Systeme hoher Sicherheit und Qualitat
Universitat Bremen, WS 2017/2018

Lecture 05:

High-Level Design with SysML

Christoph Luth, Dieter Hutter, Jan Peleska

@ Universitat Bremen

Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards
03: The Software Development Process
04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with OCL

07: Testing

08: Static Program Analysis

09-10: Software Verification

11-12: Model Checking

13: Conclusions

vV v v vV vV Vv vV VvV VY

Systeme hoher Sicherheit und Qualitat, WS 17/18 -2- ' - J w

High-Level Design in the Development Cycle

e, 1 || {— | Vit g, Vit
testin
specification specification - software
Integration testing
E"E_‘FPES Snftwara (components, subsystems
architecture - architecture [-----==\-===-==-============--====-= and programmable
electronics)

Software system|g-------------------- Integration
design testing
(module)
|
1

Module Module
design - testing

CODING

Systeme hoher Sicherheit und Qualitat, WS 17/18 -3-

2< [

What is a model?

A model is a representation in a certain medium of
something in the same or another medium.
The model captures the important aspects of the

> lefe rent nOtiOﬂS Of mOdE|S thing being modelled from a certain point of view
o . o d . If . h .
N phySICS, phI|OSOphy or and simplifies or omits the rest

Rumbaugh, Jacobson,

Computer SClence Booch: UML Reference Manual.
» Here: an abstraction of a system / a software / a development

» Purposes of models:
» Understanding, communicating and capturing the design
» Organizing decisions / information about a system
» Analyzing design decisions early in the development process
» Analyzing requirements

Systeme hoher Sicherheit und Qualitat, WS 17/18 -4 - ' - J w

An Introduction to SysML

@ Universitat Bremen

The Unified Modeling Language (UML)

» Grew out of a wealth of modelling languages in the 1990s
(James Rumbaugh, Grady Booch and Ivar Jacobson at Rational)

» Adopted by the Object Management Group (OMG) in 1997, and
approved as ISO standard in 2005.

» UML 2 consists of
» the superstructure to define diagrams,
» a core meta-model,
» the object constraint language (OCL),
» an interchange format

» UML 2 is not a fixed language, it can be extended and customized
using profiles.

» SysML is a modeling language for systems engineering
» Standardized in 2007 by the OMG (May 2017 at Ver 1.5)
» Standard available at: http://www.omg.org/spec/SysML/About-SysML/

Systeme hoher Sicherheit und Qualitat, WS 17/18 -6 - ' - :I @

What for SysML?

» Serving as a standardized notation allowing all stakeholders
to understand and communicate the salient aspects of the
system under development

» the requirements,
» the structure (static aspects), and
» the behavior (dynamic aspects)

» Certain aspects (diagrams) of the SysML are formal, others
are informal

» Important distinction when developing critical systems

» All diagrams are views of one underlying model

Systeme hoher Sicherheit und Qualitat, WS 17/18 -7 - . - :I @

Different Views in SysML

» Structure;

» How is the system constructed?
How does it decompose?

» Behaviour:

» What can we observe? Does it have a state?
» Requirements:

» What are the requirements? Are they met?
» Parametrization:

» What are the constraints (physical/design)?
» ... and possibly more.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -8- . - :I @

Example: A Cleaning Robot (HooverBot)

» Structure;

» Has an engine, wheels (or tracks?), a vacuum cleaner, a
control computer, a battery...

» Behaviour:

» General: starts, then cleans until battery runs out, returns
to charging station

» Cleaning: moves in irregular pattern, avoids obstacle
» Requirements:

» Must cover floor when possible, battery must last at least
six hours, should never run out of battery, ...

» Constraints:

» Can only clean up to 5 g, can not drive faster than 1m/s,
laws concerning movement and trajectory, ...

Systeme hoher Sicherheit und Qualitat, WS 17/18 -9- ' - J w

SysML Diagrams

Requirement Diagram *

-

Structural Diagrams

Package Diagram

Block Definition Diagram

Internal Block Diagram

Parametric Diagram

Behavioural Diagrams

Use Case Diagram *

Activity Diagram

State Machine Diagram

Sequence Diagram

* Not considered further.

Systeme hoher Sicherheit und Qualitat, WS 17/18

-10 -

ady

Structural Diagrams in SysML

@ Universitat Bremen

Block Definition Diagram

» Blocks are the basic building elements of a model
» Models are instances of blocks

» Block definition diagrams model blocks and their relations:
» Inheritance
» Association

» Blocks can also model interface definitions.

