

Systeme hoher Sicherheit und Qualität, WS 17/18 - 1 -

Systeme hoher Sicherheit und Qualität
Universität Bremen, WS 2017/2018

Christoph Lüth, Dieter Hutter, Jan Peleska

Lecture 3:

The Software Development Process

Systeme hoher Sicherheit und Qualität, WS 17/18 - 2 -

Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09-10: Software Verification

 11-12: Model Checking

 13: Conclusions

Systeme hoher Sicherheit und Qualität, WS 17/18 - 3 -

Software Development
Models

Systeme hoher Sicherheit und Qualität, WS 17/18 - 4 -

Software Development Process

A software development process is the structure imposed on
the development of a software product.

We classify processes according to models which specify

 the artefacts of the development, such as

 the software product itself, specifications, test
documents, reports, reviews, proofs, plans etc;

 the different stages of the development;

 and the artefacts associated to each stage.

Different models have a different focus:

 Correctness, development time, flexibility.

What does quality mean in this context?

 What is the output? Just the software product, or more?
(specifications, test runs, documents, proofs…)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 5 -

Artefacts in the Development Process
Planning:
• Document plan
• V&V plan
• QM plan
• Test plan
• Project manual

Specifications:

• Requirements
• System specification
• Module specification
• User documents

Implementation:

• Source code
• Models
• Documentation

Possible formats:
• Documents:

• Word documents
• Excel sheets
• Wiki text
• Database (Doors)

• Models:
• UML/SysML

diagrams
• Formal languages: Z,

HOL, etc.
• Matlab/Simulink or

similar diagrams
• Source code

Verification & validation:

• Code review protocols
• Test cases, procedures,

and test results
• Proofs

Systeme hoher Sicherheit und Qualität, WS 17/18 - 6 -

Waterfall Model (Royce 1970)

Classical top-down sequential workflow with strictly
separated phases.

Unpractical as actual workflow (no feedback between
phases), but even the original paper did not really suggest
this.

Requirement

Implementation

Design

Maintenance

Verification

Systeme hoher Sicherheit und Qualität, WS 17/18 - 7 -

Spiral Model (Böhm, 1986)

 Incremental development guided by risk factors

Four phases:

 Determine objectives

 Analyse risks

 Development and test

 Review, plan next iteration

See e.g.

 Rational Unified Process (RUP)

Drawbacks:

 Risk identification is the key, and can be quite difficult

Systeme hoher Sicherheit und Qualität, WS 17/18 - 8 -

Model-Driven Development (MDD, MDE)

Describe problems on abstract level using a modeling language
(often a domain-specific language), and derive implementation by
model transformation or run-time interpretation.

Often used with UML (or its DSLs, eg. SysML)

 Variety of tools:

 Rational tool chain, Enterprise Architect, Rhapsody, Papyrus,
Artisan Studio, MetaEdit+, Matlab/Simulink/Stateflow*

 EMF (Eclipse Modelling Framework)

 Strictly sequential development

Drawbacks: high initial investment, limited flexibility

* Proprietary DSL – not related to UML

Systeme hoher Sicherheit und Qualität, WS 17/18 - 9 -

Agile Methods

Prototype-driven development

 E.g. Rapid Application Development

 Development as a sequence of prototypes

 Ever-changing safety and security requirements

Agile programming

 E.g. Scrum, extreme programming

 Development guided by functional requirements

 Process structured by rules of conduct for developers

 Rules capture best practice

 Less support for non-functional requirements

Test-driven development

 Tests as executable specifications: write tests first

 Often used together with the other two

Systeme hoher Sicherheit und Qualität, WS 17/18 - 10 -

V-Model

Evolution of the waterfall model:

 Each phase is supported by a corresponding testing
phase (verification & validation)

 Feedback between next and previous phase

Standard model for public projects in Germany

 … but also a general term for models of this „shape“

Systeme hoher Sicherheit und Qualität, WS 17/18 - 11 -

Software Development Models

Structure

F
le

x
ib

il
it

y

from S. Paulus: Sichere Software

Spiral model

Prototype-based
developments

Agile

Methods

Waterfall

model

V-model

Model-driven

developement

Systeme hoher Sicherheit und Qualität, WS 17/18 - 12 -

Development Models for
Safety-Critical Systems

Systeme hoher Sicherheit und Qualität, WS 17/18 - 13 -

Development Models for Critical Systems

Ensuring safety/security needs structure.

 …but too much structure makes developments
bureaucratic, which is in itself a safety risk.

 Cautionary tale: Ariane-5

Standards put emphasis on process.

 Everything needs to be planned and documented.

 Key issues: auditability, accountability, traceability.

