

Systeme hoher Sicherheit und Qualität Universität Bremen, WS 2017/2018

# Lecture 4: Hazard Analysis

Christoph Lüth, Dieter Hutter, Jan Peleska





#### Where are we?

- 01: Concepts of Quality
- 02: Legal Requirements: Norms and Standards
- 03: The Software Development Process
- 04: Hazard Analysis
- 05: High-Level Design with SysML
- 06: Formal Modelling with OCL
- 07: Testing
- 08: Static Program Analysis
- 09-10: Software Verification
- 11-12: Model Checking
- 13: Conclusions





#### **Hazard Analysis in the Development Cycle**







#### **The Purpose of Hazard Analysis**



Hazard Analysis systematically determines a list of **safety requirements**.

The realization of the safety requirements by the software product must be **verified**.

The product must be **validated** wrt. the safety requirements.



#### Hazard Analysis...

- provides the basic foundations for system safety.
- is performed to identify hazards, hazard effects, and hazard causal factors.
- is used to determine system risk, to determine the significance of hazards, and to establish design measures that will eliminate or mitigate the identified hazards.
- is used to systematically examine systems, subsystems, facilities, components, software, personnel, and their interrelationships.

Clifton Ericson: *Hazard Analysis Techniques for System Safety*. Wiley-Interscience, 2005.



#### Form and Output of Hazard Analysis

The **output** of hazard analysis is a list of safety requirements and documents detailing how these were derived.

- Because the process is informal, it can only be checked by reviewing.
- It is therefore critical that
  - standard forms of analysis are used,
  - documents have a standardized form, and
  - all assumptions are documented.





#### **Classification of Requirements**

- Requirements to ensure:
  - Safety
  - Security
- Requirements for:
  - Hardware
  - Software
- Characteristics / classification of requirements:
  - according to the type of a property



### **Classification of Hazard Analysis**

- Top-down methods start with an anticipated hazard and work backwards from the hazard event to potential causes for the hazard.
  - Good for finding causes for hazard;
  - good for avoiding the investigation of "non-relevant" errors;
  - bad for detection of missing hazards.
- Bottom-up methods consider "arbitrary" faults and resulting errors of the system, and investigate whether they may finally cause a hazard.
  - Properties are complementary to top-down properties;
  - Not easy with software where the structure emerges during development.



#### **Hazard Analysis Methods**

- Fault Tree Analysis (FTA) top-down
- Event Tree Analysis (ETA) bottom-up
- Failure Modes and Effects Analysis (FMEA) bottom up
- Cause Consequence Analysis bottom up
- HAZOP Analysis bottom up







### **Fault Tree Analysis**



#### Fault Tree Analysis (FTA)

Top-down deductive failure analysis (of undesired states)

- Define undesired top-level event (UE);
- Analyze all causes affecting an event to construct fault (sub)tree;
- Evaluate fault tree.



#### **FTA: Cut Sets**

- A cut set is a set of events that cause the top UE to occur (also called a fault path).
- Cut sets reveal critical and weak links in a system.
- Extension- probabilistic fault trees:
  - Annotate events with probabilities;
  - Calculate probabilities for cut sets.
  - We do not pursue this further here, as it is mainly useful for hardware faults.
- Cut sets can be calculated top down or bottom up.
  - MOCUS algorithm (Ericson, 2005)
  - Corresponds to the DNF of underlying formula.
  - What happens to priority AND, conditioning and inhibiting events (modelled as implication?).



#### Fault-Tree Analysis: Process Overview

- 1. Understand system design
- 2. Define top undesired event
- 3. Establish boundaries (scope)
- 4. Construct fault tree
- 5. Evaluate fault tree (cut sets, probabilities)
- 6. Validate fault tree (check if correct and complete)
- 7. Modify fault tree (if required)
- 8. Document analysis

#### Fault Tree Analysis: First Simple Example

Consider a simple fire protection system connected to smoke/heat detectors.



Systeme hoher Sicherheit und Qualität, WS 17/18

#### Fault Tree Analysis: Another Example



Source: N. Storey, Safety-Critical Computer Systems.