» Corresponds to class diagrams in the UML.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -12 - . - :I @

fBIock

5o

Specialisation/ —
generalisation

BDD - Summary of Notation

Block with reference __
properties

«block» «block»
Block1 Block5
values
reqd BlockProperty1 : Real
BlockProperty2 : Real
________ RoleName2
|
«blocky is associated withpe- «block>
Block2 1 1.* Block3
references | RoleName1 parts
RoleName1 : Block3 [1.."] ; RoleName?2 : Block5 [*]
I

ﬁggregation "‘} o

1 Association showing
———————— role name

0.1

«block»
Block4

Block with provided
operation and flow

properties

prov Operation1 ()

operations

in FlowProperty1 : Block6
out FlowProperty2: Real

flowProperties

Instance2 : Block5

BlockProperty2 : Real = 123.4

- - {Instance specification)

1

1

«block»
> Block6

«InterfaceBlock»
Interface

operations
Operation1 () : Real
Operation2 () : Block7

«block»
Block11

Port1 : Blockd

Interface .
————— Provided interface
«block» L
Block9
"""" Required interface
Interface
Port : Block11
: 4
«block» Port1 : Block
Block6 SR

Systeme hoher Sicherheit und Qualitat, WS

17/18

\ FlowProperty1 : Block6

Item flow j

|
'
|
1

1 FlowProperty2 :

\
\
\

Block with value
properties, one
marked as a
required feature

. _Block with part
property

«block»
Block7

Association block™

_____ Interface block™

«block»

Bl
Real ock12

! Port2 : ~Block4

U
'
1

"\ _ [Portwith two nested ports ™) [Port with flow properties)

-13-

Port with ﬁow properties—
Port2 is conjugated

Quelle: Holt, Perry. SysML for Systems Engineering.

U

Example 1: Vehicles

» A vehicle can be a car, or a
bicycle.

» A car has an engine

» A car has 4 wheels,
a bicycle has 2 wheels

» Engines and wheels have
operations and values

» In SysML, engine and wheel
are parts of car and bicycle.

Systeme hoher Sicherheit und Qualitat, WS 17/18

bdd[package] [‘u’ehicles])

Vehicle

Bicycle

T

1 4 2
Engine Wheel
operations operations
turnOn() : void pressure() . Real

rev() . Real
values
power : Real

-14 -

ady

Example 2: HooverBots

» The hoover bots have a control computer, and a vacuum
cleaner (v/c).

» HooverBot 100 has one v/c, Hoover 1000 has two.
» Two ways to model this (i.e. two views):

bdd[packagg] [HooverBonSeries])
HooverBot100Series HooverBot1000Series
parts
ctrl: Controller] 1
vac ; Vacuum Cleaner
Cleaner Ctrl
2 1
Vacuum Cleaner s ~vacCtrl Controller svacCtrl
poris < ports
vacCtrl ~vacCtrl SvacCtrl
values
cleanerOn : Boolean
cleanerPower : Real

Systeme hoher Sicherheit und Qualitat, WS 17/18 -15 -

ady

Internal Block Diagrams
» Internal block diagrams decribe instances of blocks
» Here, instances for HooverBots

» On this level, we can describe connections between ports
(flow specifications)

» Flow specifications have directions.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -16 - . - :I @

Example: HooverBot 100 and 1000

ibdHooverBot10005eries [HooverBot1000])

T ~yvacCtrl
Cleaner: Vacuum Ctrl :
= <

Cleaner|[2] &l Controller1]
- vacCtrl

ibd[block] HooverBot1005eries [HooverBot100])

vac - Vacuum Cleaner & ﬂ (= ctrl : Controller
s ~yvAc Ctrl “vafpCtrl

Systeme hoher Sicherheit und Qualitat, WS 17/18 -17 - ' - J w

Package Diagrams

» Packages are used to group
diagrams, much like
directories in the file system.

» Not considered much in the
following

Systeme hoher Sicherheit und Qualitat, WS 17/18 -18 -

bdd[package] [HooverBotsPacl«ages])

HooverBots
=) (===
HoverBots1x HooverBots 2x
|
Common

ady

Parametric Diagrams

» Parametric diagrams describe constraints between
properties and their parameters.

» It can be seen as a restricted form of an internal block
diagram, or as equational modeling as in Simulink.

ice.fi.FuelDemand:Real

ice.fi.FuelFlowRate:Real ice.fi.fuel.FuelPressure::Real

injectorDemand:Rea

fuelflow : FuelFlow

W {flowrate = press / (4*injectorDemand) } ®
flowrate:Real press:Real

Relation of fuel flowrate to FuelDemand and FuelPressure value properties (Source: OMG SysML v1.2)

Systeme hoher Sicherheit und Qualitat, WS 17/18 -19 - . - :I @

SysML Diagrams Overview

Requirement Diagram *

Structural Diagrams

Package Diagram

Block Definition Diagram

Internal Block Diagram

Parametric Diagram

Behavioral Diagrams

Use Case Diagram *

Activity Diagram

State Machine Diagram

Sequence Diagram

_

* Not considered further.

