states in a path / \ l
Temporal operators X, G, F, U ¢ /\ /\

» For example:
» AXp: inall paths the next state satisfies p
» EXp: thereis an path in which the next state satisfies p
» pAUq: inall paths p holds as long as g does not hold
» EFp: thereis an pathin which eventually p holds

Systeme hoher Sicherheit und Qualitat, WS 17/18 -21- ' - :I @

Semantics of CTL in Kripke Structures

For a Kripke structure K = (Z,1,—,V) and a CTL-formula ¢, we
say K = ¢ (¢p holds in K) if K,s = ¢ for all s € I, where K,s = ¢ is
defined inductively as follows (omitting the clauses for
propositional operators p,—, A, V):

» K,s = AX ¢ iff forall s’"withs - s’, we have K,s' & ¢
» K,s EEX ¢ iff forsome s’ withs - s’, we have K,s' E ¢

» K,s E AG ¢ iff for all paths p with p; = s,
we have K,p; E ¢ forall i = 2.

» K,s EEG ¢ iff for some path p with p; =5,
we have K, p; & ¢ for all i = 2.

(continued on next slide)

Systeme hoher Sicherheit und Qualitat, WS 17/18 -22- ' - :I @

Semantics of Kripke Structures (CTL)

Given a Kripke structure K = (£,1,-,V), s € £, ¢ a CTL-formula,
then:

» K,s EAF ¢ iff for all paths p with p; = s,
we have K, p; E ¢ for some i

» K,s=EF¢ iff for some path p with p; =5,
we have K, p; = ¢ for some i

» K,s = ¢ AU ¢ iff for all paths p with p; = s,
thereisiwith K,p; ey andforall j <i,K,p; E ¢

» K,s = ¢ EUY iff for some path p with p; =5,
thereisiwith K,p; vy andforall j <i,K,p; = ¢

Systeme hoher Sicherheit und Qualitat, WS 17/18 -23- ' - J w

Examples CTL
» If the cooker heats, then is the door closed
AG (=HV 0)

» |t is always possible that the
cooker will eventually warmup. =S, =,

AG (EF (-~H AEX H))

SI _'Cr _'Sr CI _‘S, C, k
-H, E -H, -E < done \ H, —E coo
close open
door doo start
Se reset Sg |, OVEN
S C warmup
TS S, C,
-H, —E -H, —E

Systeme hoher Sicherheit und Qualitat, WS 17/18 -24 - . - ;I w

LTL, CTL and CTL*

» CTL is more expressive than LTL, but (surprisingly) there are
also properties we can express in LTL but not in CTL:

» The formula (F¢) — Fy cannot be expressed in CTL

“When ¢ occurs somewhere, then y also occurs
somewhere.”

Not: AF¢p —» AFyY, nor AG(¢p = AF ¢)
» The formula AG (EF¢) cannot be expressed in LTL

“For all paths, it is always the case that there is some
path on which ¢ is eventually true.”

» CTL* - Allow for the use of temporal operators (X, G, F, U)
without a directly preceded path quantifiers (A, E)

» e.g. AGF @ is allowed
» CTL* subsumes both LTL and CTL.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -25 - ' - J w

Complexity and State Explosion

» Even our small oven example has 6 states with 4 labels each.
If we add one integer variable with 32 bits (e.g. for the heat),
we get 232 additional states.

» Theoretically, there is not much hope. The basic problem of
deciding whether a formula holds (satisfiability problem) for
the temporal logics we have seen has the following
complexity:

» LTL without U is NP-complete;
» LTL is PSPACE-complete;
» CTL (and CTL*) are EXPTIME-complete.

» This is known as state explosion.

» But at least it is decidable. Practically, state abstraction is the
key technique, so e.g. for an integer variable i we identify all
states with i < 0, and those with 0 < i.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -26 - . - :I @

Safety and Liveness Properties

» Safety: nothing bad ever happens
» E.g."“xis always not equal 0"
» Safety properties are falsified by a bad (reachable) state

» Safety properties can falsified by a finite prefix of an execution
trace

» Liveness: something good will eventually happen
» E.g."system is always terminating”
» Need to keep looking for the good thing forever

» Liveness properties can be falsified by an infinite-suffix of an
execution trace: e.g. finite list of states beginning with the
initial state followed by a cycle showing you a loop that can
cause you to get stuck and never reach the “good thing”

Systeme hoher Sicherheit und Qualitat, WS 17/18 -27 - ' - J w

Summary

» Model-checking allows us to show to show properties of
systems by enumerating the system’s states, by modelling

systems as finite state machines, and expressing properties
in temporal logic.

» We considered Linear Temporal Logic (LTL) and Computational
Tree Logic (CTL). LTL allows us to express properties of single

paths, CTL allows quantifications over all possible paths of an
FSM.

» The basic problem: the system state can quickly get huge, and
the basic complexity of the problem is horrendous, leading to
so-called state explosion. But the use of abstraction and state
compression techniques make model-checking bearable.

» Next week:
» Practical model-checking (with NuSMV and/or Spin).

Systeme hoher Sicherheit und Qualitat, WS 17/18 -28 -