Best suited development models are variations of the V-
model or spiral model.

A new trend?

 V-Model for initial developments of a new product

 Agile models (e.g. Scrum) for maintenance and product
extensions

Systeme hoher Sicherheit und Qualität, WS 17/18 - 14 -

Auditability and Accountability

Version control and configuration management is mandatory
in safety-critical development (auditability).

Keeping track of all artifacts contributing to a particular
instance (build) of the system (configuration), and their
versions.

Repository keeps all artifacts in all versions.

 Centralised: one repository vs. distributed (every developer
keeps own repository)

 General model: check out – modify – commit

 Concurrency: enforced lock, or merge after commit.

Well-known systems:

 Commercial: ClearCase, Perforce, Bitkeeper…

 Open Source: Subversion (centr.); Git, Mercurial (distr.)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 15 -

Traceability

The idea of being able to follow requirements (in particular,
safety requirements) from requirement spec to the code (and
possibly back).

On the simplest level, an Excel sheet with (manual) links to
the program.

More sophisticated tools include DOORS.

 Decompose requirements, hierarchical requirements

 Two-way traceability: from code, test cases, test
procedures, and test results back to requirements

 E.g. DO-178B requires all code derives from requirements

Systeme hoher Sicherheit und Qualität, WS 17/18 - 16 -

Development Model in IEC 61508

 IEC 61508 in principle allows any development model, but:

 It requires safety-directed activities in each phase of the
life cycle (safety life cycle).

 Development is one part of the life cycle.

The only development model mentioned is a V-model:

Systeme hoher Sicherheit und Qualität, WS 17/18 - 17 -

The Safety Life Cycle (IEC 61508)

Planning

Realisation

Operation

E/E/PES: Electrical/Electronic/Programmable Electronic Safety-related Systems

Systeme hoher Sicherheit und Qualität, WS 17/18 - 18 -

Development Model in DO-178B

DO-178B defines different processes in the SW life cycle:

 Planning process

 Development process, structured in turn into

 Requirements process

 Design process

 Coding process

 Integration process

 Verification process

 Quality assurance process

 Configuration management process

 Certification liaison process

 There is no conspicuous diagram, but the Development Process has
sub-processes suggesting the phases found in the V-model as well.

 Implicit recommendation of the V-model.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 19 -

Development Model for Hardware

Specification

System Model

RTL Model

Gate Level

Layout

Transistor Level

Silicone

always @(posedge clk)

 if (rst) out <= 0;

 else

 if (! ctrl) out <= s0 | in;

 else out <= s0 & in;

Register-Transfer-Ebene: Verilog

Gate Level

Textual description

of the electric

connections

(“Schaltplan”)

During chip design:

Description of the

connections between

different modules, such

as logic gates and

memory blocks

Systeme hoher Sicherheit und Qualität, WS 17/18 - 20 -

Development Model for Hardware

Equivalence Check

Test

Property Check
Specification

System Model

RTL Model

Gate Level

Layout

Transistor Level

Silicone

Simulation

Emulation

Systeme hoher Sicherheit und Qualität, WS 17/18 - 21 -

Basic Notions of Formal
Software Development

Systeme hoher Sicherheit und Qualität, WS 17/18 - 22 -

Formal Software Development

 In a formal development, properties are stated in a rigorous way
with a precise mathematical semantics.

 Formal specification requirements can be proven.

Advantages:

 Errors can be found early in the development process.

 High degree of confidence into the system.

 Recommend use of formal methods for high SILs/EALs.

Drawbacks:

 Requires a lot of effort and is thus expensive.

 Requires qualified personnel (that would be you).

 There are tools which can help us by

 finding (simple) proofs for us (model checkers), or

 checking our (more complicated) proofs (theorem provers).

Systeme hoher Sicherheit und Qualität, WS 17/18 - 23 -

Formal Semantics

States and transitions between them:

Operational semantics describes relation between states
and transitions:

Formal proofs; e.g. proving

 x := y + 4; z := y - 2 yields the same final state as
 z := y - 2; x := y + 4

x 5

y 3

z 8

x 7

y 3

z 8

x := y + 4 z := y - 2
x 7

y 3

z 1

s0 s1 s2

s ` e  n

s ` x := e  s[x / n]

s0 ` y + 4  7

s0 ` x := y + 4  s1
hence:

System run

Systeme hoher Sicherheit und Qualität, WS 17/18 - 24 -

Semantics of Programs and Requirements

Set of all possible system runs

Requirements related to safety and security:

 Requirements on single states ?

 Requirements on system runs ?