Systeme hoher Sicherheit und Qualitat, WS 17/18

-21 -

ady

Detailed Specification in the Development Cycle

e, 1 || {— | Vit g, Vit
testin
specification speclflcatmn - software
Integration testing
E/E/PES Software (components, subsystems
architecture - an:hﬂa-::tura -------------------------------- and programmable
electronics)

Software system|---------------oc--- Integration
design testing
(module)
|
Module
''''' testing
4{ CODING

Systeme hoher Sicherheit und Qualitat, WS 17/18 -22-

Module
design

Why detailed Specification?

» Detailed specification is the specification of single modules
making up our system.

» This is the ,last” level both in abstraction and detail before we
get down to the code - in fact, some specifications at this
level can be automatically translated into code.

» Why not write code straight away?
» We want to stay platform-independent.

» We may not want to get distracted by details of our target
platform.

» At this level, we have a better chance of finding errors or
proving safety properties.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -23- . - :I @

Levels of Detailed Specification

We can specify the basic modules
» By their (external) behavior

» Operations defined by their pre/post-conditions and
effects (e.g. in OCL)

» Modeling the system’s internal states by a state machine
(i.e. states and guarded transitions)

» By their (internal) structure

» Modeling the control flow by flow charts
(aka. activity charts)

» By action languages (platform-independent programming
languages) for UML
(but these are not standard for SysML)

Systeme hoher Sicherheit und Qualitat, WS 17/18 -24 - ' - :I @

State Diagrams: Basics

» State diagrams are a particular form of (hierarchical) FSMs:

Definition: Finite State Machine (FSM)
A FSM is given by M = (%, I,—) where
Y is a finite set of states,

e | C Yis asetofinitial states, and
e 5C Y X YIS atransition relation, s.t. — Is left-total:

Vs €eX.3ds' € X.s - s’

» Example: a simple coffee machine.
» We will explore FSMs in detail later.

» In hierarchical state machines, a state may contain another
FSM (with initial/final states).

» State Diagrams in SysML are taken unchanged from UML.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -25- b . :I @J)

Basic Elements of State Diagrams

» States

» Initial/Final
» Transitions
» Events (Triggers) Q
» Guards
» Actions (Effects)

stmBasic State Machine)

State & State B
Event [Guard] / Action

Systeme hoher Sicherheit und Qualitat, WS 17/18 -26 -

What is an Event?

» . The specification of a noteworthy occurence which has a
location in time and space.” (UML Reference Manual)

» SysML knows:

» Signal events event name/

» Call events operation name/
» Time events after(t)/

» Change event when (e)/

» Entry events Entry/

» EXit events Exit/

Systeme hoher Sicherheit und Qualitat, WS 17/18 -27 - . - :I @

SMDs - Summary of Notation

Initial state‘i’r —————— 3] (Composite State (Concurrent)
Composite state with exit Exit/op3
activi‘tjy Ié“ - —_ _ |- - - 4 State with do activityb]
o 2 o e
Simple State
— —-9(:)
Simple State Event1[Attribute = VALUE]/op4 do : op1
| T
I — I
| - - " ""-"-"=-"="-"="-""="="="="="~"=~"=-"=”"°~
| |
Transition with event @ Simple State O
Simple state'j (Event1), guard ([Attribute = _
VALUE]) and action (op4) Region '
\ J
Transition with event only'ﬁ 7 : . ~ ®)-- - - ~‘Final state]
| Composite State (Sequential)
: /Event3
)
Event2/ ! Simple State 1 - (Simple State 2} == =73
Entry/op2 :
/ [
State with entry activity 'ﬁ~ aladed T y |

Completion transition with
action only

Quelle: Holt, Perry. SysML for Systems Engineering.

Systeme hoher Sicherheit und Qualitat, WS 17/18 - 28 - . F:I @

State Diagram Elements (SysML Ref. §13.2)

» Choice pseudo state » Region

» Composite state » Simple state

> Entry point » State list

> Exit point » State machine

» Final state

» History pseudo states
» Initial pseudo state

» Junction pseudo state
» Receive signal action
» Send signal action

» Action

» Terminate node
» Submachine state

Systeme hoher Sicherheit und Qualitat, WS 17/18 -29- ' - :I @

Activity Charts: Foundations

» The activity charts of SysML (UML) are a variation of good old-
fashioned flow charts.

» Those were standardized as DIN 66001
(ISO 5807).

» Flow charts can describe
programs (right example)
or non-computational
activities (left example)

=61

» SysML activity charts
are extensions of
UML activity charts.

