Systeme hoher Sicherheit und Qualitat
Universitat Bremen, WS 2017/2018

Lecture 07:

Testing

Christoph Luth, Dieter Hutter, Jan Peleska

@ Universitat Bremen

Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards
03: The Software Development Process
04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with OCL

07: Testing

08: Static Program Analysis

09-10: Software Verification

11-12: Model Checking

13: Conclusions

vV v v vV Vv VvV VvV VY

Systeme hoher Sicherheit und Qualitat, WS 17/18 -2- ' - J w

Testing in the Development Cycle

e, 1 || {— | Vit g, Vit
testin
specification speclflcatmn - software
Integration testing
E/E/PES Software (components, subsystems
architecture - an:hﬂa-::tura -------------------------------- and programmable
electronics)

Software system|---------------oc--- Integration
design testing
(module)
Module
design +---1
'y
CODING '*

- p—

Module
testing

Systeme hoher Sicherheit und Qualitat, WS 17/18 -3-

What is Testing?

Testing is the process of executing a program or system with the
intent of finding errors.

G.J. Myers, 1979

» In our sense, testing is selected, controlled program execution
» The aim of testing is to detect bugs, such as

» derivation of occurring characteristics of quality properties
compared to the specified ones

» inconsistency between specification and implementation

» structural features of a program that cause a faulty behavior of
a program

Program testing can be used to show the presence of bugs, but
never to show their absence.

E.W. Dijkstra, 1972

Systeme hoher Sicherheit und Qualitat, WS 17/18 -4 - ' - 'J @J)

The Testing Process

» Test cases, test plan, etc.
» System-under-test (s.u.t.) (cf. TOE in CC)

» Warning -- test literature is quite expansive

Testing is any activity aimed at evaluating an attribute or
capability of a program or system and determining that it meets
its required results.

Hetzel, 1983

Systeme hoher Sicherheit und Qualitat, WS 17/18 -5- ' - 'J @

Test Levels

» Component and unit tests

» test at the interface level of single components (modules,
classes)

» Integration test
» testing interfaces of components fit together

» System test

» functional and non-functional test of the complete
system from the user’s perspective

» Acceptance test
» testing if system implements contract details

Systeme hoher Sicherheit und Qualitat, WS 17/18 -6 - . - :I @

Test Methods

» Static vs. dynamic

» With static tests, the code is analyzed without being run.
We cover these methods as static program analysis later

» With dynamic tests, we run the code under controlled
conditions, and check the results against a given
specification

» Central question: where do the test cases come from?

» Black-box: the inner structure of the s.u.t. is opaque, test
cases are derived from specification only.

» Grey-box: some inner structure of the s.u.t. is known, e.g.
module architecture.

» White-box: the inner structure of the s.u.t. is known, and
tests cases are derived from the source code.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -7 -

Black-Box Tests

» Limit analysis:

» If the specification limits input parameters, then values
close to these limits should be chosen

» Idea is that programs behave continuously, and errors
occur at these limits

» Equivalence classes:

» If the input parameter values can be decomposed into
classes which are treated equivalently, test cases have to
cover all classes

» Smoke test:
» “Run it, and check it does not go up in smoke.”

Systeme hoher Sicherheit und Qualitat, WS 17/18 -8- ' - :I @

Example: Black-Box Testing

» Equivalence classes or limits?

Example: A Company Bonus System

The loyalty bonus shall be computed depending on the time of
employment. For employees of more than three years, it shall be
50% of the monthly salary, for employees of more than five
years, 75%, and for employees of more than eight years, it shall
be 100%.

» Equivalence classes or limits?

Example: Air Bag

The air bag shall be released if the vertical acceleration a,, equals
or exceeds 15 ™/ ,. The vertical acceleration will never be less

than zero, or more than 40 ™/, .

