

Systeme hoher Sicherheit und Qualität, WS 17/18 - 1 -

Systeme hoher Sicherheit und Qualität
Universität Bremen, WS 2017/2018

Christoph Lüth, Dieter Hutter, Jan Peleska

Lecture 07:

Testing

Systeme hoher Sicherheit und Qualität, WS 17/18 - 2 -

Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09-10: Software Verification

 11-12: Model Checking

 13: Conclusions

Systeme hoher Sicherheit und Qualität, WS 17/18 - 3 -

Testing in the Development Cycle

Systeme hoher Sicherheit und Qualität, WS 17/18 - 4 -

What is Testing?

 In our sense, testing is selected, controlled program execution

 The aim of testing is to detect bugs, such as

 derivation of occurring characteristics of quality properties
compared to the specified ones

 inconsistency between specification and implementation

 structural features of a program that cause a faulty behavior of
a program

Testing is the process of executing a program or system with the
intent of finding errors.

G.J. Myers, 1979

Program testing can be used to show the presence of bugs, but
never to show their absence.

E.W. Dijkstra, 1972

Systeme hoher Sicherheit und Qualität, WS 17/18 - 5 -

The Testing Process

Test cases, test plan, etc.

System-under-test (s.u.t.) (cf. TOE in CC)

Warning -- test literature is quite expansive

Testing is any activity aimed at evaluating an attribute or
capability of a program or system and determining that it meets
its required results.

Hetzel, 1983

Systeme hoher Sicherheit und Qualität, WS 17/18 - 6 -

Test Levels

Component and unit tests

 test at the interface level of single components (modules,
classes)

Integration test

 testing interfaces of components fit together

System test

 functional and non-functional test of the complete
system from the user’s perspective

Acceptance test

 testing if system implements contract details

Systeme hoher Sicherheit und Qualität, WS 17/18 - 7 -

Test Methods

Static vs. dynamic

 With static tests, the code is analyzed without being run.
We cover these methods as static program analysis later

 With dynamic tests, we run the code under controlled
conditions, and check the results against a given
specification

Central question: where do the test cases come from?

 Black-box: the inner structure of the s.u.t. is opaque, test
cases are derived from specification only.

 Grey-box: some inner structure of the s.u.t. is known, e.g.
module architecture.

 White-box: the inner structure of the s.u.t. is known, and
tests cases are derived from the source code.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 8 -

Black-Box Tests

Limit analysis:

 If the specification limits input parameters, then values
close to these limits should be chosen

 Idea is that programs behave continuously, and errors
occur at these limits

Equivalence classes:

 If the input parameter values can be decomposed into
classes which are treated equivalently, test cases have to
cover all classes

Smoke test:

 “Run it, and check it does not go up in smoke.”

Systeme hoher Sicherheit und Qualität, WS 17/18 - 9 -

Example: Black-Box Testing

Equivalence classes or limits?

Equivalence classes or limits?

Example: A Company Bonus System

The loyalty bonus shall be computed depending on the time of
employment. For employees of more than three years, it shall be
50% of the monthly salary, for employees of more than five
years, 75%, and for employees of more than eight years, it shall
be 100%.

Example: Air Bag

The air bag shall be released if the vertical acceleration 𝑎𝑣 equals
or exceeds 15 𝑚 𝑠2 . The vertical acceleration will never be less

than zero, or more than 40 𝑚 𝑠2 .

Systeme hoher Sicherheit und Qualität, WS 17/18 - 10 -

Black-Box Tests

Quite typical for GUI tests, or functional testing

Testing invalid input: depends on programming language 
the stronger the typing, the less testing for invalid input is
required

 Example: consider lists in C, Java, Haskell

 Example: consider object-relational mappings1 (ORM) in
Python, Java

1) Translating e.g. SQL-entries to objects

Systeme hoher Sicherheit und Qualität, WS 17/18 - 11 -

Property- based Testing

 In property-based testing (or random testing), we generate
random input values, and check the results against a given
executable specification.

