Systeme hoher Sicherheit und Qualitat
Universitat Bremen, WS 2017/2018

Lecture 09:
Software Verification
with Floyd-Hoare Logic

Christoph Luth, Dieter Hutter, Jan Peleska

@ Universitat Bremen

Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards
03: The Software Development Process

04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with OCL

07: Testing

08: Static Program Analysis

09: Software Verification with Floyd-Hoare Logic
10: Correctness and Verification Condition Generation
11-12: Model Checking

13: Conclusions

vV v v vV vV Vv vV vV Vv YVYy Yy

Systeme hoher Sicherheit und Qualitat, WS 17/18 -2- ' - J w

Software Verification in the Development Cycle

prned Yyt IR () SO
testin
specification speclflcatmn - software
Integration testing
E/E/PES Software (components, subsystems
architecture - an:hﬂa-::tura -------------------------------- and programmable
electronics)
Software system|-<----=-==========-=- Integration
design testing
(module)

Module
testing

CODING

2< [

Systeme hoher Sicherheit und Qualitat, WS 17/18 -3-

Software Verification

» Software Verification proves properties of programs. That is,
given the basic problem of program P satisyfing a property p
we want to show that for all possible inputs and runs of P,
the property p holds.

» Software verification is far more powerful than static
analysis. For the same reasons, it cannot be fully automatic

and thus requires user interaction. Hence, it is complex to
use.

» Software verification does not have false negatives, only
failed proof attempts. If we can prove a property, it holds.

» Software verification is used in highly critical systems.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -4 -

The Basic ldea

» What does this program compute? == %
» The index of the maximal element while (i < n){
of the array a if it is non-empty. if (a[i] = a[x]) {
X =1
. }
?
» How to prove it: =1+ 1:
(1) We need a language in which to)
formalise such assertions.
(2) We need a notion of meaning Formalizing correctness:
(semantics) for the program. | array(am) An> 0 =
(3) We need to way to deduce valid a[x] = max(a,n)
assertions.
Vio<i<n=
ali] < max(a, n)
» Floyd-Hoare logic provides us with (1) 3j.0<j<n=
and (3). afj] = max(a, n)
Systeme hoher Sicherheit und Qualitat, WS 17/18 -5- ' '.:I @

Recall our simple programming language

» Arithmetic expressions:
a =x|nlailaz]|as opg a;
» Arithmetic operators: op, € {+, —,*,/}

» Boolean expressions:
b := true | false |[not b | byopy by| a,0p, a,
» Boolean operators: op, € {and, or}
» Relational operators: op, € {=,<, <, >, =, #}
» Statements:
S:=x:=a|skip|S1;S2|if (b) S1 else S2 | while (b) S

» Labels from basic blocks omitted, only used in static
analysis to derive cfg.

» Note this abstract syntax, operator precedence and
grouping statements is not covered.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -6 -

DA W

Semantics of our simple language

» The semantics of an imperative language is state transition:
the program has an ambient state, which is changed by
assigning values to certain locations.

» Example:
X | ? X | 5 X | 5 X | 6
X:=5 Z:=X+y X:=x+1
y | 12 >y | 12 >y | 12 >y | 12
z | ? z | ? z |17 z |17
o o, = 0o[x/5] o, =04[2/17] 03 = 0,[X/6]
= o[Xx/5, z/17] = o[x/6, z/17]

» Semantics in a nutshell:
Expressions evaluate to values Val (for our language integers).

Locations Loc are variable names.
A program state maps locations to values: £ = Loc — Val
A program maps an initial state to a final state, if it terminates.

Assertions are predicates over program states.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -7 - ' - 'J @

Semantics in a nutshell
» There are three major ways to denote semantics.

(1) As a relation between program states, described by an
abstract machine (operational semantics).

(2) As a function between program states, defined for each
statement of the programming langauge (denotational
semantics).

(3) As the set of all assertions which hold for a program
(axiomatic semantics).

» Floyd-Hoare logic covers the third aspect, but it is important
that all three semantics agree.
» We will not cover semantics in detail here, but will
concentrate on how to use Floyd-Hoare logic to prove

correctness.
Systeme hoher Sicherheit und Qualitat, WS 17/18 -8- . - :I w

Extending our simple language

» We introduce a set Var of logical variables.

» Assertions are boolean expressions, which may not be
executable, and arithmetic expressions containing logical
variables.

» Arithmetic assertions
ae :=x|X|n|aeilaey]|ae; op, ae, | f(aeq,...,ae,)
» where x € Loc,X € Var,op, € {+,—,%,/}

» Boolean assertions:
be := true | false |not be | be,op, be,| ae,op, ae,
| p(aeq, ..., ae,)| VX.be | 3X.be
» Boolean operators: op, € {AV, =}
» Relational operators: op, € {=,<, <, >, =, #}

Systeme hoher Sicherheit und Qualitat, WS 17/18 -9-

Floyd-Hoare Triples E

Program c

The basic build blocks of Floyd-Hoare logic are
Hoare triples of the form {P}c {Q}. ‘ Q

» P, Q are assertions using variables in Loc and Var
» e.g. x<5+y, Odd(x), ...

> A state o satisfies P (written o E P) iff P[°?™®/,] is true for all
x € Loc and all possible values for X € Var:

> e.g. let X |5
g=|Yy|12| thenosatisfiesx <5+y, Odd(x)
z | 17

» A formula P describes a set of states, i.e. all states that satisfy
the formula P.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -10 - ' - :I @

Partial and Total Correctness

» Partial correctness: = {P}c{Q}

» cis partial correct with precondition P and postcondition
Q iff, for all states o which satisfy P and for which the
execution of ¢ terminates in some state ¢’ then it holds
that ¢’ satisfies Q.