Systeme hoher Sicherheit und Qualitat, WS 17/18 -9. b . :I @J)

Black-Box Tests

» Quite typical for GUI tests, or functional testing

» Testing invalid input: depends on programming language —
the stronger the typing, the less testing for invalid input is
required

» Example: consider lists in C, Java, Haskell

» Example: consider object-relational mappings' (ORM) in
Python, Java

1) Translating e.g. SQL-entries to objects

Systeme hoher Sicherheit und Qualitat, WS 17/18 -10 - ' - J w

Property- based Testing

» In property-based testing (or random testing), we generate
random input values, and check the results against a given
executable specification.

» Attention needs to be paid to the distribution values.

» Works better with high-level languages, where the datatypes
represent more information on an abstract level and where
the language is powerful enough to write comprehensive
executable specifications (i.e. Boolean expressions).

» Implementations for e.g. Haskell, Scala, Java
» Example: consider list reversal in C, Java, Haskell

» Executable spec: reversal is idempotent and distributes
over concatenation.

» Question: how to generate random lists?

Systeme hoher Sicherheit und Qualitat, WS 17/18 -11 - . - :I @

White-Box Tests

» In white-box tests, we derive test cases based on the
structure of the program (structural testing)

» To abstract from the source code (which is a purely
syntactic artefact), we consider the control flow graph of
the program.

Def: Control Flow Graph (CFG)
* nodes as elementary statements (e.g. assignments, return,
break, . ..), as well as control expressions (e.g. in conditionals

and loops), and
* vertices from n to m if the control flow can reach a node m

coming from a node n.

» Hence, paths in the CFG correspond to runs of the program.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -12 - ' - J w

Example: Control-Flow Graph

I
v
2 . .
if (x <0) /*1%/ { l An execution path is
X:= = X [*2%/) a path though the
} l cfg.
z=1; /*3%/
while (x > 0) /*4%/ { ! Examples:
ok e . [1,3,4,7, E]
z=z7y, 757/ : ¢ [1.2,3.4,7, E]
X=x-1 /*6%/ v . [1,2,3,4,5,6,4,7, E]
} 5 - [1,3.4,5,6,4,56,4,7, E]

return z /*7%/

Systeme hoher Sicherheit und Qualitat, WS 17/18 -13- ' . ;I w

Coverage

» Statement coverage.:
Each node in the CFG is visited at least once.

» Branch coverage:
Each vertex in the CFG is traversed at least once.

» Decision coverage:

Like branch coverage, but specifies how often conditions
(branching points) must be evaluated.

» Path coverage:
Each path in the CFG is executed at least once.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -14 - . - :I @

Example: Statement Coverage

» Which (minimal) path
covers all statements?

if (x<0) /*1*/ {

X: ==X /*2*/ p = [,I 12131415161417:E]

}
7=1: [*3%/ » Which state generates p?
while (x > 0) /*4*/ { X = -
z=27%y, [*5%/ y any
X=X-1 /*6%*/ Z any
}

return z /*7%/

Systeme hoher Sicherheit und Qualitat, WS 17/18 -15 -

Example: Branch Coverage

» Which (minimal) path covers
all vertices?
p= [1,2,3,4,5,6,4,7,E]
p, =[1,3,4,7,E]

if (x<0) /*1*/ {
X:= =X /[*2%/

}
z7=1: [*3%/ » Which states generate p,,p,?
while (x > 0) /*4%/ { Pr P2
X -1 0
z=zty; 175 y any any
X=X-1 /*6%/

Z any any
Y

return z /*7%/
urn z » Note p; (x= 1) does not add

coverage.

=y
Systeme hoher Sicherheit und Qualitat, WS 17/18 -16 - . . J w

Example: Path Coverage

» How many paths are there?

if (x <0) /*1%/ { >Llet ¢, =[123]

X:= = X /*2%/ 9z = [1.3]
) p = [4,5,6]
7=1: [*3%/ r = [4,7,E]
while (x> 0) /*4%/ { then all paths are *

S 2y 45 P =(qila) p"r

X=x-1 /*6*/

» Number of possible paths:
|P| =2 - MaxInt — 1

}

return z /*7%/

Systeme hoher Sicherheit und Qualitat, WS 17/18 -17 - . . :I @

Statement, Branch and Path Coverage

» Statement Coverage:
» Necessary but not sufficient, not suitable as only test approach.
» Detects dead code (code which is never executed).
» About 18% of all defects are identified.