Attention needs to be paid to the distribution values.

Works better with high-level languages, where the datatypes
represent more information on an abstract level and where
the language is powerful enough to write comprehensive
executable specifications (i.e. Boolean expressions).

 Implementations for e.g. Haskell, Scala, Java

Example: consider list reversal in C, Java, Haskell

 Executable spec: reversal is idempotent and distributes
over concatenation.

 Question: how to generate random lists?

Systeme hoher Sicherheit und Qualität, WS 17/18 - 12 -

White-Box Tests

 In white-box tests, we derive test cases based on the
structure of the program (structural testing)

 To abstract from the source code (which is a purely
syntactic artefact), we consider the control flow graph of
the program.

Hence, paths in the CFG correspond to runs of the program.

Def: Control Flow Graph (CFG)

• nodes as elementary statements (e.g. assignments, return,

break, . . .), as well as control expressions (e.g. in conditionals

and loops), and

• vertices from n to m if the control flow can reach a node m

coming from a node n.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 13 -

Example: Control-Flow Graph

if (x < 0) /*1*/ {

 x:= – x /*2*/

}

z = 1; /*3*/

while (x > 0) /*4*/ {

 z = z * y; /*5*/

 x = x – 1 /*6*/

}

return z /*7*/

1

2

3

4

5

6

7

An execution path is
a path though the
cfg.

Examples:
• [1,3,4,7, E]

• [1,2,3,4,7, E]

• [1,2,3,4,5,6,4,7, E]

• [1,3,4,5,6,4,5,6,4,7, E]

• …

E

Systeme hoher Sicherheit und Qualität, WS 17/18 - 14 -

Coverage

Statement coverage:
Each node in the CFG is visited at least once.

Branch coverage:
Each vertex in the CFG is traversed at least once.

Decision coverage:
Like branch coverage, but specifies how often conditions
(branching points) must be evaluated.

Path coverage:
Each path in the CFG is executed at least once.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 15 -

Example: Statement Coverage

Which (minimal) path
covers all statements?

 p = [1,2,3,4,5,6,4,7,E]

Which state generates p?

 x = -1
 y any
 z any

1

2

3

4

5

6

7

E

if (x < 0) /*1*/ {

 x:= – x /*2*/

}

z = 1; /*3*/

while (x > 0) /*4*/ {

 z = z * y; /*5*/

 x = x – 1 /*6*/

}

return z /*7*/

Systeme hoher Sicherheit und Qualität, WS 17/18 - 16 -

Example: Branch Coverage

Which (minimal) path covers
all vertices?
 𝑝1= 1,2,3, 4,5,6, 4,7, 𝐸

𝑝2 = [1,3, 4, 7, 𝐸]

Which states generate 𝑝1, 𝑝2?

 𝑝1 𝑝2
 x -1 0
 y any any
 z any any

Note 𝑝3 (x= 1) does not add
coverage.

1

2

3

4

5

6

7

E

if (x < 0) /*1*/ {

 x:= – x /*2*/

}

z = 1; /*3*/

while (x > 0) /*4*/ {

 z = z * y; /*5*/

 x = x – 1 /*6*/

}

return z /*7*/

Systeme hoher Sicherheit und Qualität, WS 17/18 - 17 -

Example: Path Coverage

How many paths are there?

Let 𝑞1 = 1,2,3
 𝑞2 = 1,3

 𝑝 = 4,5,6

 𝑟 = [4,7, 𝐸]

 then all paths are
𝑃 = 𝑞1 𝑞2) 𝑝

∗ 𝑟

Number of possible paths:

 𝑃 = 2 ⋅ 𝑀𝑎𝑥𝐼𝑛𝑡 − 1

1

2

3

4

5

6

7

E

if (x < 0) /*1*/ {

 x:= – x /*2*/

}

z = 1; /*3*/

while (x > 0) /*4*/ {

 z = z * y; /*5*/

 x = x – 1 /*6*/

}

return z /*7*/

Systeme hoher Sicherheit und Qualität, WS 17/18 - 18 -

Statement, Branch and Path Coverage

 Statement Coverage:

 Necessary but not sufficient, not suitable as only test approach.