Vo.c EPA3o'.{o,c) >0 = EQ

» Total correctness: = [P]c[Q]

» c is total correct with precondition P and postcondition Q
iff, for all states o which satisfy P the execution of c
terminates in some state ¢’ which satisfies Q.

l.e Vo.o EP = 30'.{(0, c)>d" Ad" EQ

» Examples: & {true}while(true) skip {true},
¥ [true] while(true)skip [true]

Systeme hoher Sicherheit und Qualitat, WS 17/18 -11 - . - :I @

Reasoning with Floyd-Hoare Triples

» How do we know that = {P}c{Q} in practice ?

» Calculus to derive triples, written as + {P}c{Q}

» Rules operate along the constructs of the programming
language (cf. operational semantics)

» Only one rule is applicable for each construct (!)
» Rules are of the form

F {P1}ci{Q1}, oo, F {P)cn{Qn}
- {P}c {Q}

meaning we can derive + {P}c{Q} if all - {P;}c;{Q;} are
derivable.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -12 - . - :I @

Floyd-Hoare Rules: Assignment

» Assignment rule:

= {P[/x]} x = e {P}

» P[¢/x] replaces all occurrences of the program variable x by
the arithmetic expression e.

» Examples:
» {0 < 10} x:= 0{x < 10}
> |—{\x— 1 < 19}x:= x —1{x < 10}

X <11

»F{x+1+x+1<10}x:=x+ 1{x + x < 10}
\ ;

|
X+X<8

Systeme hoher Sicherheit und Qualitat, WS 17/18 -13- ' - :I @

Rules: Sequencing and Conditional

» Sequence:
- P} {Q) F1Q} ¢z {R}
- {P} c1;¢2 {R}

» Needs an intermediate state predicate Q.

» Conditional:

F{PAb}c, {Q} +{PA=b}c,{Q}
- {P} if(b) c,else c, {Q}

» Two preconditions capture both cases of b and — b.

» Both branches end in the same postcondition Q.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -14 - . - :I @

Rules: Iteration and Skip

- {P A b} c{P}
- {P} while (b) c {P A = b}
» P is called the loop invariant. It has to hold both before and
after the loop (but not necessarily in the whole body).

» Before the loop, we can assume the loop condition b holds.
» After the loop, we know the loop condition b does not hold.

» In practice, the loop invariant has to be given- this is the
creative and difficult part of working with the Floyd-Hoare
calculus.

- {P} sKkip {P}
» skip has no effect: pre- and postcondition are the same.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -15 - ' - J w

Final Rule: Weakening

» Weakening is crucial, because it allows us to change pre- or
postconditions by applying rules of logic.

P,=P +F{P}c{Q} @1=0;
- {P;} c{Q2}
» We can weaken the precondition and strengthen the
postcondition:

» E {P}c{Q} means whenever c starts in a state in which P
holds, it ends in a state in which Q holds. So, we can
reduce the starting set, and enlarge the target set.

C+)

Systeme hoher Sicherheit und Qualitat, WS 17/18 -16 - . - :I @

How to derive and denote proofs

/1 {P}
/1 {P;}
X.= e,
I/ {P,}
/1 {P5}
while (x< n) {
/[l {P3 ANx <n}
I/ {Ps}
Z.=4d
/1 {P5}
}
/1 {P3 A =(x <n)}
/1{Q}

Systeme hoher Sicherheit und Qualitat, WS 17/18

» The example shows {P}c{Q}

» We annotate the program with valid
assertions: the precondition in the
preceding line, the postcondition in
the following line.

» The sequencing rule is applied
implicitly.
» Consecutive assertions imply

weaking, which has to be proven
separately.

» In the example:
P=r,
P, = Ps,
P;Ax <n= P,
P3 N —|(X < Tl) = Q

=l Y

More Examples

p=1 —
¢ =1 : hile (0 <
while (c < n) { while (0 < n) {
— : p=p*n;
p:=p*cC —n—1
c:=c+1 n=n
) }
Specification: Specification:
F{1<n} F{l1<nAn=N}
P Q
{p=nl!} {p=NIj
Invariant: Invariant:
p=(c—1)! N
p=| [
i=n+1
Systeme hoher Sicherheit und Qualitat, WS 17/18 -18 -

while (b <r){
r:=r—b;
qQq=q+1
}

Specification:
F{a=0Ab=>0}
R
{fa=bx*xq+rA
0<rAr<b}

Invariant;
a=bxq+rAO0<r

U

How to find invariants

» Going backwards: try to split/weaken postcondition Q into
negated loop-condition and ,something else” which becomes
the invariant.

» Many while-loops are in fact for-loops, i.e. they count
uniformly:
i:=0;
while (i < n) {
=10+ 1
}

» |n this case:
» If post-condition is P(n), invariantis P(i) Ai < n.

» If post-condition is Vj.0 < j < n.P(j) (uses indexing,
typically with arrays), invariantis Vj.j < 0 <i.i < n A P(j).

Systeme hoher Sicherheit und Qualitat, WS 17/18 -19- ' - ;I w

Summary

» Floyd-Hoare-Logic allows us to prove properties of programs.
» The proofs cover all possible inputs, all possible runs.
» There is partial and total correctness:

» Total correctness = partial correctness + termination.

» There is one rule for each construct of the programming
language.

» Proofs can in part be constructed automatically, but iteration
needs an invariant (which cannot be derived mechanically).

» Next lecture: correctness and completeness of the rules.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -20 - ' - :I @