 Requirements on sets of system runs ?

x 5

y 3

z 8

x 7

y 3

z 8

x := y + 4 z := y - 2
x 7

y 3

z 1

s0 s1 s2

…

Alpern & Schneider (1985, 1987)
Clarkson & Schneider (2008)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 25 -

Some Notions

 Let b, t be two traces then

 b ≤ t iff ∃𝑡′. 𝑡 = 𝑏 ⋅ 𝑡′ i.e. b is a finite prefix of t

A property is a set of infinite execution traces (like a program)

 Trace t satisfies property P, written 𝑡 ⊨ 𝑃, iff 𝑡 ∈ 𝑃

A hyperproperty is a set of sets of infinite execution traces (like a

set of programs)

 A system (set of traces) S satisfies H iff S  H

 An observation Obs is a finite set of finite traces

 Obs ≤ S (Obs is a prefix of S) iff Obs is an observation and

  m  Obs.  t  S. m ≤ t

Systeme hoher Sicherheit und Qualität, WS 17/18 - 26 -

Requirements on States: Safety Properties

Safety property S: „Nothing bad happens“

 i.e. the system will never enter a bad state

 E.g. “Lights of crossing streets do not go
green at the same time”

A bad state:

 can be immediately recognized;

 cannot be sanitized by following states.

S is a safety property iff

 ∀𝑡. 𝑡 ∉ 𝑆 → ∃ 𝑡1, 𝑡2. 𝑡 = 𝑡1⋅ 𝑡2 → ∀ 𝑡3. 𝑡1⋅ 𝑡3 ∉ 𝑆

𝑡1 𝑡2

Systeme hoher Sicherheit und Qualität, WS 17/18 - 27 -

Satisfying Safety Properties

Safety properties are typically proven by induction

 Base case: initial states are good (= not bad)

 Step case: each transition transforms a good state again
in a good state

Safety properties can be enforced by run-time monitors

 Monitor checks following state in advance
and allows execution only if it is a good state

Systeme hoher Sicherheit und Qualität, WS 17/18 - 28 -

Requirements on Runs: Liveness Properties

Liveness property L:

 „Good things will happen eventually“

 E.g. “my traffic light will go green
eventually * ”

A good thing is always possible and possibly infinite.

L is a liveness property iff

 ∀ 𝑡. finite(𝑡) → ∃ 𝑡1. 𝑡 ⋅ 𝑡1 ∈ 𝐿

 i.e. all finite traces t can be extended to a trace in L.

* Achtung: “eventually” bedeutet “irgendwann” oder “schlussendlich”
 aber nicht “eventuell” !

Systeme hoher Sicherheit und Qualität, WS 17/18 - 29 -

Satisfying Liveness Properties

Liveness properties cannot (!) be enforced by run-time
monitors.

Liveness properties are typically proven by the help of
well-founded orderings

 Measure function m on states s

 Each transition decreases m
 t 2 L if we reach a state with minimal m

E.g. measure denotes the number of transitions for the light
to go green

Systeme hoher Sicherheit und Qualität, WS 17/18 - 30 -

Requirements on Sets of Runs:
Safety Hyperproperties

 Safety hyperproperty: „System never behaves bad“

 No bad thing happens in a finite set of finite traces

 (the prefixes of) different system runs do not exclude each other

 E.g. “the traffic light cycle is always the same”

A bad system can be recognized by a bad observation (set of finite
runs)

 A bad observation cannot be sanitized regards less how we
continue it or add additional system runs

 E.g. two system runs having different traffic light cycles

 S is a safety hyperproperty iff
  T  S . ( Obs ≤ T.  T‘. Obs ≤ T‘) T‘  S)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 31 -

Requirements on Sets of Runs:
Liveness Hyperproperties

 Liveness hyperproperty S:
„The system will eventually develop to a good system“

 Considering any finite part of a system behavior, the system
eventually develops into a “good” system (by continuing
appropriately the system runs or adding new system runs)

 E.g. “Green light for pedestrians can always be omitted”

 L is liveness hyperproperty iff  T . ( G. T ≤ G  G  L)

 T is a finite set of finite traces (observation)

 Each observation can be explained by a system G satisfying L

 Example:

 Average response time

 Closure operations in information flow control

Systeme hoher Sicherheit und Qualität, WS 17/18 - 32 -

Landscape of (Hyper)Properties

 Each (hyper-) property can be represented as a combination of
safety and liveness (hyper-) properties.