 Detects dead code (code which is never executed).

 About 18% of all defects are identified.

Branch coverage:

 Least possible single approach.

 Detects dead code, but also frequently executed program
parts.

 About 34% of all defects are identified.

Path Coverage:

 Most powerful structural approach;

 Highest defect identification rate (100%);

 But no practical relevance.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 19 -

Decision Coverage

Decision coverage is more then branch coverage, but less
then full path coverage.

Decision coverage requires that for all decisions in the
program, each possible outcome is considered once.

Problem: cannot sufficiently distinguish Boolean expressions.

 For A || B, the following are sufficient:
 A B Result

 false false false

 true false true

 But this does not distinguish A || B from A;
B is effectively not tested.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 20 -

Decomposing Boolean Expressions

The binary Boolean operators include conjunction 𝑥 ∧ 𝑦,
disjunction 𝑥 ∨ 𝑦, or anything expressible by these (e.g.
exclusive disjunction, implication)

An elementary term is a variable, a Boolean-valued function, a
relation (equality =, orders <,≤,>,≥, etc.), or a negation of
these.

This is a fairly syntactic view, e.g. 𝑥 ≤ 𝑦 is elementary, but
𝑥 < 𝑦 ∨ 𝑥 = 𝑦 is not, even though they are equivalent.

 In formal logic, these are called literals.

Elementary Boolean Terms

An elementary Boolean term does not contain binary

Boolean operators, and cannot be further decomposed.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 21 -

Simple Condition Coverage

For each condition in the program, each elementary Boolean
term evaluates to True and False at least once

Note that this does not say much about the possible value of
the condition

Examples and possible solutions:

if (temperature > 90 && pressure > 120) {… }

 C1 C2 Result
 True True True
 True False False
 False True False
 False False False

Systeme hoher Sicherheit und Qualität, WS 17/18 - 22 -

Modified Condition Coverage

 It is not always possible to generate all possible combi-
nations of elementary terms, e.g. 3 <= x && x < 5.

 In modified (or minimal) condition coverage, all possible
combinations of those elementary terms the value of which
determines the value of the whole condition need to be
considered.

Example:

Another example: (x > 1 && ! p) || p

3 <= x && x < 5

False False False ← not needed
False True False
True False False
True True True

Systeme hoher Sicherheit und Qualität, WS 17/18 - 23 -

Modified Condition/Decision Coverage

Modified Condition/Decision Coverage (MC/DC) is required by
DO-178B for Level A software.

 It is a combination of the previous coverage criteria defined
as follows:

 Every point of entry and exit in the program has been
invoked at least once;

 Every decision in the program has taken all possible
outcomes at least once;

 Every condition in a decision in the program has taken all
possible outcomes at least once;

 Every condition in a decision has been shown to
independently affect that decision’s outcome.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 24 -

How to achieve MC/DC

Not: Here is the source code, what is the minimal set of test
cases?

Rather: From requirements we get test cases, do they
achieve MC/DC?

Example:

 Test cases: Source Code:
 Z := (A || B) && (C || D)

Test case 1 2 3 4 5

Input A F F T F T

Input B F T F T F

Input C T F F T T

Input D F T F F F

Result Z F T F T T

Question: do test cases
achieve MC/DC?

Source: Hayhurst et al, A Practical Tutorial
on MC/DC. NASA/TM2001-210876

Systeme hoher Sicherheit und Qualität, WS 17/18 - 25 -

Summary

 (Dynamic) Testing is the controlled execution of code, and
comparing the result against an expected outcome

Testing is (traditionally) the main way for verification.

Depending on how the test cases are derived, we distinguish
white-box and black-box tests

 In black-box tests, we can consider limits and equivalence
classes for input values to obtain test cases

 In white-box tests, we have different notions of coverage:
statement coverage, path coverage, condition coverage, etc.

Next week: Static testing aka. static program analysis

