Systeme hoher Sicherheit und Qualitat
Universitat Bremen, WS 2017/2018

Lecture 3:

The Software Development Process

Christoph Luth, Dieter Hutter, Jan Peleska

@ Universitat Bremen

Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards
03: The Software Development Process
04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with OCL

07: Testing

08: Static Program Analysis

09-10: Software Verification

11-12: Model Checking

13: Conclusions

vV v v v VvV vV vV VvV VY

Systeme hoher Sicherheit und Qualitat, WS 17/18 -2- ' - J w

Software Development
Models

@ Universitat Bremen

Software Development Process

» A software development process is the structure imposed on
the development of a software product.

» We classify processes according to models which specify
» the artefacts of the development, such as

the software product itself, specifications, test
documents, reports, reviews, proofs, plans etc;

» the different stages of the development;

» and the artefacts associated to each stage.
» Different models have a different focus:

» Correctness, development time, flexibility.
» What does quality mean in this context?

» What is the output? Just the software product, or more?
(specifications, test runs, documents, proofs...)

Systeme hoher Sicherheit und Qualitat, WS 17/18 -4 - ' - :I @

Artefacts in the Development Process

Planning:

« Document plan Possible formats:

« V&V plan « Documents:

« QM plan « Word documents
« Test plan « Excel sheets

Project manual « Wiki text

« Database (Doors)
« Models:;
« UML/SysML

Specifications:
* Requirements
« System specification

« Module specification diagrams
» User documents - Formal languages: Z,
HOL, etc.

Implementation:

« Source code
« Models
« Documentation Verification & validation:
« Code review protocols
« Test cases, procedures,
and test results
« Proofs

« Matlab/Simulink or
similar diagrams
« Source code

Systeme hoher Sicherheit und Qualitat, WS 17/18 -5- . - :I @

Waterfall Model (Royce 1970)

» Classical top-down sequential workflow with strictly
separated phases.

Requirement
Design
Implementation
Verification

Maintenance

» Unpractical as actual workflow (no feedback between
phases), but even the original paper did not really suggest
this.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -6 - ' - J w

Spiral Model (Bohm, 1986)

» Incremental development guided by risk factors
» Four phases:

» Determine objectives

» Analyse risks

» Development and test

» Review, plan next iteration

1.Determine
objectives

Review

Cumulative cost

2. ldentify and
resolve risks

Progress
.

» See e.g.
» Rational Unified Process (RUP)

4. Plan the
next iteration

Release

» Drawbacks:

Implementation

3. Development
and Test

» Risk identification is the key, and can be quite difficult

Systeme hoher Sicherheit und Qualitat, WS 17/18

Model-Driven Development (MDD, MDE)

» Describe problems on abstract level using a modeling language
(often a domain-specific language), and derive implementation by
model transformation or run-time interpretation.

» Often used with UML (or its DSLs, eg. SysML)

CM —>| PIM —>{ PSM ——>| Code

» Variety of tools:

» Rational tool chain, Enterprise Architect, Rhapsody, Papyrus,
Artisan Studio, MetaEdit+, Matlab/Simulink/Stateflow*

» EMF (Eclipse Modelling Framework)
» Strictly sequential development
» Drawbacks: high initial investment, limited flexibility

* Proprietary DSL - not related to UML

Systeme hoher Sicherheit und Qualitat, WS 17/18 -8- ' - J w

Agile Methods

» Prototype-driven development
» E.g. Rapid Application Development
» Development as a sequence of prototypes
» Ever-changing safety and security requirements

» Agile programming
» E.g. Scrum, extreme programming
» Development guided by functional requirements
» Process structured by rules of conduct for developers

» Rules capture best practice
» Less support for non-functional requirements

» Test-driven development

» Tests as executable specifications: write tests first
» Often used together with the other two

Systeme hoher Sicherheit und Qualitat, WS 17/18 -9- ' - :I @

V-Model

» Evolution of the waterfall model:

» Each phase is supported by a corresponding testing
phase (verification & validation)

» Feedback between next and previous phase
» Standard model for public projects in Germany
» ... but also a general term for models of this ,shape”

Cngaing
Support

Operational

Requirements Review/Test

: ol - onoonoeosee - :
Analysis Testing
High Level | »| Integration
Design Testing
Detailed . Unit
Specifications Testing

Coding

Systeme hoher Sicherheit und Qualitat, WS 17/18 -10 -

Software Development Models

N
7

Flexibility

Systeme hoher Sicherheit und Qualitat, WS 17/18

from S. Paulus: Sichere Software

W

Prototype-based Agile
developments Methods
Spiral model
V-model
Waterfall _
model Model-driven
developement
Structure
-11 -

Development Models for
Safety-Critical Systems

@ Universitat Bremen

Development Models for Critical Systems

» Ensuring safety/security needs structure.