» Branch coverage:
» Least possible single approach.

» Detects dead code, but also frequently executed program
parts.

» About 34% of all defects are identified.

» Path Coverage:
» Most powerful structural approach;
» Highest defect identification rate (100%);
» But no practical relevance.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -18 -

Decision Coverage

» Decision coverage is more then branch coverage, but less
then full path coverage.

» Decision coverage requires that for all decisions in the
program, each possible outcome is considered once.

» Problem: cannot sufficiently distinguish Boolean expressions.

» For A|| B, the following are sufficient:
A B Result

false false false

true false true

» But this does not distinguish A || B from A;
B is effectively not tested.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -19 - ' - :I @

Decomposing Boolean Expressions

» The binary Boolean operators include conjunction x Ay,
disjunction x v y, or anything expressible by these (e.g.
exclusive disjunction, implication)

Elementary Boolean Terms
An elementary Boolean term does not contain binary
Boolean operators, and cannot be further decomposed.

» An elementary term is a variable, a Boolean-valued function, a
relation (equality =, orders <, <,>, >, etc.), or a negation of
these.

» This is a fairly syntactic view, e.g. x < y is elementary, but
x < yVx=yisnot, even though they are equivalent.

» In formal logic, these are called literals.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -20 - ' - 'J @

Simple Condition Coverage

» For each condition in the program, each elementary Boolean

term evaluates to True and False at least once

» Note that this does not say much about the possible value of

the condition

» Examples and possible solutions:

C1 c2

True True
True False
False True

False False

if (temperature > 90 && pressure > 120){... }

Result
True
False
False
False

Systeme hoher Sicherheit und Qualitat, WS 17/18

-21 -

v

Modified Condition Coverage

» It is not always possible to generate all possible combi-
nations of elementary terms, e.g. 3 <=x && x<5.

» In modified (or minimal) condition coverage, all possible
combinations of those elementary terms the value of which
determines the value of the whole condition need to be
considered.

» Example:
3<=x&&X<5

False False False < notneeded
False True False
True False False
True True True

» Another example: (x> 1 &&!p) || p

Systeme hoher Sicherheit und Qualitat, WS 17/18 -22- ' - J w

Modified Condition/Decision Coverage

» Modified Condition/Decision Coverage (MC/DC) is required by
DO-178B for Level A software.

» |t is a combination of the previous coverage criteria defined
as follows:

» Every point of entry and exit in the program has been
invoked at least once;

» Every decision in the program has taken all possible
outcomes at least once;

» Every condition in a decision in the program has taken all
possible outcomes at least once;

» Every condition in a decision has been shown to
independently affect that decision’s outcome.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -23- ' - :I @

How to achieve MC/DC

» Not: Here is the source code, what is the minimal set of test
cases?

» Rather: From requirements we get test cases, do they
achieve MC/DC?

» Example:
» Test cases: Source Code:
Z:=(A|lB)&&(C||D)

Testcase |1 (2 |3 |4 |5

Input A FIF|T|[F|T

nputs |F T |F T |F Question: do test cases

InputC | T |F |F |T|T achieve MC/DC?

Input D FI|T|F |F|F

Resultz |F |T [F [T |T
Source: Hayhurst et al, A Practical Tutorial
on MC/DC. NASA/TM2001-210876

Systeme hoher Sicherheit und Qualitat, WS 17/18 -24 - ' - :I @

Summary

» (Dynamic) Testing is the controlled execution of code, and
comparing the result against an expected outcome

» Testing is (traditionally) the main way for verification.

» Depending on how the test cases are derived, we distinguish
white-box and black-box tests

» In black-box tests, we can consider limits and equivalence
classes for input values to obtain test cases

» In white-box tests, we have different notions of coverage:
statement coverage, path coverage, condition coverage, etc.

» Next week: Static testing aka. static program analysis

Systeme hoher Sicherheit und Qualitat, WS 17/18 -25 -