### Fault Tree Analysis: Final Example

- A laser is operated from a control computer system.
- The laser is connected via a relay and a power driver, and protected by a cover switch.
- Top Undesired Event: Laser activated without explicit command from computer system.



Laser activated

incorrectly

System applies

voltage to input

Primar lase

**E3** 

Relay

**E1** 

Voltage on

control input

Microswitch

contacts closed

**E2** 

Primary

cable

fault

Systeme hoher Sicherheit und Qualität, WS 17/18

#### **FTA - Conclusions**

#### Advantages:

- Structured, rigorous, methodical approach;
- Can be effectively performed and computerized, commercial tool support;
- Easy to learn, do, and follow;
- Combines hardware, software, environment, human interaction.

#### Disadvantages:

- Can easily become time-consuming and a goal in itself rather than a tool if not careful;
- Modelling sequential timing and multiple phases is difficult.





### **Event Tree Analysis**



#### **Event Tree Analysis (ETA)**

- Bottom-up method
- Applies to a chain of cooperating activities
- Investigates the effect of activities failing while the chain is processed
- Depicted as binary tree; each node has two leaving edges:
  - Activity operates correctly
  - Activity fails
- Useful for calculating risks by assigning probabilities to edges
- Complexity:  $\mathcal{O}(2^n)$



#### **Event Tree Analysis - Overview**

Input:

- Design knowledge
- Accident histories

#### **ETA Process:**

- 1. Identify Accident Scenarios
- 2. Identify IEs (Initiating Events)
- 3. Identify pivotal events
- 4. Construct event tree diagrams
- 5. Evaluate risk paths
- 6. Document process





#### **Event Tree Analysis - Example**

#### Cooling System for a Nuclear Power Plant





#### **Event Tree Analysis - Another Example**

#### Fire Detection/Suppression System for Office Building

| IE                     | <i>Pivotal Events</i><br>Fire Detection<br>Working | Fire Alarms<br>Working | Fire Sprinkler<br>Working | Outcomes                                             | Prob.   |
|------------------------|----------------------------------------------------|------------------------|---------------------------|------------------------------------------------------|---------|
|                        |                                                    |                        | YES (P= 0.8)              | Limited damage                                       | 0.00504 |
|                        | - YES (P= 0.9) -                                   |                        | [ NO (P= 0.2)             | Limited damage<br>Extensive damage,<br>People escape | 0.00126 |
| Fire Starts<br>P= 0.01 | YES (P= 0.9)                                       | NO (P= 0.3)            | _ YES (P= 0.8)            | Limited damage,<br>Wet people                        | 0.00216 |
|                        |                                                    |                        | L <sub>NO (P= 0.2)</sub>  | Death/injury,<br>Extensive damage                    | 0.00054 |
|                        | L NO (P= 0.1) -                                    |                        |                           | · Death/injury,<br>Extensive damage                  | 0.001   |



#### **ETA - Conclusions**

#### Advantages:

- Structured, rigorous and metodical;
- Can be effectively computerized, tool support is available;
- Easy to learn, do, and follow;
- Combines hardware, software, environment and human interaction;
- Can be effectively performed on varying levels of system detail.
- Disadvantages:
  - An ETA can only have one IE;
  - Can overlook subtle system dependencies;
  - Partial success/failure not distinguishable.





## Failure Mode and Effects Analysis



### **Failure Modes and Effects Analysis (FMEA)**

- Analytic approach to review potential failure modes and their causes.
- ► Three approaches: *functional*, *structural* or *hybrid*.
- Typically performed on hardware, but useful for software as well.
- ► It analyzes
  - the failure mode,
  - the failure cause,
  - the failure effect,
  - its criticality,
  - and the recommended action,

and presents them in a **standardized table**.