» ...but too much structure makes developments
bureaucratic, which is in itself a safety risk.

» Cautionary tale: Ariane-5
» Standards put emphasis on process.
» Everything needs to be planned and documented.
» Key issues: auditability, accountability, traceability.

» Best suited development models are variations of the V-
model or spiral model.

» A new trend?
» V-Model for initial developments of a new product

» Agile models (e.g. Scrum) for maintenance and product
extensions

Systeme hoher Sicherheit und Qualitat, WS 17/18 -13- ' - :I @

Auditability and Accountability

» Version control and configuration management is mandatory
in safety-critical development (auditability).

» Keeping track of all artifacts contributing to a particular
instance (build) of the system (configuration), and their
versions.

» Repository keeps all artifacts in all versions,

» Centralised: one repository vs. distributed (every developer
keeps own repository)

» General model: check out - modify - commit

» Concurrency: enforced lock, or merge after commit.
» Well-known systems:

» Commercial: ClearCase, Perforce, Bitkeeper...

» Open Source: Subversion (centr.); Git, Mercurial (distr.)

Systeme hoher Sicherheit und Qualitat, WS 17/18 -14 - ' - :I @

Traceability

» The idea of being able to follow requirements (in particular,
safety requirements) from requirement spec to the code (and
possibly back).

» On the simplest level, an Excel sheet with (manual) links to
the program.

» More sophisticated tools include DOORS.
» Decompose requirements, hierarchical requirements

» Two-way traceability: from code, test cases, test
procedures, and test results back to requirements

» E.g. DO-178B requires all code derives from requirements

Systeme hoher Sicherheit und Qualitat, WS 17/18 -15- ' - ;I w

Development Model in IEC 61508

» [EC 61508 in principle allows any development model, but:

» It requires safety-directed activities in each phase of the
life cycle (safety life cycle).

» Development is one part of the life cycle.
» The only development model mentioned is a V-model:

E!EJ'P!ES safety . Soﬂw.are safety Validation Validation
requirements I reguirements testing
specification specification

Integration testing
E ES (components, subsystems
architecture “

| Validated
software

Software
architecture

Software system|-s--------ccccccccocax
design
:
Module Module
design testing
I
1

and programmable
electronics)

Integration
testing
{module)

CODING

— Qutput
-==-- Jerification

Systeme hoher Sicherheit und Qualitat, WS 17/18 -16 -

The Safety Life Cycle (IEC 61508)

n Concept

e .

Overall scope
definition

v

Hazard and risk
analysis

Overall safety
requirements

Planning

Realisation

allocation

e
v v

Safety-related ‘ External risk

systems: other reduction
technology _ facilities

Realisation Realisation

v

Overall planning

Overall Overall Overall
operation and safety installation and
maintenance s validation commissioning

lanning planning planning

" Realisation |
(see E/E/PES
safety lifecycle)

Overall installation 0 \
and commissioning
v
Back to appropriate
Overall safety overall safety lifecycle
validation phase

L Overall operation s Overall modification
el maintenance a. repair = and retrofit

v

16 [
E/E/PES: Electrical/Electronic/Programmable Electronic Safety-related Systems

L < Y

Operation

Systeme hoher Sicherheit und Qualitat, WS 17/18 -17 -

Development Model in DO-178B

» DO-178B defines different processes in the SW life cycle:
» Planning process

» Development process, structured in turn into
Requirements process
Design process
Coding process
Integration process

» Verification process

» Quality assurance process

» Configuration management process
» Certification liaison process

» There is no conspicuous diagram, but the Development Process has
sub-processes suggesting the phases found in the V-model as well.

» Implicit recommendation of the V-model.