Quelle: Wikipedia

Quelle: Erik Streb, via Wikipedia

Systeme hoher Sicherheit und Qualitat, WS 17/18 -30 - . - :I @

Basics of Activity Diagrams

» Activities model the work flow of low-level behaviours:
“An activity is the specification of parameterized behaviour as
the coordinated sequencing of subordinate unites whose
individual elements are actions.” (UML Ref. §12.3.4)

» Diagram comprises of actions, decisions, joining and forking
activities, start/end of work flow.

» Control flow allows to disable and enable (sub-) activities.

» An activity execution results in the execution of a set of
actions in some specific order.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -31- ' - J w

What is an Action?

» A terminating basic behaviour, such as

>
>
>
>
>

>

Changing variable values [UML Ref. §11.3.6]
Calling operations [UML Ref. 811.3.10]
Calling activities [UML Ref. 812.3.4]

Creating and destroying objects, links, associations
Sending or receiving signals
Raising exceptions.

» Actions are part of a (potentially larger, more complex) behaviour.
» Inputs to actions are provided by ordered sets of pins:
» A pinis atyped element, associated with a multiplicity

>

Input pins transport typed elements to an action

» Actions deliver outputs consisting of typed elements on output

pins

Systeme hoher Sicherheit und Qualitat, WS 17/18 -32- . - :I @

Elements of Activity Diagrams

» Nodes: » Paths (arrows):
Action nodes » Control flow
Activities » Object flow
Decision nodes » Probability and rates
Final nodes
Fork nodes » Activities in BDDs
Initial nodes » Partitions
Local pre/post-conditions » Interruptible Regions
Merge nodes » Structured activities

Object nodes
Probabilities and rates

Systeme hoher Sicherheit und Qualitat, WS 17/18 -33- ' - :I @

Activity Diagrams - Summary of Notation

Activity Partition Activity Partition
|

inl fods Ppeessnassmaiscy ® Activity partitiorﬁ

------------- :
----------- <<

_+

s S T

-
Discrete control B}

Chisgtliow == s ensanSe flow with rate
Objectnode™ __ _ _ __ Object Name:Object Node

«continuous»

i Eontinuous object ﬂow[:]

«discrete»
{rate = expression}

condition] {Probability = value % i
---------- ondon) Provsity = e (™t

condition] :

------------- @ Control flow with B}
Yy

guard and probabilit

Quelle: Holt, Perry. SysML for Systems Engineering.

&
E

Systeme hoher Sicherheit und Qualitat, WS 17/18 -34 -

Behavioural Semantics

» Semantics is based on token flow - similar to Petri Nets, see
[UML Ref. pp. 326]

» A token can be an input signal, timing condition,
interrupt, object node (representing data), control
command (call, enable) communicated via input pin,

» An executable node (action or sub-activity) in the
activity diagram begins its execution, when the
required tokens are available on their input edges.

» On termination, each executable node places tokens
on certain output edges, and this may activate the
next executable nodes linked to these edges.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -35- ' - J w

Activity Diagrams - Links With BDDs

» Block definition diagrams may show
» Blocks representing activities

bdd

—
«activity» «activity=
activity name activity name
\ [)]
action | L . "\ i
Fame I.-" action \"-. action ‘x_\ ﬁ;:_:?en
name / _name 4
«activity » «activity » «activity »
activity name activity name activity name

» One activity may be composed of other activities -
composition indicates parallel execution threads of the
activities at the “part end”.

» One activity may contain several blocks representing
object nodes (which represent data flowing through the
activity diagram).

Systeme hoher Sicherheit und Qualitat, WS 17/18 -36 - . - :I @

Sequence Diagrams

» Sequence Diagrams describe the flow of messages between
actors.

» Extremely useful, but also extremely limited.

analyst : Financialénalyst m : R tingSystem stem : ri m

l
|
getavailableReports () l

getSecurityClearance (userld)

userClearance

ST SR i A S S e e
determinedvailableReports ()

!

|

|

!

|

|

|

| |
| |
| |
'F nalsberepars .. : Quelle:

| IBM developerWorks

» We may consider concurrency further later on.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -37-

Summary

» High-level modeling describes the structure of the system at
an abstract level

» SysML is a standardized modeling language for systems
engineering, based on the UML

» We disregard certain aspects of SysML in this lecture
» SysML structural diagrams describe this structure.

» Block definition diagrams

» Internal block definition diagrams

» Package diagrams

» We may also need to describe formal constraints, or
Invariants.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -38- ' - J w

Summary (cont.)

» Detailed specification means we specify the internal structure
of the modules in our systems.

» Detailed specification in SysML.:

» State diagrams are hierarchical finite state machines
which specify states and transitions.

» Activity charts model the control flow of the program.

» More behavioral diagrams in SysML.:

» Sequence charts model the exchange of messages
between actors.

» Use case diagrams describe particular uses of the system.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -39- ' - J w