#### **Software Failure Modes**

| Guide word              | Deviation                                                                                                                                                 | Example Interpretation                                                                            |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| omission                | The system produces no output<br>when it should. Applies to a<br>single instance of a service, but<br>may be repeated.                                    | No output in response to change in input; periodic output missing.                                |
| commission              | The system produces an output,<br>when a perfect system would<br>have produced none. One must<br>consider cases with both, correct<br>and incorrect data. | Same value sent twice in series;<br>spurious output, when inputs<br>have not changed.             |
| early                   | Output produced before it should be.                                                                                                                      | Really only applies to periodic<br>events; Output before input is<br>meaningless in most systems. |
| late                    | Output produced after it should be.                                                                                                                       | Excessive latency (end-to-end delay) through the system; late periodic events.                    |
| value<br>(detectable)   | Value output is incorrect, but in a way, which can be detected by the recipient.                                                                          | Out of range.                                                                                     |
| value<br>(undetectable) | Value output is incorrect, but in a way, which cannot be detected.                                                                                        | Correct in range; but wrong value                                                                 |



#### **Criticality Classes**

Risk as given by the risk mishap index (MIL-STD-882):

| Severity        | Probability   |  |
|-----------------|---------------|--|
| 1. Catastrophic | A. Frequent   |  |
| 2. Critical     | B. Probable   |  |
| 3. Marginal     | C. Occasional |  |
| 4. Negligible   | D. Remote     |  |
|                 | E. Improbable |  |

Names vary, principle remains:

- Catastrophic single failure
- Critical two failures
- Marginal multiple failures/may contribute



| PROBABILITY LEVELS                                          |                                                                                                       |                                                                                                        |                                                                                                              |  |  |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|
| Description                                                 | Description Level Specific Individual Item                                                            |                                                                                                        | Fleet or Inventory                                                                                           |  |  |
| Frequent                                                    | Α                                                                                                     | Likely to occur often in the life of an item.                                                          | Continuously experienced.                                                                                    |  |  |
| Probable B Will occur several times in the life of an item. |                                                                                                       | Will occur frequently.                                                                                 |                                                                                                              |  |  |
| Occasional                                                  | Occasional C Likely to occur sometime in the life of an item.                                         |                                                                                                        | Will occur several times.                                                                                    |  |  |
| Remote                                                      | Remote D Unlikely, but possible to occur in the life of an item.                                      |                                                                                                        | Unlikely, but can reasonably be<br>expected to occur.                                                        |  |  |
| Improbable                                                  | Improbable E So unlikely, it can be assumed occurrence may not be experienced in the life of an item. |                                                                                                        | Unlikely to occur, but possible.                                                                             |  |  |
| Eliminated                                                  | F                                                                                                     | Incapable of occurence. This level is used when potential hazards are identified and later eliminated. | Incapable of occurence. This level<br>is used when potential hazards are<br>identified and later eliminated. |  |  |

| SEVERITY CATEGORIES                                                                                                                                                             |                      |                                                                                                                                                                                                                                     |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Description                                                                                                                                                                     | Severity<br>Category | Mishah Result Criteria                                                                                                                                                                                                              |  |  |
| Catastrophic                                                                                                                                                                    | 1                    | Could result in one or more of the following: death, permanent total disability, irreversible significant environmental impact, or monetary loss equal to or exceeding \$10M.                                                       |  |  |
|                                                                                                                                                                                 |                      | occupational illness that may result in hospitalization of at least three personnel, reversible<br>significant environmental impact, or monetary loss equal to or exceeding \$1M but less than                                      |  |  |
|                                                                                                                                                                                 |                      | Could result in one or more of the following: injury or occupational illness resulting in one or more lost work day(s), reversible moderate environmental impact, or monetary loss equal to or exceeding \$100K but less than \$1M. |  |  |
| Negligible 4 Could result in one or more of the following: injury or occupational illness not result work day, minimal environmental impact, or monetary loss less than \$100K. |                      | Could result in one or more of the following: injury or occupational illness not resulting in a lost work day, minimal environmental impact, or monetary loss less than \$100K.                                                     |  |  |

Source:MIL-STD-822E, www.system-safety.org/Documents/MIL-STD-882E.pdf

Systeme hoher Sicherheit und Qualität, WS 17/18



#### FMEA Example: Airbag Control

- Consider an airbag control system, consisting of
  - the airbag with gas cartridge;
  - a control unit with
    - Output: Release airbag
    - Input: Accelerometer, impact sensors, seat sensors, ...
- FMEA:
  - Structural: what can be broken?
    - Mostly hardware faults.
  - Functional: how can it fail to perform its intended function?
    - Also applicable for software.