Systeme hoher Sicherheit und Qualitat, WS 17/18 -18 - ' - :I @

Development Model for Hardware

Specification

A 4

System Model

\ 4

RTL Model

A 4

Gate Level

\ 4

Layout

A 4

Transistor Level

\ 4

Silicone

Systeme hoher Sicherheit und Qualitat, WS 17/18

-19-

Textual description

of the electric
connections
(“Schaltplan™) _

Cie ‘DU&|n,

Register-Transfer-Ebene: Verilog

During chip design:
Description of the
connections between
different modules, such
as logic gates and
memory blocks

2< [

Development Model for Hardware

[L b « D
Specification “ > ()
N J Property Check
\ 4 \ J
a N e D
System Model X . Simulation
) J
- Y N
RTL Model Emulation
(&)/
Gate Level
Layout Equivalence Check J

A 4

Transistor Level

A 4

Silicone

Test]

Systeme hoher Sicherheit und Qualitat, WS 17/18 -20 - ' - 'J @

Basic Notions of Formal
Software Development

@ Universitat Bremen

Formal Software Development

» In a formal development, properties are stated in a rigorous way
with a precise mathematical semantics.

» Formal specification requirements can be proven.
» Advantages:
» Errors can be found early in the development process.
» High degree of confidence into the system.
» Recommend use of formal methods for high SILs/EALSs.
» Drawbacks:
» Requires a lot of effort and is thus expensive.
» Requires qualified personnel (that would be you).
» There are tools which can help us by
» finding (simple) proofs for us (model checkers), or
» checking our (more complicated) proofs (theorem provers).

Systeme hoher Sicherheit und Qualitat, WS 17/18 -22-

Formal Semantics

» States and transitions between them:

4 X 7 A X

X=y+ Z:=y-

y 3 Ly 3 e, » System run
z 8 z 8 z 1

So S S,

» Operational semantics describes relation between states
and transitions:

SFe—n SoFy+4—7

SEX:=e — s[x/n] hence: SoFx:=y+4 — s,

» Formal proofs; e.g. proving

x:=y+4;z:=y-2 yields the same final state as
Z:=y-2,x:=y+4

Systeme hoher Sicherheit und Qualitat, WS 17/18 -23-

< 1)

Semantics of Programs and Requirements

» Set of all possible system runs

X
X=y+4 z2:=y-2

<
W
N
<
o W
<
W
v

v
A
A 4

v
A A
\ 4

A A

v
A
A 4

» Requirements related to safety and security:
» Requirements on single states?
» Requirements on system runs ?
» Requirements on sets of system runs ?

Alpern & Schneider (1985, 1987)
Clarkson & Schneider (2008)

Systeme hoher Sicherheit und Qualitat, WS 17/18 -24 - . - :I @

Some Notions

» Let b, t be two traces then
b<tiff 3t".t=b -t i.e. bisafinite prefix of t

» A property is a set of infinite execution traces (like a program)
» Trace t satisfies property P, writtent = P, ifft € P

» A hyperproperty is a set of sets of infinite execution traces (like a
set of programs)

» A system (set of traces) S satisfies Hiff S € H
» An observation Obs is a finite set of finite traces

» Obs < S (Obs is a prefix of S) iff Obs is an observation and
VmeObs. 3teS. mc<t

Systeme hoher Sicherheit und Qualitat, WS 17/18 -25 - ' - :I @

Requirements on States: Safety Properties

» Safety property S: ,Nothing bad happens”
» i.e. the system will never enter a bad state

» E.g. “Lights of crossing streets do not go
green at the same time”

» A bad state:

» can be immediately recognized;

» cannot be sanitized by following states.
» S is a safety property iff

> Vt.t&S - (3t ty.t =1t t, >Vits t1-t3 &S)

N N
» »

| |
tl tZ

Systeme hoher Sicherheit und Qualitat, WS 17/18 -26 -

Satisfying Safety Properties

» Safety properties are typically proven by induction
» Base case: initial states are good (= not bad)

» Step case: each transition transforms a good state again
in a good state

» Safety properties can be enforced by run-time monitors

» Monitor checks following state in advance
and allows execution only if it is a good state

Systeme hoher Sicherheit und Qualitat, WS 17/18 -27 - ' - :I @

Requirements on Runs: Liveness Properties

» Liveness property L:

» E.g. “my traffic light will go green
eventually *"

» A good thing is always possible and possibly infinite.