Safety

Hyperproperties
Liveness

Hyperproperties

Safety

Properties
Liveness

Properties

Invariants
Guaranteed

Service

Average

Response
Non-

Interference

Closure

 Predicates Observational

determinism

Systeme hoher Sicherheit und Qualität, WS 17/18 - 33 -

Structuring the
Formal Development

Systeme hoher Sicherheit und Qualität, WS 17/18 - 34 -

The Global Picture

Informal Specification

Safety/Security

Requirements

Composite Specification

Abstract Specification

Refined Specification

Decomposition

Refinement /
Decomposition

Safety/Security

Requirements

Satisfies

Satisfies

Satisfies

Satisfies

Test
Program analysis
Model checking
Formal proof

Systeme hoher Sicherheit und Qualität, WS 17/18 - 35 -

Structuring the Development

Horizontal structuring:

 Modularization into components

 Composition and Decomposition

 Aggregation

 Vertical structuring:

 Abstraction and refinement
from design specification to implementation

 Declarative vs. imparative specification

 Inheritance of properties

 Views:

 Addresses multiple aspects of a system

 Behavioral model, performance model, structural model,
analysis model(e.g. UML, SysML)

Systeme hoher Sicherheit und Qualität, WS 17/18 - 36 -

Horizontal Structuring (informal)

Composition of components

 Dependent on the individual layer of abstraction

 E.g. modules, procedures, functions,…

Example:

Systeme hoher Sicherheit und Qualität, WS 17/18 - 37 -

Modular Structuring of Requirements

System Requirements

Component 1

Requirement

Component n

Requirement

Component 1

Guarantees

Component n

Guarantees

System Guarantees

…

…

Decomposition of requirements

Composition of guarantees

Verification of requirements

Systeme hoher Sicherheit und Qualität, WS 17/18 - 38 -

Mutual Dependencies: Assume/Guarantee

Safety requirement: Queue does not loose any items.

Components depend on each other!

 Initialization ?

Loop:
 if s1 = a1 {
 send(x, in); s1 = not s1 }

Loop:
 if s1 != a1 and |q| < max {
 enq(q, in); a1 = not a1; }
 if s2 = a2 and |q| > 0 {
 deq(q, out); s2 != not s2 }

Loop:
 if s2 != a2 then {
 read(y, out); a2 = not a2;
 consume(y) }

in out

s1 s2

a2 a1

q

Producer Queue Consumer

Fixed capacity

Systeme hoher Sicherheit und Qualität, WS 17/18 - 39 -

Composition of Security Guarantees

Only complete bicycles are allowed to pass the gate.

Secure ! Secure !

Systeme hoher Sicherheit und Qualität, WS 17/18 - 40 -

Composition of Security Guarantees

Insecure !

Only complete bicycles are allowed to pass the gate.

Systeme hoher Sicherheit und Qualität, WS 17/18 - 41 -

Vertical Structuring - Refinement

 Idea: start at an abstract description and add
details step by step

 From abstract specification to an implementation

What shall be refined?

 Algorithm: algebraic refinement

 Data: data refinement

 Process: process refinement

 Events: action refinement

Systeme hoher Sicherheit und Qualität, WS 17/18 - 42 -

Algebraic Refinement

nil: list cons(int, list):list
first(list):int tail(list):int
…

first(nil) = -1 first(cons(x, y)) = x
tail(nil) = nil tail(cons(x, y)) = y

List

empty: stack; push(int, stack):stack
pop(stack):stack

pop(empty) = empty; pop(push(x, y)) = y

Stack

li_empty = nil
li_push(x, y) = cons(x, y)
li_pop(x) = tail(x)

Implementing
stacks by lists

li_pop(li_empty) = li_empty
Li_pop(li_push(x, y)) = y

To prove:

Refinement preserves
properties of stack by
transitivity of the logic !

Refinement Satisfies

Systeme hoher Sicherheit und Qualität, WS 17/18 - 43 -

Even More Refinements

Data refinement

 Abstract datatype is „implemented“ in terms of the
more concrete datatype

 Simple example: define stack with lists

Process refinement

 Process is refined by excluding certain runs

 Refinement as a reduction of underspecification by
eliminating possible behaviours

Action refinement

 Action is refined by a sequence of actions

 E.g. a stub for a procedure is refined to an executable
procedure

Systeme hoher Sicherheit und Qualität, WS 17/18 - 44 -

Conclusion & Summary

Software development models: structure vs. flexibility

Safety standards such as IEC 61508, DO-178B suggest
development according to V-model.

 Specification and implementation linked by verification
and validation.

 Variety of artefacts produced at each stage, which have to
be subjected to external review.

Safety / Security Requirements

 Properties: sets of traces

 Hyperproperties: sets of properties

Structuring of the development:

 Horizontal – e.g. composition

 Vertical – refinement (e.g. algebraic, data, process…)