### **Airbag Control (Structural FMEA)**

| ID | Mode     | Cause                                          | Effect                                             | Crit. | Appraisal           |
|----|----------|------------------------------------------------|----------------------------------------------------|-------|---------------------|
| 1  | Omission | Gas cartridge<br>empty                         | Airbag not released in emergency situation         | C1    | SR-56.3             |
| 2  | Omission | Cover does not<br>detach                       | Airbag not released fully in emergency situation   | C1    | SR-57.9             |
| 3  | Omission | Trigger signal<br>not present in<br>emergency. | Airbag not released in emergency situation         | C1    | Ref. To SW-<br>FMEA |
| 4  | Comm.    | Trigger signal<br>present in non-<br>emergency | Airbag released during<br>normal vehicle operation | C2    | Ref. To SW-<br>FMEA |





### **Airbag Control (Functional FMEA)**

| ID    | Mode      | Cause                                | Effect                                  | Crit. | Appraisal                      |
|-------|-----------|--------------------------------------|-----------------------------------------|-------|--------------------------------|
| 5-1   | Omission  | Software<br>terminates<br>abnormally | Airbag not<br>released in<br>emergency. | C1    | See 5-1.1, 5-1.2.              |
| 5-1.1 | Omission  | - Division by 0                      | See 5-1                                 | C1    | SR-47.3<br>Static Analysis     |
| 5-1.2 | Omission  | - Memory fault                       | See 5-1                                 | C1    | SR-47.4<br>Static Analysis     |
| 5-2   | Omission  | Software does not<br>terminate       | Airbag not<br>released in<br>emergency. | C1    | SR-47.5<br>Termination Proof   |
| 5-3   | Late      | Computation takes too long.          | Airbag not<br>released in<br>emergency. | C1    | SR-47.6<br>WCET Analysis       |
| 5-4   | Comm.     | Spurious signal generated            | Airbag released<br>in non-<br>emergency | C2    | SR-49.3                        |
| 5-5   | Value (u) | Software computes wrong result       | Either of 5-1 or<br>5-4.                | C1    | SR-12.1<br>Formal Verification |



#### **FMEA - Conclusions**

#### Advantages:

- Easily understood and performed;
- Inexpensive to perform, yet meaningful results;
- Provides rigour to focus analysis;
- Tool support available.

#### Disadvantages:

- Focuses on single failure modes rather than combination;
- Not designed to identify hazard outside of failure modes;
- Limited examination of human error, external influences or interfaces.





## Conclusions



#### **The Seven Principles of Hazard Analysis**

Ericson (2005)

- 1) Hazards, mishaps and risk are not chance events.
- 2) Hazards are created during design.
- 3) Hazards are comprised of three components.
- 4) Hazards and mishap risk is the core safety process.
- 5) Hazard analysis is the key element of hazard and mishap risk management.
- 6) Hazard management involves seven key hazard analysis types.
- 7) Hazard analysis primarily encompasses seven hazard analysis techniques.



#### **Summary**

- ► Hazard Analysis is the **start** of the formal development.
- Its most important output are safety requirements.
- Adherence to safety requirements has to be verified during development, and validated at the end.
- ► We distinguish different types of analysis:
  - Top-Down analysis (Fault Trees)
  - Bottom-up (FMEAs, Event Trees)
- It makes sense to combine different types of analyses, as their results are complementary.



#### Conclusions

- Hazard Analysis is a creative process, as it takes an informal input ("system safety") and produces a formal output (safety requirements). Its results cannot be formally proven, merely checked and reviewed.
- Review plays a key role. Therefore,
  - documents must be readable, understandable, auditable;
  - analysis must be in well-defined and well-documented format;
  - all assumptions must be well documented.