» L is a liveness property iff
» V t. finite(t) - 3¢t4. t-t; €L

» i.e. all finite traces t can be extended to a trace in L.

*Achtung: “eventually” bedeutet “irgendwann” oder “schlussendlich”
aber nicht “eventuell”!

Systeme hoher Sicherheit und Qualitat, WS 17/18 -28 - ' - J w

Satisfying Liveness Properties

» Liveness properties cannot (!) be enforced by run-time
monitors.

» Liveness properties are typically proven by the help of
well-founded orderings

» Measure function m on states s

» Each transition decreases m
» t €L if we reach a state with minimal m

» E.g. measure denotes the number of transitions for the light
to go green

Systeme hoher Sicherheit und Qualitat, WS 17/18 -29- ' - :I @

Requirements on Sets of Runs:
Safety Hyperproperties l I

» Safety hyperproperty: ,System never behaves bad”
» No bad thing happens in a finite set of finite traces

> (the prefixes of) different system runs do not exclude each other
» E.g. "“the traffic light cycle is always the same”

» A bad system can be recognized by a bad observation (set of finite
runs)

» A bad observation cannot be sanitized regards less how we
continue it or add additional system runs

» E.g. two system runs having different traffic light cycles

» S is a safety hyperproperty iff
VT¢S. (F0bs<sT.VT. Obs<T =T ¢8S)

Systeme hoher Sicherheit und Qualitat, WS 17/18 -30- . - :I @

Requirements on Sets of Runs:
Liveness Hyperproperties BB 0. BB

> Liveness hyperproperty S: lII II
»1he system will eventually develop to a good system”

» Considering any finite part of a system behavior, the system
eventually develops into a “good” system (by continuing
appropriately the system runs or adding new system runs)

» E.g."Green light for pedestrians can always be omitted”

» L is liveness hyperproperty iff vT. (3G. T<GAGel)
» Tis a finite set of finite traces (observation)
» Each observation can be explained by a system G satisfying L

» Example:
» Average response time
» Closure operations in information flow control

Systeme hoher Sicherheit und Qualitat, WS 17/18 -31- . - :I @

Landscape of (Hyper)Properties

» Each (hyper-) property can be represented as a combination of
safety and liveness (hyper-) properties.

Safety
Hyperproperties

Liveness
Hyperproperties

Safety Liveness
Properties Properties Average

Non- Response

Interference
Guaranteed

Invariants Service

Closure

Observational Predicates
determinism

Systeme hoher Sicherheit und Qualitat, WS 17/18 -32-

Structuring the
Formal Development

@ Universitat Bremen

The Global Picture

Informal Specification

O
O
Satisfies _
Safety/Security
Requirements
Abstract Specification
Decomposition Satisfies -
. 2
...:z...§

Composite Specification Test | = = -
Program analysis
Refinement / o Model checking
Satisfies Formal proof

Decomposition

E—ﬁ atisfies Safety/Security

Requirements

Refined Specification

Systeme hoher Sicherheit und Qualitat, WS 17/18 -34 -

ady

Structuring the Development

» Horizontal structuring:

» Modularization into components

» Composition and Decomposition
» Aggregation

» Vertical structuring:

» Abstraction and refinement

from design specification to implementation
» Declarative vs. imparative specification
» Inheritance of properties

» Views:

» Addresses multiple aspects of a system

» Behavioral model, performance model, structural model],
analysis model(e.g. UML, SysML)

Systeme hoher Sicherheit und Qualitat, WS 17/18 -35-

U

Horizontal Structuring (informal)

» Composition of components
» Dependent on the individual layer of abstraction
» E.g. modules, procedures, functions,...

» Example:

Comm Address/Reporting Flat Panel Disp lays
Flight Managem ent Head up display (HUD)
Cabin Pressure Cntrl HF Radio
Cabin Temp Cntrl Microwave Landing
Comm, Nav/ID Smoke Detection
Airborne Flight Info Window Heat Cntrl W eather
Detection
SATCOM Antenniae o
Integrated Meumatic System (Valves,
Kt Iw"’g’;":&:‘gﬁ: Heat Exchangers, Water Separators)
Interior Lighting - - Alr Data
/ B *gensors

Emergency Power Turbine
Traffic

g e |‘ \
o | @
~\\ L/ AlertCollisi
Exteral Lighting P \ preteimsl
¥
2, Enhanced

- E— 2\ . \ = =, Ground
) o — —— L=< % Prox
S o e I EnvironmentalCntrl | W/3Ming
3 Y £~ e Q
x G £E l‘ -] < Anti-lee Cntrl
Auxiliary Power Unit < T
APU Cntris > <
APU Start

Wheels/Brakes
Altemators/Generators Anti-Skid/Landing Gear
Variable Speed

Constant Frequency

Air Cycle Machine

ke Detection

Hydraulic Pumps AltematorsiGenerabors

Hydraulic Accumulaors Engine Cntrl

Hydraulic Power Transfer Units Engine Starters

Power Transfer Unit Nacelle Subsystm
Airdrive Unit QilfAir fFuelCoolers

Voice/flight Data Recorders Thrust Reversers

Systeme hoher Sicherheit und Qualitat, WS 17/18 -36 -

Modular Structuring of Requirements

Decomposition of requirements

Verification of requirements

Component 1 Component n
Guarantees Guarantees

Composition of guarantees

System Guarantees

Systeme hoher Sicherheit und Qualitat, WS 17/18 -37-

Mutual Dependencies: Assume/Guarantee

» Safety requirement: Queue does not loose any items.

Producer
in

s

al

Loop:
ifs1=a1{
send(x, in); sT =nots1}

» Components depend on each other!

» |nitialization ?

Systeme hoher Sicherheit und Qualitat, WS 17/18

Queue

Fixed capacity

-38 -

ifs1!=aland |g| <max {
enqg(qg, in); al =notal;}

ifs2=a2and |q| >0 {
deq(q, out); s2!=nots2}

out

S2

a2

Consumer

Loop:
if s2 1= a2 then {

read(y, out); a2 = not a2;

consume(y) }

(Y

Composition of Security Guarantees

Only complete bicycles are allowed to pass the gate.

Secure'! Secure!

Systeme hoher Sicherheit und Qualitat, WS 17/18 -39-

Composition of Security Guarantees

Only complete bicycles are allowed to pass the gate.

Insecure!

Systeme hoher Sicherheit und Qualitat, WS 17/18 -40 - . - :I @

Vertical Structuring - Refinement

» |dea: start at an abstract description and add
details step by step

From abstract specification to an implementation

» What shall be refined?
» Algorithm: algebraic refinement
» Data: data refinement
» Process: process refinement
» Events: action refinement

Systeme hoher Sicherheit und Qualitat, WS 17/18 -41 - . - :I @

Algebraic Refinement

Stack empty: stack; push(int, stack):stack

pop(stack):stack

pop(empty) = empty; pop(push(x,y)) =y

Refinement Satisfies

Implementing li_empty = nil
stacks by lists li_push(x, y) = cons(x, y)
li_pop(x) = tail(x)

List nil: list cons(int, list):list
first(list):int tail(list):int

first(nil) = -1 first(cons(x, y)) = x
tail(nil) = nil tail(cons(x, y)) =y

Systeme hoher Sicherheit und Qualitat, WS 17/18 -42 -

To prove:

li_pop(li_empty) = li_empty
Li_pop(li_push(x, y)) =y

Refinement preserves
properties of stack by
transitivity of the logic !

R W

Even More Refinements

» Data refinement

» Abstract datatype is ,implemented” in terms of the
more concrete datatype
» Simple example: define stack with lists
» Process refinement
» Process is refined by excluding certain runs

» Refinement as a reduction of underspecification by
eliminating possible behaviours

» Action refinement
» Action is refined by a sequence of actions

» E.g. astub for a procedure is refined to an executable
procedure

Systeme hoher Sicherheit und Qualitat, WS 17/18 -43 - ' - ;I w

Conclusion & Summary

» Software development models: structure vs. flexibility

» Safety standards such as IEC 61508, DO-178B suggest
development according to V-model.

» Specification and implementation linked by verification
and validation.

» Variety of artefacts produced at each stage, which have to
be subjected to external review.

» Safety / Security Requirements
» Properties: sets of traces
» Hyperproperties: sets of properties
» Structuring of the development:
» Horizontal - e.g. composition
» Vertical - refinement (e.g. algebraic, data, process...)

Systeme hoher Sicherheit und Qualitat, WS 17/18 -44 - ' - J w

